JPS59139672A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS59139672A
JPS59139672A JP59007128A JP712884A JPS59139672A JP S59139672 A JPS59139672 A JP S59139672A JP 59007128 A JP59007128 A JP 59007128A JP 712884 A JP712884 A JP 712884A JP S59139672 A JPS59139672 A JP S59139672A
Authority
JP
Japan
Prior art keywords
film
junction
oxide film
scanning
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59007128A
Other languages
Japanese (ja)
Other versions
JPH0230587B2 (en
Inventor
Norio Koike
安藤治久
Toshihisa Tsukada
小池紀雄
Toru Umaji
塚田俊久
Haruhisa Ando
馬路徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59007128A priority Critical patent/JPS59139672A/en
Publication of JPS59139672A publication Critical patent/JPS59139672A/en
Publication of JPH0230587B2 publication Critical patent/JPH0230587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain a two-storied image pickup element which can be formed at the minimum processes of manufacture by a method wherein an insulating oxide film is formed on the upper part of a scanning IC substrate, the oxide film on the specific junction region of an MOS transistor is removed, and a two-dimensional electrode pattern to be used for formation of a picture element conductive to the junction part is formed on the upper part of the junction region. CONSTITUTION:After a gate, a source junction and a drain junction have been formed, an oxide film 18 to be used for insulation is formed. Subsequently, the oxide film 18 located on the desired source or drain is removed by performing a photo etching, and a metal film is vapor-deposited. A scanning IC substrate 21, whereon a scanning circuit on a semiconductor substrate and a switch 20 for positional selection are integrated, is formed. An electrode 24 with which the unit measurements of photoelectric conversion, a picture element in other words, will be determined is formed. This electrode is the second layer for the wiring 19, the ohmic contact with the junction of an MOS switch can be maintained through a contact hole 19, and the above is electrically isolated from the first layer wiring 19 by an insulating film 22.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は半導体基板1−に走査回路および光電変換膜を
即積化した同体撮像素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an integrated image sensor in which a scanning circuit and a photoelectric conversion film are integrated on a semiconductor substrate 1-.

[発明の背fA] 固体撮像索子を構成する有力な担手としてCC1つ(C
harge Coupled Devjces)および
MOS型(MOSスイッチのソース接合を光ダイオード
として利用する素−7−)の2種類が考えられてきた。
[Background of the invention] One CC (C
Two types have been considered: the MOS type (Harge Coupled Devjces) and the MOS type (an element in which the source junction of a MOS switch is used as a photodiode).

いる。しかし乍ら、感光部が電極の下(CCI)の場合
)または走査スイッチおよび信号出力線と同一・平面に
(MOS型の場合)にあるため、電極やスイッチ部によ
り光の入射がさまたげられる領域が多く、すなわち光損
失が大きいという欠点がある。さらに、感光部と走査部
が前述のように同一平面−ににあるため絵素の占有面積
が大きく、すなわち絵素の集積度を上げることが出来な
くて解像度を」二げることかできないという問題点を有
している。
There is. However, since the photosensitive part is located below the electrode (in the case of CCI) or on the same plane as the scanning switch and signal output line (in the case of MOS type), there are areas where the incidence of light is blocked by the electrode and switch part. The disadvantage is that there is a large amount of light loss, that is, there is a large optical loss. Furthermore, as the photosensitive section and the scanning section are on the same plane as mentioned above, the area occupied by the picture elements is large, which means that the density of the picture elements cannot be increased, and the resolution can only be increased. There are problems.

これら問題点(光感度9M像度)を解決する構造として
、発明者らは走査部の上に感光用の光電変換膜を設ける
二階外構造の固体撮像素子を出願した(特願昭49−7
6372.特出願昭49年7月5日)。この二階外固体
撮像素子をMO8型素子で構成した場合を例にとり、素
子構造の概略を第1図に示す。1は第1導伝型の半導体
基板、2は走査回路(図示せず)あるいは走査回路の出
力によって開閉するスイッチを構成するMO3電界効果
トランジスタであり、ソース3、ドレイン4、ゲー1−
5にから成る。6は感光材料となる光電変換膜、また7
は光電変換膜を駆動する電圧印加用の透明電極である。
In order to solve these problems (photosensitivity: 9M image resolution), the inventors filed an application for a solid-state image sensor with a two-story structure in which a photoelectric conversion film for exposure is provided above the scanning section (Japanese Patent Application No.
6372. (Patent application filed July 5, 1972). Taking as an example the case where this second-order solid-state image pickup device is constructed of an MO8 type device, the device structure is schematically shown in FIG. 1 is a semiconductor substrate of the first conductivity type; 2 is an MO3 field effect transistor that constitutes a scanning circuit (not shown) or a switch that is opened and closed by the output of the scanning circuit;
It consists of 5 parts. 6 is a photoelectric conversion film serving as a photosensitive material, and 7
is a transparent electrode for applying voltage to drive the photoelectric conversion film.

この図から分るように、半導体基板1と走査回路および
スイッチ2を集積化した走査■C基板と6および7から
成る光電変換部とが二階外構造になっている。したがっ
て、面積利用率が高く絵素当りの寸法9が小さくなる。
As can be seen from this figure, the semiconductor substrate 1, the scanning C substrate on which the scanning circuit and the switch 2 are integrated, and the photoelectric conversion section consisting of 6 and 7 have a two-story structure. Therefore, the area utilization rate is high and the dimension 9 per picture element is small.

すなわち解像度が高い。光電変換部が入射光IOに対し
て」二部にあるため光損失がなく、光感度が高い。さら
に、光電変換膜を選択することによす所望の分光感度を
得ることができる等、従来の固体撮像素子に較べて極め
て優れた性能を期待することができるものである。
In other words, the resolution is high. Since the photoelectric conversion part is located at the second part with respect to the incident light IO, there is no light loss and the light sensitivity is high. Furthermore, it is possible to obtain a desired spectral sensitivity by selecting a photoelectric conversion film, and can expect extremely superior performance compared to conventional solid-state imaging devices.

反面、この二階外素子の難点は従来の固体撮像素子に較
べて光電変換膜を走査領域に製作する工程が増えるため
、製作歩留りが低くなることである。発明者らの素子製
作結果によれば、本素の歩留りは従来素子の1/3以下
に減少し本素子の実現上大きな問題となり得ることが判
明した。
On the other hand, the disadvantage of this second-order device is that compared to conventional solid-state image pickup devices, there are more steps to fabricate the photoelectric conversion film in the scanning region, resulting in a lower production yield. According to the results of device fabrication by the inventors, it has been found that the yield of the present device is reduced to ⅓ or less of that of conventional devices, which may pose a major problem in realizing the present device.

[発明の目的コ 本発明の目的は上記の問題点を改良すること、すなわち
必要最小限の製作工程数で素子が形成される二階外撮像
素子を得ようとするものである。
[Object of the Invention] An object of the present invention is to improve the above-mentioned problems, that is, to obtain a second-order imaging device in which the device can be formed with the minimum number of manufacturing steps necessary.

[発明の概要コ 本発明は、上記目的を達成するため通常のrc製作技術
で製作した走査用IC基板の上部に絶縁酸化膜を形成し
、MO8hランジスタの所定の接合領域−1〕の酸化膜
を除去しこの」二部に前記接合部と導通した絵素形成用
の二次元状電極パターンを1千 裂断するようにしたものである。
[Summary of the Invention] In order to achieve the above object, the present invention forms an insulating oxide film on the top of a scanning IC substrate manufactured by ordinary RC manufacturing technology, and forms an oxide film in a predetermined junction region-1 of an MO8h transistor]. is removed, and a two-dimensional electrode pattern for forming picture elements, which is electrically connected to the joint portion, is torn into two pieces.

[発明の実施例] 以下、本発明を実施例を参照して詳細に説明する。第2
図は本発明による二階外撮像素子の製作(a)先ず、第
1導電型(例えばP型)のシリコン半導体基板11上に
、0.1μm程度のシリコン酸化IPK (S :r、
 02 )、続いてSiO2膜の上部にシリコン窒化膜
(S j3N4 )を形成する(P型不純物濃度は例え
は10個/C/)6ホトエツチングによりソース、ゲー
ト、ドレイン領域に相当する領域に相当する領域12の
窒化膜を残し、他の領域の窒化膜およびその下の酸化膜
を除去する。続いて、酸化を行うと窒化膜の除去された
領域にはシリコン酸化膜J3(通常は1μm程度)が成
長する。
[Examples of the Invention] The present invention will be described in detail below with reference to Examples. Second
The figure shows the production of a second-order image sensor according to the present invention (a) First, silicon oxide IPK (S:r,
02), then a silicon nitride film (S j3N4 ) is formed on the top of the SiO2 film (P-type impurity concentration is, for example, 10/C/). 6 Photoetching is performed to form a silicon nitride film (S j3N4 ) on the top of the SiO2 film in areas corresponding to the source, gate, and drain regions. The nitride film in the region 12 is left, and the nitride film in other regions and the oxide film thereunder are removed. Subsequently, when oxidation is performed, a silicon oxide film J3 (usually about 1 μm thick) grows in the region where the nitride film has been removed.

この後、残されていた窒化膜およびその下の酸化膜をエ
ツチングにより除去する。この酸化膜形成法はr−、o
 c o s法(Local Oxj、dat、ion
 of 5ilicon)としてよく知られている技術
である。
Thereafter, the remaining nitride film and the oxide film thereunder are removed by etching. This oxide film formation method is r-, o
cos method (Local Oxj, dat, ion
This is a technology well known as 5ilicon).

(b)次に、ゲート酸化膜として使用するシリコン酸化
膜(0,05〜0.1μm)を形成し、続いて、その上
にゲート電極用の多結晶シリコン(0,2〜0.5μm
)を形成する。ホトエツチング技術によりグー1〜電極
領域を残し、その他の領域の多結晶シリコンおよびその
下の走化膜を除去する。このようにして、ゲート電極1
4.グー1−酸化膜15を形成する。さらに、このグー
1−電極領域をマスクにして基板11の中へ第2導伝型
の不純物(例えばリンCP)原子、ヒ素(ΔS)原子な
ど)を熱拡散し、ソース16およびトレイン17を形成
する。この拡散工程においてグー1〜電極用の多結晶シ
リコン14の中へも第2導電型の不純物が波数され、多
結晶シリコンは動作−に問題ない程度まで導伝率が高く
なる。
(b) Next, a silicon oxide film (0.05 to 0.1 μm) to be used as a gate oxide film is formed, and then polycrystalline silicon (0.2 to 0.5 μm) for the gate electrode is formed on it.
) to form. Using a photo-etching technique, the polycrystalline silicon in the other regions and the chemotactic film thereunder are removed, leaving the Goo 1 to electrode regions. In this way, the gate electrode 1
4. A goo 1-oxide film 15 is formed. Furthermore, impurities of the second conductivity type (for example, phosphorus CP atoms, arsenic (ΔS) atoms, etc.) are thermally diffused into the substrate 11 using this goo 1 electrode region as a mask, thereby forming a source 16 and a train 17. do. In this diffusion step, impurities of the second conductivity type are diffused into the goo 1 to the polycrystalline silicon 14 for the electrode, and the conductivity of the polycrystalline silicon is increased to the extent that there is no problem in operation.

(c)ゲー1− 、ソース接合、ドレイン接合形成後、
絶縁用の酸化膜18(一般にP原子入りS j O,膜
がCV I)法等によって作られる)を0.3〜0.6
μrn程度形成する。続いて、所望のソースあるいはト
レイン上の酸化膜18をホトエツチングにより除去しく
いわゆるコンタクト孔の形成である2゜0.5〜1,0
μmの金属膜(通常A2 )を蒸着する。ホトエツチン
グにより所望のA2 パターン19を残して、不要な部
分のA[u除去する(このACパターンは信号の取出し
ゃ電圧印加用の配線として使用される)。(a)から(
C)までの工程によって、半導体基板」二の走査回路(
図示せず)や位置選択用のスイッチ20を集積化した走
査用TC基板21が製作される。この製作プロセス((
a)〜(C))は従来のTC製法と同じであり、本発明
の素子はさらに以下の(d)〜(g)までのユニ稈によ
って作製される。
(c) After formation of Ga1-, source junction, and drain junction,
The insulating oxide film 18 (generally made by the P atom-containing SjO, film is CV I) method, etc. is 0.3 to 0.6
About μrn is formed. Subsequently, the oxide film 18 on the desired source or train is removed by photoetching to form a so-called contact hole.
A .mu.m metal film (usually A2) is deposited. By photo-etching, unnecessary portions of A[u are removed, leaving the desired A2 pattern 19 (this AC pattern is used as wiring for voltage application for signal extraction). From (a) to (
Through the steps up to C), the second scanning circuit (
A scanning TC board 21 is manufactured in which a scanning TC board 21 (not shown) and a position selection switch 20 are integrated. This production process ((
Steps a) to (C)) are the same as the conventional TC manufacturing method, and the device of the present invention is further manufactured by the following uniculm steps (d) to (g).

(d)  (c)までの工程で走査用TCのためのΔ2
配線(このへ〇配線は第1層目である)の形成が完了し
、続いて、絶縁と」二部に形成される光電変換膜中の不
純物による汚染を防止する保護膜の役割を果す絶縁膜2
2(0,5〜1.0μm)を形成する。本絶縁膜は一般
に用いらJtているS」02膜でもよいし、数密度の高
くlη染を強力に防止するシリコン窒化膜(S i 3
 N4 )でもよい。あるいは、S i 02とS i
 3 N4の2層重ね合せ構造でもよい。
(d) Δ2 for scanning TC in the steps up to (c)
After the formation of the wiring (this wiring is the first layer) is completed, the next layer is insulation and insulation, which serves as a protective film to prevent contamination by impurities in the photoelectric conversion film formed in the second part. membrane 2
2 (0.5 to 1.0 μm). This insulating film may be a commonly used S'02 film, or a silicon nitride film (S i3
N4) may be used. Alternatively, S i 02 and S i
A two-layer stacked structure of 3N4 may also be used.

(e)スイッチ20の(c)図ではコンタク1〜孔を設
けなかった接合領域上にコンタク1一孔23を形成する
。本コンタク1〜孔はホトエツチングにより先ず所望の
領域の絶縁膜22を除去した後、残さhている絶縁膜2
2をエツチング用マスクにして絶縁膜18を除去する。
(e) In Figure (c) of the switch 20, contacts 1 and holes 23 are formed on the bonding region where no contacts 1 to holes were provided. This contact 1~hole is made by first removing the insulating film 22 in a desired area by photo-etching, and then removing the remaining insulating film 2.
2 as an etching mask, the insulating film 18 is removed.

(f)続いて、第2層目の金属膜を0.3〜1,0μr
n程度蒸着する。この金属膜は一般のAしの他Cr、M
o、Wなどの耐熱性、耐腐食性の材料であれはいずれも
使用可能である。本金属膜をホトエツチングにより所望
の領域だけ残すことにより光電変換の単位寸法、すなわ
ち絵素を決める電極24が形成される。本電極は(c)
図で形成した配線19に対して2WI目であり、MOS
スイッチの接合とはコンタク1〜孔23を通してオーミ
ック接触がとれ、1層目配線19とは絶縁膜22により
電気的に分離されている。説明の便宜上絵素電極の平面
図を第3図に示す。24′は絵素を決める電極パターン
で、二次元状に配列されてい。各電極パターンの形上は
テレビ画面の縦横比に応じた長方形でもよいし、又は正
方向でも構わない(図示せず)。 ここで、各電極間の
間隔dは現時点ではエツチング技術精度によって決まり
4〜5μm、将来精度が上った場合は、検素間の相互作
用を防Iトするための最小寸法によって決まり、光電変
換膜として使用する材料にも依存するが0.5〜2.0
μmである。
(f) Next, apply a second layer of metal film by 0.3 to 1.0 μr.
Deposit about n. This metal film is not only general A but also Cr, M
Any heat-resistant and corrosion-resistant material such as O, W, etc. can be used. By photoetching this metal film to leave only a desired area, an electrode 24 that determines the unit size of photoelectric conversion, that is, a picture element, is formed. This electrode is (c)
This is the 2nd WI for the wiring 19 formed in the figure, and the MOS
Ohmic contact is established through the contact 1 to the hole 23 to connect the switch, and the switch is electrically isolated from the first layer wiring 19 by an insulating film 22. For convenience of explanation, a plan view of the picture element electrode is shown in FIG. Reference numeral 24' denotes an electrode pattern that determines picture elements, and is arranged in a two-dimensional manner. The shape of each electrode pattern may be a rectangle according to the aspect ratio of the television screen, or may be in the normal direction (not shown). Here, the spacing d between each electrode is currently determined by the precision of the etching technology and is 4 to 5 μm. If the precision improves in the future, it will be determined by the minimum dimension to prevent interaction between the detection elements, and the distance d will be determined by the precision of the etching technology. 0.5 to 2.0 depending on the material used as the membrane
It is μm.

(g)絵素用電接形成後、光電変換膜25を1〜5μI
TI蒸着あるいはスパッタする。光電変換膜としては撮
像用電子管によく使用されている5e−As−Te、C
d−5e、PbO,アモルファスSi等があり、前述の
膜厚はこれら材料と絵素に必要な容量によって決まる。
(g) After forming the electric contact for the picture element, apply the photoelectric conversion film 25 to 1 to 5 μI.
TI evaporation or sputtering. As photoelectric conversion films, 5e-As-Te and C, which are often used in imaging electron tubes, are used.
There are d-5e, PbO, amorphous Si, etc., and the film thickness mentioned above is determined by these materials and the capacitance required for the picture element.

ここで、光電変換膜は横方向の抵抗が1−分大きいため
絵素毎に分離する必要はなく全面がつながったままの状
態でよいを印加する透明電極26(例えばSn○21 
 TnOzなど)が蒸着あるいはスパッタされ本素子の
製作が完了する。
Here, since the lateral resistance of the photoelectric conversion film is 1 minute larger, there is no need to separate each picture element, and the transparent electrode 26 (for example, Sn○21
TnOz, etc.) is vapor-deposited or sputtered to complete the fabrication of this device.

[発明の効果コ 以上、実施例を用いて詳絹を説明したように、本発明の
二階外型固体撮像素子は通常の製造プロセスで製作した
走査IC用基板に、絶縁膜の形成。
[Effects of the Invention] As described above in detail using Examples, the second-layer external solid-state image sensor of the present invention is manufactured by forming an insulating film on a scanning IC substrate manufactured by a normal manufacturing process.

本絶縁膜への穴あけ、絵素電極パターンの形成。Drilling holes in this insulating film and forming pixel electrode patterns.

光電変換膜および透明電極の形成と最小限の工程数によ
って製作される。したがって、高性能を期待できる二階
外固体撮像素子の構造および製造方法としては極めて簡
潔であり、歩留りおよび信頼度の向上を図ることができ
るという実用1−大きな効果がある。
It is manufactured by forming a photoelectric conversion film and transparent electrode and by minimizing the number of steps. Therefore, the structure and manufacturing method of a second-order solid-state imaging device that can be expected to have high performance is extremely simple, and has a great practical effect of improving yield and reliability.

なお、上記の実施例では走査用IC基板を構成する素子
としてMO8電界効果1〜ランジスタを使用したが、C
Cl) (Charge Coupledμevice
)素子を用いた場合も」二記実施例と同一のプロセス工
程によって素子の製作を行うことができる(この場合は
、」二記実施例のMo5t−ランジスタで構成された走
査用IC基板をCODで構成された走査IC基板で置き
換えればよい)。 さらに、本発明の主旨を逸脱しない
範囲で、構成素子として接合型電界効果1〜ランジスタ
あるいはバイポーラ1−ランジスタが使用できる。
In the above embodiment, MO8 field effect transistors were used as elements constituting the scanning IC substrate, but C
Cl) (Charge Coupledμevice
) element, the device can be manufactured by the same process steps as in Example 2. ). Furthermore, a junction field effect transistor or a bipolar transistor can be used as the component without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二階外固体撮像素子の構造の概略を示す図、第
2図は本発明による二階外固体撮像素子の製造工程を示
す図、第3図は本発明による二階外固体撮像素子の絵素
を構成する電極の平面レイアラ1−パターンを説明する
図である。 11:半導体基板 14ニゲ−1〜電(4: 15:グー1〜絶縁膜 第  1  図 第2図 1? 2、r”S   2 1’<l じ=::===コロ===二==)7
FIG. 1 is a diagram showing the outline of the structure of the second-order solid-state image sensor, FIG. 2 is a diagram showing the manufacturing process of the second-order solid-state image sensor according to the present invention, and FIG. 3 is a diagram of the second-order solid-state image sensor according to the present invention. FIG. 2 is a diagram illustrating a planar layerer 1 pattern of electrodes constituting an element. 11: Semiconductor substrate 14 Nige-1 ~ Electron (4: 15: Goo 1 ~ Insulating film No. 1 Figure 2 Figure 1? ==)7

Claims (1)

【特許請求の範囲】[Claims] 1、複数の走査回路および該回路によって開閉する二次
元状に配列された電界効果型スイッチ群を具備した走査
用集積回路基板の上部に光電変換膜を乗せた二階建構造
の固体撮像素子において、走査用集積回路基板ヒに電気
絶縁用の酸化膜を形成し、前記電界効果型スイッチを形
成する接合拡散層領域の所望の部分の上部に相当する該
絶縁酸化膜をホトエツチング技術により除去し、続いて
該接合波tF1層とオーミック接触のとれた検索形成用
の金属蒸着膜パターンをホトエツチング技術により前記
スイッチ群と同一の配列間隔で二次元状に形成し、該金
属パターンの上部に光電変換機能を有する先導仏性薄膜
および該導伝性−薄膜を駆動する電圧を印加するための
透明導電性薄膜を形成してなることを特徴とする固体撮
像素子。
1. In a two-story solid-state imaging device in which a photoelectric conversion film is placed on the top of a scanning integrated circuit board that is equipped with a plurality of scanning circuits and a group of two-dimensionally arranged field effect switches that are opened and closed by the circuits, An electrically insulating oxide film is formed on the scanning integrated circuit board, and the insulating oxide film corresponding to the upper part of the desired portion of the junction diffusion layer region forming the field effect switch is removed by photoetching, and then Then, a metal vapor deposition film pattern for retrieval formation that is in ohmic contact with the junction wave tF1 layer is formed in a two-dimensional shape with the same arrangement spacing as the switch group using photoetching technology, and a photoelectric conversion function is provided on the top of the metal pattern. What is claimed is: 1. A solid-state imaging device comprising a leading conductive thin film and a transparent conductive thin film for applying a voltage to drive the conductive thin film.
JP59007128A 1984-01-20 1984-01-20 Solid-state image pickup element Granted JPS59139672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59007128A JPS59139672A (en) 1984-01-20 1984-01-20 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59007128A JPS59139672A (en) 1984-01-20 1984-01-20 Solid-state image pickup element

Publications (2)

Publication Number Publication Date
JPS59139672A true JPS59139672A (en) 1984-08-10
JPH0230587B2 JPH0230587B2 (en) 1990-07-06

Family

ID=11657437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59007128A Granted JPS59139672A (en) 1984-01-20 1984-01-20 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS59139672A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333524A (en) * 1976-09-10 1978-03-29 Hitachi Ltd Solid state pickup device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333524A (en) * 1976-09-10 1978-03-29 Hitachi Ltd Solid state pickup device

Also Published As

Publication number Publication date
JPH0230587B2 (en) 1990-07-06

Similar Documents

Publication Publication Date Title
KR100505894B1 (en) Fabricating method of cmos image sensor protecting low temperature oxide delamination
US7858433B2 (en) Photoelectric converting film stack type solid-state image pickup device, and method of producing the same
US4143389A (en) Photoelectric element in a solid-state image pick-up device
JPS59110179A (en) Semiconductor device and manufacture thereof
KR100194841B1 (en) Solid state phase detection device manufacturing method
JPS62122268A (en) Solid-state image pickup element
US5130259A (en) Infrared staring imaging array and method of manufacture
US5171994A (en) Infrared staring imaging array
JPH04196167A (en) Solid state image sensing element
EP0037244B1 (en) Method for fabricating a solid-state imaging device using photoconductive film
JPS59139672A (en) Solid-state image pickup element
KR840001604B1 (en) Method for fabrication a solid - state imaging device
JP3381127B2 (en) Solid-state imaging device
JPH02166769A (en) Laminated solid state image sensor and manufacture thereof
JP3018669B2 (en) Semiconductor sensor
JP3533675B2 (en) Method for manufacturing semiconductor device
KR20030001066A (en) Method for fabricating light detecting device
CN108878465B (en) CMOS image sensor based on back electrode connection and preparation method thereof
JP3291761B2 (en) Method for manufacturing solid-state imaging device
KR100776149B1 (en) Method of fabricating for CMOS Image sensor
JPS60171A (en) Solid-state image pickup device
KR20030056338A (en) Image sensor with improved light efficiency and fabricating method of the same
KR20030027319A (en) Method of fabrication for image sensor
CN116314224A (en) Flat panel detector pixel structure and preparation method thereof
KR100835115B1 (en) Image sensor and method for fabricating of the same