JPS59139654A - Control circuit for temperature - Google Patents

Control circuit for temperature

Info

Publication number
JPS59139654A
JPS59139654A JP59003403A JP340384A JPS59139654A JP S59139654 A JPS59139654 A JP S59139654A JP 59003403 A JP59003403 A JP 59003403A JP 340384 A JP340384 A JP 340384A JP S59139654 A JPS59139654 A JP S59139654A
Authority
JP
Japan
Prior art keywords
transistor
temperature
power supply
amplifier
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59003403A
Other languages
Japanese (ja)
Other versions
JPS6127912B2 (en
Inventor
Katsuyuki Nagano
長野 克之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59003403A priority Critical patent/JPS59139654A/en
Publication of JPS59139654A publication Critical patent/JPS59139654A/en
Publication of JPS6127912B2 publication Critical patent/JPS6127912B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller

Abstract

PURPOSE:To make the temperature of a material to be controlled such as a sample constant by connecting a current-heat conversion element to an output circuit for a complementary type transistor amplifier and applying the change of an electric signal based on the temperature change of a thermo-sensitive element to a control electrode for the amplifier. CONSTITUTION:A thermistor 2 is connected between the base-collector of a transistor 5 as a voltage dividing resistor, and determines base potential together with a variable resistance element 3 connected between the base of the transistor 5 and a negative power supply V<->. An emitter of the transistor 5 is connected to the negative power supply V<-> through a resistor RL1. Outputs from an amplification circuit are each applied to the positive and negative input terminals of a differential amplifier 6 through resistors RS1 and RS2. A feedback resistor RF determines the gains of an operational amplifier together with the input resistors RS1, RS2. An output from the operational amplifier is applied to each base electrode of an N-P-N type transistor 7 and a P-N-P type transistor 8 in common. A collector of the transistor 7 is connected to a positive power supply V<+> and a collector of the transistor 8 to the negative power supply V<->, each emitter is connected in common, and a Peltier element 9 is connected in between ground and transistors.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本考案は温度制御回路、特に、半導体素子等の温度制御
回路に係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a temperature control circuit, and particularly to a temperature control circuit for semiconductor devices and the like.

〔発明の背景〕[Background of the invention]

近年、m−v系化合物などの半導体デバイスが通信シス
テムに適用される例が増えているが、この場合デバイス
特性の温度依存性が大きいことが問題となっている。−
例をG a A I A s半導体レーザにとると、半
導体レーザの発振スペクトルは1℃前後の温度変動で変
化し、このため光フアイバ伝送において雑音が誘起され
ることが知られている。このような問題を解決するには
、デバイスの温度を精度よく一定にすることが必要であ
る。
In recent years, semiconductor devices such as m-v compounds are increasingly being applied to communication systems, but in this case, the problem is that the device characteristics are highly dependent on temperature. −
Taking a GaAIS semiconductor laser as an example, it is known that the oscillation spectrum of the semiconductor laser changes with temperature fluctuations of around 1° C., which induces noise in optical fiber transmission. To solve such problems, it is necessary to keep the temperature of the device constant with high precision.

試料の温度を変えるには、ペルチェ素子が小型で適して
いる。ペルチェ素子は注入する電流の方向により、冷却
・過熱の双方か可能である。そこでペルチェ素子の注入
電流を制御することにより幅広い周囲温度に対し試料の
温度を一定に保つことができる。従来、注入電流の切換
えはリレー・スイッチなどによっていた。しかしリレー
・スイッチを使用する場合は装置が複雑、大形化し又そ
のための駆動電力も大きなものとなり、特に多くの発光
素子を使用する光通信システムなどにおいては望ましく
ない。
A small Peltier element is suitable for changing the temperature of a sample. Peltier elements can be cooled or heated depending on the direction of the current injected. Therefore, by controlling the injection current of the Peltier element, the temperature of the sample can be kept constant over a wide range of ambient temperatures. Conventionally, the injection current was switched using relays, switches, etc. However, when a relay switch is used, the device becomes complicated and large, and the driving power required for the device becomes large, which is not desirable especially in an optical communication system that uses a large number of light emitting elements.

〔発明の目的〕[Purpose of the invention]

従って、本発明の目的は、極めて簡単かつ小形の電気回
路により、上記試料の温度を一定にする温度制御回路を
実現することである。
Therefore, an object of the present invention is to realize a temperature control circuit that keeps the temperature of the sample constant using an extremely simple and compact electric circuit.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するため、注入電力の極性によ
って加熱・冷却の双方が可能な電流・熱変換素子を備え
た温度制御回路において、上記電流・熱変換素子を相補
型トランジスタ増幅器の出力回路に接続し、感熱素子の
温度変化に基づく電気信号の変化を上記増幅器の制御電
極に加えることによって、上記試料等の被制御物の温度
を一定にしたことを特徴とする。
In order to achieve the above object, the present invention provides a temperature control circuit equipped with a current/thermal conversion element capable of both heating and cooling depending on the polarity of injected power. The temperature of the object to be controlled, such as the sample, is kept constant by connecting the control electrode to the control electrode of the amplifier and applying a change in the electrical signal based on the temperature change of the thermosensitive element to the control electrode of the amplifier.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は本発明による温度制御回路の一実施例の構成を
示す。同図において1は温度が一定にされるべき試料で
、2は感熱素子であるサーミスタ、9は電・熱変換素子
であるペルチェ素子である。
FIG. 1 shows the configuration of an embodiment of a temperature control circuit according to the present invention. In the figure, 1 is a sample whose temperature is to be kept constant, 2 is a thermistor which is a heat sensitive element, and 9 is a Peltier element which is an electric/thermal conversion element.

上記サーミスタはトランジスタ5のベース・コレクタ間
に分圧抵抗として接続され、上記トランジスタ5のベー
スと魚雷tAv−との間に接続された可変抵抗素子3と
共にベース電位を決定する。又上記トランジスタ5のエ
ミッタは抵抗R1jを介して負電源V−に接続されてい
る。トランジスタ4および抵抗RL2は上記トランジス
タ5を含む増幅回路と同一の特性を有しかつ並列に接続
されている。これらの増幅回路の出力(エミッタ電位)
はそれぞれ抵抗RHおよびRszを介して差動増幅器6
の正ならび負入力端子に加えられる。帰還抵抗RF は
入力抵抗RS ” y R52共に演算増器器の利得を
定める。演算増幅器の出力はNPN型トランジスタ7お
よびPNP型トランジスタ8のそれぞれのベース電極に
共通に加えられる。又トランジスタ7のコレクタは正電
源V+へ、トランジスタ8のコレクタには負電源V−に
接続され、それぞれのエミッタは共通に接続され、その
共通接続点とアース間にペルチェ素子9が接続されてい
る。
The thermistor is connected as a voltage dividing resistor between the base and collector of the transistor 5, and determines the base potential together with the variable resistance element 3 connected between the base of the transistor 5 and the torpedo tAv-. Further, the emitter of the transistor 5 is connected to the negative power supply V- via a resistor R1j. Transistor 4 and resistor RL2 have the same characteristics as the amplifier circuit including transistor 5, and are connected in parallel. Output of these amplifier circuits (emitter potential)
are connected to the differential amplifier 6 through resistors RH and Rsz, respectively.
is applied to the positive and negative input terminals of The feedback resistor RF together with the input resistor RS''y R52 determines the gain of the operational amplifier. The output of the operational amplifier is commonly applied to the base electrodes of the NPN transistor 7 and the PNP transistor 8. is connected to the positive power supply V+, the collector of the transistor 8 is connected to the negative power supply V-, their emitters are connected in common, and a Peltier element 9 is connected between the common connection point and ground.

上記回路において、上記半導体レーザ1の温度が所定の
値に保たれているときは上記サーミスタ9に流れる電流
も一定となり熱的に平衡状態、すなわち試料lの外気温
度との差に基づく熱の吸収。
In the above circuit, when the temperature of the semiconductor laser 1 is maintained at a predetermined value, the current flowing through the thermistor 9 is also constant, resulting in a thermally equilibrium state, that is, absorption of heat based on the difference between the sample 1 and the outside temperature. .

放射とペルチェ素子からの熱の放射、吸収が均合う。例
えば外気温度と試料の望しい温度Toが一致するときは
ペルチェ素子9に電流が流れないように各回路素子の値
を設定すれば良い。
Radiation and heat radiation and absorption from the Peltier element are balanced. For example, the values of each circuit element may be set so that no current flows through the Peltier element 9 when the outside air temperature and the desired temperature To of the sample match.

さて、試料1の温度が望ましい温度T。がら変動したと
きはその温度変動はサーミスタ2によって抵抗の変化と
なりトランジスタ5のベース電位が変動する。トランジ
スタ4のベース電極には一定の基準電圧が加えられてい
るため、上記差動増幅器6の2人力の電位差は減小(増
大する場合もある)し、その出力を変動させる。すなわ
ち上記試料1の温度が望ましい温度より高くなる変化の
場−合はこれを冷却する方向にペルチェ素子9に電流が
流れるようにする。例えば、図において左側に電流が流
れる場合に冷却するとしたら、温度が高くなったとき、
差動増幅器7の出力電位が低りトランジスタ7を遮断し
、トランジスタ8を導通するようにすれは良い。又温度
が望ましい温度Toから下る場合は上述と逆に動作する
ことは明らかである。
Now, the temperature of sample 1 is the desired temperature T. When the temperature fluctuates, the temperature fluctuation causes a change in resistance due to the thermistor 2, and the base potential of the transistor 5 fluctuates. Since a constant reference voltage is applied to the base electrode of the transistor 4, the potential difference between the two voltages of the differential amplifier 6 decreases (in some cases increases), causing its output to vary. That is, when the temperature of the sample 1 changes to become higher than the desired temperature, a current is caused to flow through the Peltier element 9 in a direction to cool it. For example, if we cool the current flowing to the left in the diagram, when the temperature rises,
It is sufficient that the output potential of the differential amplifier 7 becomes low, cutting off the transistor 7 and making the transistor 8 conductive. It is also clear that when the temperature falls below the desired temperature To, the operation is opposite to that described above.

上記試料の望ましい温度Toすなわち初期設定値は、そ
のレーザが使用される用途、周囲条件等によって異るが
、これらは上記基接電圧VRあるいは可変抵抗器3の調
整によって任意に設定できる。
The desired temperature To of the sample, ie, the initial setting value, varies depending on the application for which the laser is used, ambient conditions, etc., but these can be arbitrarily set by adjusting the base voltage VR or the variable resistor 3.

第2図は上記実施例の回路による周囲温度T5と試料の
温度とペルチェ素子を流れる電流の測定結果を示す。こ
の図よりTa =To でペルチェ電流ITEが切換え
られることが分る。
FIG. 2 shows the measurement results of the ambient temperature T5, the sample temperature, and the current flowing through the Peltier element using the circuit of the above embodiment. It can be seen from this figure that the Peltier current ITE is switched when Ta=To.

上記第1図の実施例では電流切換の駆動回路はバイポー
ラトランジスタの例について説明したが、MO8電界効
果トランジスタ(FET)で構成しても良いことは明ら
かである。
In the embodiment shown in FIG. 1, the current switching drive circuit has been described as an example of a bipolar transistor, but it is clear that it may be constructed of an MO8 field effect transistor (FET).

すなわち、N型MO8FETとP型MO8FETのそれ
ぞれゲート同志、ドレイン同志を共通に接続し、両ソー
ス電極間に電源を接続し、ドレイン端子とアース電極間
にペルチェ素子を接続し、相補型増幅回路を構成し、温
度変動を上記ゲート電極電圧の変動に変えることによっ
て、上記実施例と同様に構成できる。
That is, the gates and drains of the N-type MO8FET and P-type MO8FET are connected in common, a power supply is connected between both source electrodes, a Peltier element is connected between the drain terminal and the ground electrode, and a complementary amplifier circuit is constructed. It can be constructed in the same manner as in the above embodiment by converting the temperature fluctuation into the fluctuation of the gate electrode voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による温度制御回路の一実施例の構成を
示す回路図、第2図は上記実施例による周囲温度と試料
温度と電・熱変換素子の電流の測定結果を示す図である
FIG. 1 is a circuit diagram showing the configuration of an embodiment of a temperature control circuit according to the present invention, and FIG. 2 is a diagram showing measurement results of ambient temperature, sample temperature, and current of an electrothermal conversion element according to the above embodiment. .

Claims (1)

【特許請求の範囲】[Claims] 1、注入電流の極性により加熱、冷却の双方が可能な電
・熱変換素子を備えた温度制御回路において、入力信号
によって導通、遮断が制御され、かつ上記型・熱変換素
子がその出力回路に接続された相補型1−ランジスタ回
路と、温度変動に基く電気信号を上記トランジスタ回路
の上記入力信号として加える手段を具備して構成された
ことを特徴とする温度制御回路。
1. In a temperature control circuit equipped with an electrothermal conversion element capable of both heating and cooling depending on the polarity of the injected current, conduction and interruption are controlled by an input signal, and the above-mentioned type/thermal conversion element is connected to the output circuit. 1. A temperature control circuit comprising a complementary 1-transistor circuit connected thereto and means for applying an electrical signal based on temperature fluctuations as the input signal of the transistor circuit.
JP59003403A 1984-01-13 1984-01-13 Control circuit for temperature Granted JPS59139654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59003403A JPS59139654A (en) 1984-01-13 1984-01-13 Control circuit for temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59003403A JPS59139654A (en) 1984-01-13 1984-01-13 Control circuit for temperature

Publications (2)

Publication Number Publication Date
JPS59139654A true JPS59139654A (en) 1984-08-10
JPS6127912B2 JPS6127912B2 (en) 1986-06-27

Family

ID=11556409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59003403A Granted JPS59139654A (en) 1984-01-13 1984-01-13 Control circuit for temperature

Country Status (1)

Country Link
JP (1) JPS59139654A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152655A (en) * 1987-12-09 1989-06-15 Fujitsu Ltd Peltier element control circuit
JP2015509280A (en) * 2011-09-21 2015-03-26 ラム リサーチ コーポレーションLam Research Corporation Hot plate with planar thermal zone for semiconductor processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152655A (en) * 1987-12-09 1989-06-15 Fujitsu Ltd Peltier element control circuit
JP2015509280A (en) * 2011-09-21 2015-03-26 ラム リサーチ コーポレーションLam Research Corporation Hot plate with planar thermal zone for semiconductor processing

Also Published As

Publication number Publication date
JPS6127912B2 (en) 1986-06-27

Similar Documents

Publication Publication Date Title
US4769589A (en) Low-voltage, temperature compensated constant current and voltage reference circuit
US4085359A (en) Self-starting amplifier circuit
CA1042531A (en) Temperature sensitive control circuit
JPH04273030A (en) Temperature detecting circuit
US2951208A (en) Temperature controlled semiconductor bias circuit
US4301421A (en) Direct-coupled amplifier with output offset regulation
US4086503A (en) Control circuit initiating conduction of an opto-isolator unit
US5428287A (en) Thermally matched current limit circuit
US2955257A (en) Transistor class b signal amplifier circuit
US3786364A (en) Semiconductor amplifier protection
US4449032A (en) Variable gain oven temperature control circuit
US2975260A (en) Electrical heater control circuits
GB2263597A (en) Bias current source for a mixed pnp-npn amplifier
US3413438A (en) Solid state temperature control circuit
US3117253A (en) Temperature compensation of transistor amplifiers
US4336502A (en) Amplifier with input stage differential amplifying circuit
EP0395259B1 (en) Temperature control system for solid state light source
JPS59139654A (en) Control circuit for temperature
US2877310A (en) Semiconductor amplifiers
US5221888A (en) Current limited temperature responsive circuit
JPH0215704A (en) High through-rate linear amplifier
US4260945A (en) Regulated current source circuits
US5408102A (en) Photo-coupler apparatus having adequate protection against excessive current and heat runaway
US4305044A (en) Amplifier circuit having controllable gain
US3488506A (en) Solar cell delay with transistor feedbacks