JPS5913935A - Method and device for detecting rupture of piping for cooling blast furnace - Google Patents

Method and device for detecting rupture of piping for cooling blast furnace

Info

Publication number
JPS5913935A
JPS5913935A JP12332282A JP12332282A JPS5913935A JP S5913935 A JPS5913935 A JP S5913935A JP 12332282 A JP12332282 A JP 12332282A JP 12332282 A JP12332282 A JP 12332282A JP S5913935 A JPS5913935 A JP S5913935A
Authority
JP
Japan
Prior art keywords
piping
water
dissolved
cooling
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12332282A
Other languages
Japanese (ja)
Inventor
Yutaka Hoshikuma
星隈 豊
Kazuo Takeuchi
和男 竹内
Noriyuki Inoue
井上 則行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP12332282A priority Critical patent/JPS5913935A/en
Publication of JPS5913935A publication Critical patent/JPS5913935A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To detect exactly the rupture of a cooling pipe by providing a gas- liquid separator provided with spiral grooves on the inside surface of the sampling piping for the cooling water of a blast furnace body thereby assisting the dissolution of gaseous CO into the sampling water and analyzing exactly the dissolved CO. CONSTITUTION:The sampling water 8 carrying CO foam introduced from a cooling piping ascends in an inside cylinder 1a. Spiral grooves are provided in the cylinder 1a, due to which the contact time between foam and water is longer and the foam dissolves thoroughly in the water. The sampling water 9 separated of foam is conducted from the bottom end part of the cylinder 1b through a sampling piping 11 to a dissolved CO detector which detects the rupture of the cooling piping by measuring the value of the dissolved CO in the water. The contamination by the gaseous CO in the piping and detector is eliminated and the exact measurement is accomplished.

Description

【発明の詳細な説明】 本発明は、高炉炉体冷却水中の溶存Coを測定すること
によって高炉炉体冷却配管の破損を検知する方法及び同
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for detecting damage to blast furnace body cooling piping by measuring dissolved Co in blast furnace body cooling water.

高炉は操業中冷却水を循環させて炉体の冷却を行ってい
るが、その冷却配管が過熱等により破損することがあり
、冷却配管が破損すると冷却不良や炉内への浸水等tこ
より高炉操業に支障を来すこととなる。従って、冷却配
管の破損は早期にこれを検知し、所要の処置を講しなけ
ればならない。
During operation, a blast furnace cools the furnace body by circulating cooling water, but the cooling piping can be damaged due to overheating, etc. If the cooling piping is damaged, it may cause poor cooling or water intrusion into the furnace. This will hinder operations. Therefore, damage to the cooling piping must be detected early and necessary measures taken.

冷却配管の破損が生じると、高炉より発生するCOガス
が冷却水中に溶は込むので、従来から高炉炉体冷却水中
の溶存COを測定することによって冷却配管の破損を知
る方法が有効な検知手段として使用されて来た。このた
め、冷却配管中の所要の箇所より冷却水をサンプリング
し、この冷却水中の溶存COを検知器で分析して検知を
行う方法がとられている。しかしながら従来の方法では
、同一の検知器によって複数のサンプリング水のCOを
分析しようとする場合、サンプリング水に伴ってCoの
気泡が存在すると、検知器内やサンプリング配管内に細
かなCO気泡が付着、残留し、次に分析しようとするサ
ンプリング水をCoガヌで汚染し、そのためCO測定値
に正誤差(プラスの誤差)を与えて測定を誤まらせるこ
とが多くあった。またこのような現象を回避しようとし
て配管中の気泡の入り難い場所J−リザンプリングを行
ってもCO気泡が管壁面を伝わってヌ1−レー トに」
二昇した場合には水に溶は込み難いため、冷却配管の破
損によるCOの存在があるにもかかわらす溶存COとし
て検出されないというような欠点があった。
If a cooling pipe breaks, CO gas generated from the blast furnace dissolves into the cooling water, so conventionally, an effective detection method for detecting damage to the cooling pipe is to measure dissolved CO in the cooling water of the blast furnace body. It has been used as. For this reason, a method has been adopted in which cooling water is sampled from a required location in the cooling piping, and dissolved CO in the cooling water is analyzed and detected using a detector. However, in conventional methods, when attempting to analyze CO in multiple sampled waters using the same detector, if Co bubbles are present in the sampled water, fine CO bubbles may adhere inside the detector or sampling piping. , remaining and contaminating the sampled water to be analyzed next with Co, often giving a positive error to the CO measurement value and falsifying the measurement. In addition, even if resampling is performed in places where air bubbles are difficult to enter in the piping in an attempt to avoid this phenomenon, CO bubbles will travel along the pipe wall surface and become nucleated.
When the temperature rises, it is difficult for the solution to enter the water, so there is a drawback that even though CO is present due to damage to the cooling piping, it is not detected as dissolved CO.

本発明は、上記のような従来の方法の欠点を改良し、冷
却水の溶存Coの分析を正確に行って冷却配管の破損を
適確に検知し得る方法及び同装置を提供することを目的
とするものである。すなわち本発明は、高炉炉体冷却配
管の所要の箇所よりサンプ11ングした冷却水より気泡
を分離した後該冷却水をバイパヌ配管への切換えを行い
得る切換弁を経て溶存CO検知器に導いて冷却水中のC
O値を測定し、該測定値によって冷却配管の破損を検知
することを特徴とするものである。
An object of the present invention is to improve the shortcomings of the conventional methods as described above, and to provide a method and apparatus capable of accurately detecting damage to cooling piping by accurately analyzing dissolved Co in cooling water. That is. That is, the present invention separates air bubbles from the cooling water sampled from a required location of the blast furnace body cooling piping, and then guides the cooling water to the dissolved CO detector via a switching valve that can switch the cooling water to the bypass piping. C in cooling water
This method is characterized by measuring the O value and detecting damage to the cooling pipe based on the measured value.

以下図面に基いて、本発明の方法及び同装置の実施例に
つき詳細に説明する。
Embodiments of the method and apparatus of the present invention will be described in detail below with reference to the drawings.

第1図において、2 、2.’ 、 2”は高炉の炉体
冷却水配管で、該配管2. 、2’ 、 2“・・・の
所要の箇所にサンプリング水取出口を設け、気液分離器
1゜lj 、 ]′’・・・を連結する。冷却配管2・
・・のサンプリング水取出口と上記気液分離器1・・・
との間pこは、サンプリング水の流通を開閉し得るバル
ブを設けておくのが好ましい。
In FIG. 1, 2, 2. ', 2'' are blast furnace body cooling water pipes, and sampling water outlets are provided at required locations of the pipes 2., 2', 2"..., and gas-liquid separators 1゜lj, ]'' ...to be concatenated. Cooling pipe 2・
The sampling water outlet of... and the gas-liquid separator 1...
It is preferable to provide a valve between the tank and the tank that can open and close the flow of sampling water.

第2図は気液分離器1の拡大断面図で、サンプリング水
から気泡が分離される状態を図示したものである。この
気液分離器1は、バルブを経て冷却配管2のサンプリン
グ水取出口に連通した内筒1a、と、該内筒1aが下方
から貫通した外筒1bとから成っている。内筒1aの上
端は外筒11)の内部上方に適宜の空間を残して開口し
ており、外筒1b上端は気泡抜きバルブ6を経て気泡抜
き管に連通し、また外筒1bの下端は前記内筒1aの貫
通部側方において溶存CO検知器10に向うサンプリン
グ配管11に連通している。冷却配管2より導入された
CO気泡を伴ったサンプリング水8は内筒1 a、内を
上昇するが、この内筒1aのサンプリング水通路には螺
旋状の溝が設けられており、気泡がこの螺旋溝に沿って
」二昇するので水との接触時間が長くなり、水に充分に
溶解する如く構成されている。このように内筒1a内を
上昇して水に溶解し切れなかった気泡は内筒1a上端か
ら水と分離して余剰ガヌ7として外筒1″D上部に溜り
、気泡抜ぎバルブ6を経て排出される。なお、内筒1a
及び外筒1bは透明ガラス製として気泡が分離する状況
が外から判別出来るようにするのが望ましい。一方上記
の如くして気泡を分離したサンプリング水9は、外筒1
b下端部よりサンプリング配管11を経由して溶存CO
検知器10に導かれ、該検知器10においてサンプリン
グ水中の溶存COの分析が行われる。サンプリング配管
11の溶存CO検知器10に至る前部には、三方弁であ
る切換バルブ4が設けられて、前記気液分離型1」:り
来るサンプ1jング水を検知器1oに導く管路とバイパ
ス配管5に送出する管路とに切替え得る如くになってお
り、検知器1oにより分析を行わない際には切換バルブ
4を切換えてサンプリンタ水をバイパス配管5を経て元
の冷却配管に戻す。
FIG. 2 is an enlarged sectional view of the gas-liquid separator 1, illustrating the state in which air bubbles are separated from sampled water. This gas-liquid separator 1 consists of an inner cylinder 1a that communicates with a sampling water outlet of a cooling pipe 2 via a valve, and an outer cylinder 1b that the inner cylinder 1a penetrates from below. The upper end of the inner cylinder 1a is open leaving an appropriate space above the outer cylinder 11), the upper end of the outer cylinder 1b communicates with the air vent pipe via the air bubble valve 6, and the lower end of the outer cylinder 1b is open. It communicates with a sampling pipe 11 toward the dissolved CO detector 10 on the side of the penetration part of the inner cylinder 1a. Sampling water 8 accompanied by CO bubbles introduced from the cooling pipe 2 rises inside the inner cylinder 1a, but a spiral groove is provided in the sampling water passage of the inner cylinder 1a, so that the air bubbles can flow through the inner cylinder 1a. Since it rises along the spiral groove, the contact time with water is extended, and it is configured to be sufficiently dissolved in water. The air bubbles that have risen inside the inner cylinder 1a and have not been completely dissolved in the water are separated from the water from the upper end of the inner cylinder 1a and accumulate at the upper part of the outer cylinder 1″D as a surplus gunu 7. In addition, the inner cylinder 1a
It is desirable that the outer cylinder 1b be made of transparent glass so that the state of bubble separation can be determined from the outside. On the other hand, the sampling water 9 from which air bubbles have been separated as described above is transferred to the outer cylinder 1.
Dissolved CO from the lower end via the sampling pipe 11
The sampled water is guided to a detector 10, where dissolved CO in the sampled water is analyzed. A switching valve 4, which is a three-way valve, is provided at the front part of the sampling pipe 11 leading to the dissolved CO detector 10, and is connected to the gas-liquid separation type 1: a pipe line that leads the incoming sump water to the detector 1o. When the detector 1o is not used for analysis, the switching valve 4 is switched to allow the sampler water to flow through the bypass pipe 5 and into the original cooling pipe. return.

実際の高炉操業においては、多数設けられた冷却配管2
 、2’、 2”・・・のそれぞれについて破損検知を
行うことが必要であり、従−って第1図に図示された如
く冷却配管2.2’、2”・・・の複数箇所より別々に
勺ンブリングした冷却水を、それぞれ気液分離?JPJ
l 、 f 、 1*・・・で気泡を分離してタンプリ
ング配管1.1 、 l 1’ 、 11″−・・を経
て溶存CO検知器〕0に導き、それぞれのサンプリング
水中の溶存COの分析を行う。サンプリング配管11 
、11’ 、 l l”−・・の溶存CO検知器10に
〒るAft部には、それぞれ切換弁4 、4’ 、 4
’・・・が設けられており、1個の切換弁4よりサンプ
リング水が検知器10に送入されて分析が行われている
際、他の切換弁4′、4′′・・・はバイパス配管5へ
の管路へ切換えられてサンプリング水の冷却配管への戻
水が行われており、かくして切換弁4 、4’ 、 4
”・・・を順次切換えることにより、別々の箇所からの
サンプリング水を同一の溶存CO検知器10により連続
して測定4分析を行うことが可能である。」二記切換弁
4.4’、4”・・・ならびにその前後の配管に」:す
、勺ンプリング水切換装置3が構成されている。
In actual blast furnace operation, a large number of cooling pipes 2
, 2', 2", etc. Therefore, as shown in Fig. 1, it is necessary to perform damage detection on each of the cooling pipes 2. Separate cooling water into gas and liquid separately? J.P.J.
Bubbles are separated by l, f, 1*... and guided to a dissolved CO detector]0 via tampling pipes 1.1, l1', 11'', and analyzed for dissolved CO in each sampled water. Sampling piping 11
, 11', l l''-- are provided with switching valves 4, 4', 4 in the Aft section of the dissolved CO detector 10, respectively.
'... are provided, and when sampling water is sent to the detector 10 from one switching valve 4 for analysis, the other switching valves 4', 4''... The sampling water is switched to the bypass pipe 5 and returned to the cooling pipe, and thus the switching valves 4, 4', 4
``By sequentially switching..., it is possible to continuously measure and analyze sampled water from different locations using the same dissolved CO detector 10.'' Two switching valves 4.4', 4"... and the piping before and after the water switching device 3 is constructed.

第3図は、溶存Co検知器1oで測定したサンプリング
水中の溶存Co実測値の時系列的推移を示したグラフで
ある。図中の曲線Aは炉体冷却配管の一部が破損して炉
内COガスが冷却水中に混入し、溶存Co値が急激に上
列した状態を示すもので、4.00ppb以上のフルヌ
ヶ−ル状態が約30分間継続した後減少し始める傾向を
示している。曲線Bは配管の破損のない状態を示すもの
で、炉体冷却水が循環していると若干溶損Co値が上昇
する傾向を示すが、破損配管における曲線Aとの差異は
明確である。曲線C〕は冷却水が循環していない状態を
示すもので、溶存Co値の変動が殆んど県られない。か
くして、溶存C(l検知器10による溶存CO測定値の
変動により、高炉炉体冷却配管の破損を検知し、早急に
所要の処置を講することがiiJ能となる。
FIG. 3 is a graph showing a time-series change in the measured value of dissolved Co in the sampled water measured by the dissolved Co detector 1o. Curve A in the figure shows a state in which a part of the reactor body cooling piping is damaged and CO gas in the reactor mixes into the cooling water, and the dissolved Co value rises rapidly. It shows a tendency to start decreasing after the current state continues for about 30 minutes. Curve B shows a state in which there is no damage to the piping, and the melted Co value tends to increase slightly when the furnace body cooling water is circulated, but the difference from curve A in the case of damaged piping is clear. Curve C] shows a state where the cooling water is not circulating, and the fluctuations in the dissolved Co value are hardly detected. In this way, it becomes possible to detect damage to the blast furnace body cooling piping based on fluctuations in the dissolved CO measured value by the dissolved C detector 10 and take necessary measures immediately.

ト述り、た如く、本発明に係る高炉炉体冷却配管の破損
検知方法は、高炉炉体冷却配管の所要の箇所より勺ンブ
リンクした冷却水より気泡を分離した後、該勺ンブリン
ク水をバイパス配管5への切換えを行い得る切換弁4 
、4’ 、 4”・・・を経て溶存CO検知器Fこ導い
て水中の溶存Co値を測定し、該測定値tこよって冷却
配管の破損を検知するようにし、たもので、この場合複
数の箇所より別々にサンプ11ンクした冷却水をそれぞ
れ気泡を分離した後、切換弁(こより順次切換えを行っ
て同一溶存C0検知器−シ礒シー10により連続して測
定を行うようにすることもできるものである。また本発
明に係る高炉炉体冷却配管の破損検知装置は、高炉炉体
冷却配管2 、2.’ 、 2.”・・・の所要の箇所
より溶存CO検知器に至るサンプリンク配管11゜11
’ 、 1−1・1を設け、該サンプリンク配管中に水
中の気泡を分離する気液分離器1 、 ]、 、 1−
・・と、溶存CO検知器10への管路とバイパス配管へ
の管路との切換えを行い得る切換弁とを設けたもので、
この場合複数の箇所より同一の溶存CO検知器10に仝
る複数本のサンプリンク配管11、l]、117・・・
と、複数個の気液分離器1 、1’ 、 1”・・吻と
、複数個の切換弁4 、4’ 、 4”・・・とを有す
るようにすることも出来る。
As mentioned above, the method for detecting damage to blast furnace body cooling piping according to the present invention involves separating air bubbles from the cooling water that has been injected from a required location in the blast furnace body cooling piping, and then bypassing the cooling water. Switching valve 4 capable of switching to piping 5
, 4', 4"... to measure the dissolved Co value in the water, and the measured value t is used to detect damage to the cooling pipe. In this case, After separating air bubbles from the cooling water that has been sampled separately from multiple locations, the switching valve (switching sequentially through the switching valve) is used to perform continuous measurements using the same dissolved CO detector. In addition, the blast furnace body cooling piping damage detection device according to the present invention can detect damage to the dissolved CO detector from required locations in the blast furnace body cooling piping 2, 2.', 2.''... Sample link piping 11゜11
' , 1-1・1 is provided, and the gas-liquid separator 1 , ], , 1- is provided to separate air bubbles in water in the sample link piping.
... and a switching valve that can switch between the pipeline to the dissolved CO detector 10 and the pipeline to the bypass piping,
In this case, multiple sample link pipes 11, l], 117...
It is also possible to have a plurality of gas-liquid separators 1, 1', 1'', . . . and a plurality of switching valves 4, 4', 4'', .

本発明によれば、高炉炉体冷却水のサンプリング配管に
内面に螺旋溝を設けた気液分離器を設けることにより、
サンプ11ング水へのCOガス溶解を助長すると共に、
サンプリング水の気泡を完全に除去することができる。
According to the present invention, by providing a gas-liquid separator with a spiral groove on the inner surface of the blast furnace body cooling water sampling pipe,
In addition to promoting CO gas dissolution into the sampling water,
Air bubbles in the sampling water can be completely removed.

従って、COガスが完全に溶解し気泡としてのCOを伴
わないサンプリング水を検知器に導くことができるので
、前記したような配管内や検知器内のCOtこよる汚染
がなくなり、検知器による溶存CO値の正確な測定が確
保される。また、」−2の如く切換弁4,4″、4M・
・・を順次切換えて測定を行うことにより、それぞれの
箇所からのサンプリング水の溶存CO量を順次同一の溶
存C○検知器で正確に連続的に測定できるので、システ
ム全体を安価に構成することが可能となる。
Therefore, since the sampling water in which CO gas is completely dissolved and is not accompanied by CO bubbles can be guided to the detector, the contamination caused by COt in the piping and detector as described above is eliminated, and the dissolved COt by the detector is eliminated. Accurate measurement of CO values is ensured. In addition, as shown in ``-2'', the switching valves 4, 4'', 4M・
By sequentially switching and measuring..., the amount of dissolved CO in sampled water from each location can be measured continuously and accurately using the same dissolved C○ detector, so the entire system can be constructed at low cost. becomes possible.

本発明の方法及び同装置によれば、第3図に示した如く
、溶存CO値の急激な」二昇により炉体冷却配管の破損
を早急に検知し得ることは勿論のこと、冷却配管中のC
Oガヌの微少な溶存状態をも検知することが可能である
。従って、高炉炉体冷却配管の状態を庁期適切に察知し
て迅速な対応を可能ならしめる上にきわめて有効なもの
である。
According to the method and apparatus of the present invention, as shown in FIG. C of
It is possible to detect even the slightest dissolved state of Oganu. Therefore, it is extremely effective in appropriately detecting the condition of the blast furnace body cooling piping and enabling prompt response.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する装置の]具体例を示した構成
図、第2図は気液分離器の拡大断面により気泡の分離状
態を示した図、第3図はサンプリング水中の溶存Co測
定値の時系列的推移を示したグラフである。 1 、 〕、’ 、 :、、”   気液分離器2 、
2’、 2”   炉体冷却配管4 、4’ 、 4”
   切換弁 5     バイパヌ配管 10     溶存CO検知器 特許出願人 日新製鋼株式会社
Fig. 1 is a block diagram showing a specific example of an apparatus implementing the present invention, Fig. 2 is an enlarged cross-sectional view of a gas-liquid separator showing the separation state of bubbles, and Fig. 3 is a diagram showing dissolved Co in sampled water. It is a graph showing a time-series transition of measured values. 1,],', :,," Gas-liquid separator 2,
2', 2" Furnace body cooling piping 4, 4', 4"
Switching valve 5 Bypanu piping 10 Dissolved CO detector Patent applicant Nisshin Steel Co., Ltd.

Claims (1)

【特許請求の範囲】 l 高炉炉体冷却配管の所要の箇所よりサンプリングし
た冷却水より気泡を分離した後、該サンプリング水をバ
イパフ配管への切換えを行い得る切換弁を経て溶存CO
検知器に導いて水中の溶存CO端を測定し、該測定値に
よって冷却配管の破損を検知することを特徴とする高炉
炉体冷却配管の破損検知方法。 2 複数の箇所より別々にサンプリングした冷却水をそ
れぞれ気泡を分離した後、切換弁により順次切換えを行
って同一の溶存co検知器により連続して測定を行うこ
とを特徴とする特許請求の範囲第1項に記載の高炉炉体
冷却配管の破損検知方法。 3 高炉炉体冷却配管の所要の箇所より溶存C0検知器
に至るサンプリング配管を設け、該サンプリング配管中
に水中の気泡を分離する気液分離器と、溶存Co検知器
への管路とバイパス配管への管路との切換えを行い得る
切換弁とを設けてなる高炉炉体冷却配管の破損検知装置
。 4 複数の箇所より同一の溶存Co検知器に至る複数本
のサンプ11ング配管と、複数個の気液分離器と、複数
個の切換弁とを有することを特徴とする特許請求の範囲
第3項に記載の高炉炉体冷却配管の破損検知装置。
[Claims] l After separating air bubbles from the cooling water sampled from the required locations of the blast furnace body cooling piping, the sampled water is passed through a switching valve that can switch to the bypass piping to collect dissolved CO.
A method for detecting damage to a blast furnace body cooling pipe, comprising: measuring a dissolved CO end in water by guiding it to a detector, and detecting damage to the cooling pipe based on the measured value. 2. Claim No. 2, characterized in that after air bubbles are separated from the cooling water sampled separately from a plurality of locations, the switching valves are used to sequentially switch the cooling water and the same dissolved CO detector is used to continuously measure the cooling water. The method for detecting damage to a blast furnace body cooling pipe according to item 1. 3 Sampling piping is installed from the required point of the blast furnace body cooling piping to the dissolved CO detector, and in the sampling piping there is a gas-liquid separator that separates air bubbles in the water, and the piping and bypass piping to the dissolved Co detector. A damage detection device for blast furnace body cooling piping, which is equipped with a switching valve that can switch between the piping and the piping. 4 Claim 3, characterized by having a plurality of sampling pipes leading from a plurality of locations to the same dissolved Co detector, a plurality of gas-liquid separators, and a plurality of switching valves. A device for detecting damage to blast furnace body cooling piping as described in 2.
JP12332282A 1982-07-14 1982-07-14 Method and device for detecting rupture of piping for cooling blast furnace Pending JPS5913935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12332282A JPS5913935A (en) 1982-07-14 1982-07-14 Method and device for detecting rupture of piping for cooling blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12332282A JPS5913935A (en) 1982-07-14 1982-07-14 Method and device for detecting rupture of piping for cooling blast furnace

Publications (1)

Publication Number Publication Date
JPS5913935A true JPS5913935A (en) 1984-01-24

Family

ID=14857680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12332282A Pending JPS5913935A (en) 1982-07-14 1982-07-14 Method and device for detecting rupture of piping for cooling blast furnace

Country Status (1)

Country Link
JP (1) JPS5913935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299150A (en) * 1992-04-21 1993-11-12 Hirakawa Hewtec Kk Judging method and judging device for bond strength of power supply cord and electric connecting terminal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299150A (en) * 1992-04-21 1993-11-12 Hirakawa Hewtec Kk Judging method and judging device for bond strength of power supply cord and electric connecting terminal

Similar Documents

Publication Publication Date Title
US4328700A (en) Leak detection method and apparatus
WO2005047858A3 (en) On-line apparatus and method for determining endotoxin levels
CN106164668A (en) Monitoring liquor quality and the method and apparatus of water parameters continuously
JPS5913935A (en) Method and device for detecting rupture of piping for cooling blast furnace
US4319479A (en) Method and an apparatus for detecting leakage of cooling water by measuring dissolved CO amount
US4663962A (en) Method and a device for detecting leakage of a tube section
JPS6247071Y2 (en)
US4838098A (en) Contained radiological analytical chemistry module
JP4122716B2 (en) Damage detection method and apparatus for blast furnace cooling equipment
JPS5482023A (en) Static electricity supervisory unit for transformers
JPH0726950B2 (en) Carbon content measuring device
JPH0726683Y2 (en) Industrial gas concentration measuring device
JPH0712805A (en) Method and device for diagnosing continuous abnormatility and deterioration of sealed oil-immersed transformer
JPH0421135B2 (en)
US4909065A (en) Contained radiological analytical chemistry module
JPS593236A (en) Liquid metal leakage detection system
JPS5887413A (en) Automatic analyzer
JPH05256747A (en) Apparatus and method for diagnosing abnormality of electric apparatus containing perfluorocarbon
JPH02259457A (en) Leakage detector
NO960367L (en) Method and apparatus for detecting and / or measuring at least one geophysical parameter from a core sample
JPS6024416B2 (en) Method for detecting internally generated gas and samples in storage tanks
JPS6322537B2 (en)
Domorod et al. The Possibilities of Inspecting Inside Surfaces of Holes Using the Electric Discharge Method of Visualization
JPS6257217B2 (en)
JPH0559647B2 (en)