JPS5913934B2 - Can body neck-in processing method and device - Google Patents

Can body neck-in processing method and device

Info

Publication number
JPS5913934B2
JPS5913934B2 JP872380A JP872380A JPS5913934B2 JP S5913934 B2 JPS5913934 B2 JP S5913934B2 JP 872380 A JP872380 A JP 872380A JP 872380 A JP872380 A JP 872380A JP S5913934 B2 JPS5913934 B2 JP S5913934B2
Authority
JP
Japan
Prior art keywords
neck
mold
tapered
ultrasonic
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP872380A
Other languages
Japanese (ja)
Other versions
JPS56105838A (en
Inventor
勝宏 今津
瞭 西村
雅式 真田
雅雄 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP872380A priority Critical patent/JPS5913934B2/en
Publication of JPS56105838A publication Critical patent/JPS56105838A/en
Publication of JPS5913934B2 publication Critical patent/JPS5913934B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は缶胴体のネツクイン加工法および装置に関し、
さらに詳しくはネツクイン部の皺発生等のトラブルの防
止された超音波振動印加による缶胴体のネツクイン加工
法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for netlining can bodies;
More specifically, the present invention relates to a method and apparatus for neck-lining a can body by applying ultrasonic vibration, which prevents troubles such as wrinkles in the neck-in portion.

炭酸飲料やジユーズ類等の充填密封用缶は、その製造法
により半田付缶、溶接缶、接着剤接合缶およびシームレ
ス(絞り一しごき缶)等に分れるが、最近その缶胴部の
開口端部をネツクイン加工してからフランジ成形し、そ
の後端板を2重巻締することにより、2重巻締部の外径
を缶胴部の外径とほぼ等しいか、もしくはそれよりも稍
小さくする場合が多い。これはデザインが優れているこ
との他に、包装のさいの1缶あたりの収納容積の減少、
輸送中等における2重巻締部と缶胴部との衝合による缶
胴部の凹みの防止、および端板が小径ですむので材料費
の節約等の技術的、経済的利点があるからである。この
缶胴体のネツクイン加工は、例えば特公昭48−430
27号に開示されているように、通常開口端部を絞り型
と中心型の間の間隙に圧入して、所定の形状に絞る(す
なわち縮経する)ことによつて行なわれる。この場合本
発明者等の経験によれば、1ネツクイン部に皺が屡々発
生する、2胴壁部が薄肉のシームレス缶の場合には、ネ
ツクイン加工時の圧入のさい胴壁部の底部附近に座屈な
いし変形を生じ易い、3以上のトラブルを防止するため
、型と缶胴体間の摩擦力を減少し、圧入力を減らそうと
して通常潤滑剤を使用するのであるが、その場合装置自
体が汚れ(塗料、金属粉、ほこり等により)るので、定
時間ごとに型を外して掃除をしなければならない、4そ
のようにしても1回当りの絞り率が大きくとれないので
、通常は2回の絞りを必要とする、従つて工程が増え装
置が複雑となる等の問題がある。本発明は上記問題を解
決することを目的とするものであつて、本発明はこの目
的を達成するため、円筒状の缶胴体の開口端部を絞つて
、該缶胴体の主部より内方に向うテーパ部と該テーパ部
に連接する該缶胴体主部よりも直径の小さいネツクイン
部を形成する缶胴体のネツクイン加工法において、該開
口端部の該テーパ部と該ネツクイン部となるべき部分に
超音波振動を印加しながら絞ることを特徴とする缶胴体
のネツクイン加工法、ならびに上記ネツクイン加工法に
おいて、該開口端部に、ネツクイン加工初期のテーパ形
成のための絞りの間比較的高い出力の超音波振動を印加
し、その後該ネツクイン部形成が終了するまでの間比較
的低い出力の超音波振動を印加することを特徴とする缶
胴体のネツクイン加工法、を提供するものである。
Filling and sealing cans for carbonated drinks, juices, etc. can be divided into soldered cans, welded cans, adhesive-bonded cans, and seamless (squeezed and ironed cans) depending on the manufacturing method. The outer diameter of the double-sealed part is made to be approximately equal to or slightly smaller than the outer diameter of the can body by necking the can body, then forming a flange, and then double-sealing the rear end plate. There are many cases. This is not only due to its excellent design, but also due to the reduction in storage volume per can during packaging.
This is because it has technical and economical advantages, such as preventing dents in the can body due to collision between the double-sealed part and the can body during transportation, and saving material costs because the end plate can be small in diameter. . This netsukin processing of the can body was done, for example, in
As disclosed in No. 27, this is usually done by press-fitting the open end into the gap between the drawing die and the center die and drawing it into a predetermined shape (that is, reducing the warp). In this case, according to the experience of the present inventors, in the case of a seamless can with a thin body wall and where wrinkles often occur in the neck-in part 1, wrinkles are often generated in the neck-in part, and when the body wall part 2 is press-fitted during the neck-in process, wrinkles often occur near the bottom of the body wall. In order to prevent troubles above 3, which tend to cause buckling or deformation, lubricants are usually used to reduce the frictional force between the mold and the can body and reduce the pressing force, but in this case, the equipment itself Because it gets dirty (from paint, metal powder, dust, etc.), you have to remove the mold and clean it at regular intervals. 4 Even if you do that, you can't get a large drawing rate each time, so usually 2 There are problems such as the need for multiple drawing operations, which increases the number of steps and complicates the equipment. An object of the present invention is to solve the above problem, and in order to achieve this object, the open end of a cylindrical can body is narrowed so that the inner part of the can body is In a can body neck-in processing method that forms a tapered part toward and a neck-in part connected to the tapered part and which has a smaller diameter than the main part of the can body, the tapered part of the opening end and the part that should become the neck-in part In the neck-in processing method for can bodies, which is characterized by squeezing while applying ultrasonic vibration to the can body, and in the above-mentioned neck-in processing method, a relatively high power is applied to the opening end during drawing to form a taper in the initial stage of neck-in processing. To provide a neck-in processing method for a can body, which is characterized by applying ultrasonic vibrations of 1 to 100 mm, and then applying ultrasonic vibrations of relatively low output until the formation of the neck-in portion is completed.

さらに本発明は、円筒状の缶胴体の開口端部を絞つて、
該缶胴体の主部より内方に向うテーパ部と該テーパ部に
連接する該缶胴体主部よりも直径の小さいネツクイン部
を形成する缶胴体のネツクイン加工装置において、該装
置は絞り型と中心型とを備えており、該絞り型は前記缶
胴体の外径と実質的に等しい内径の円筒状内周面を有す
る保持型と、該円筒状内周面に接続しかつ前記テーパ部
の外周面に対応するテーパ面と該テーパ面に連接しかつ
前記ネツクイン部の外径と内径が実質的に等しい円筒状
内周面とを有するリング型とを備えており、該中心型は
前記ネツクイン部の内径より僅かに小さい外径を有する
外周面を有する中子型と該外周面の基部に接続して前記
ネツクイン部の高さを規定するための係止面を有する係
止型とを備えており、かつ超音波振動素子が該リング型
および/または該中子型に固着されていることを特徴と
する缶胴体のネツクイン加工装置、ならびに上記ネツク
イン加工装置において、該装置はさらに該リング型に加
わる荷重を検出する手段と、該手段による検出値にもと
づいて該超音波振動素子を付勢・消勢する手段とを備え
ており、実質的に絞りが行なわれている間のみ該超音波
振動素子が付勢されることを特徴とする缶胴体のネツク
イン加工装置、および前記実質的に絞りが行なわれてい
る間のみ超音波振動素子が付勢されることを特徴とする
缶胴体のネツクイン加工装置において、さらに超音波振
動出力を制御する手段ならびに限時装置を備えており、
実質的に絞りが行なわれている間のみ該超音波振動素子
が付勢され、かつネツクイン加工初期のテーパを形成す
る絞りの間、比較的高い出力の超音波が該超音波振動素
子にフイードされ、その後該ネツクイン部の形成が終了
するまでの間、比較的低い出力の超音波が該超音波振動
素子にフイードされることを特徴とする缶胴体のネツク
イン加工装置、を提供するものである。
Furthermore, the present invention provides for narrowing the open end of the cylindrical can body,
A can body neck-in processing device that forms a tapered portion inward from the main portion of the can body and a neck-in portion that is smaller in diameter than the main portion of the can body and connected to the tapered portion, the device comprises a drawing die and a center a holding mold having a cylindrical inner circumferential surface with an inner diameter substantially equal to the outer diameter of the can body; a ring shape having a tapered surface corresponding to the neck surface and a cylindrical inner circumferential surface connected to the tapered surface and having an inner diameter substantially equal to an outer diameter of the neck-in portion; a core mold having an outer peripheral surface having an outer diameter slightly smaller than the inner diameter of the core mold, and a locking mold having a locking surface connected to the base of the outer peripheral surface to define the height of the neck-in part. and an ultrasonic vibration element is fixed to the ring shape and/or the core mold, and the neck-in processing device described above, further comprising: The ultrasonic vibration element is provided with means for detecting the applied load and means for energizing or deenergizing the ultrasonic vibration element based on the detected value by the means, and the ultrasonic vibration is generated only while the aperture is being substantially performed. A net-in processing device for a can body, characterized in that an element is energized, and a net-in processing for a can body, characterized in that an ultrasonic vibration element is energized only while the drawing is substantially performed. The device further includes means for controlling the ultrasonic vibration output and a timer,
The ultrasonic vibrating element is energized only while the drawing is being performed, and relatively high-output ultrasonic waves are fed to the ultrasonic vibrating element during the drawing to form the taper at the initial stage of neck-in processing. There is provided a can body neck-in processing apparatus, characterized in that relatively low output ultrasonic waves are fed to the ultrasonic vibration element until the formation of the neck-in part is completed.

以下本発明の実施例を示す図面を参照しながら本発明に
ついて説明する。第1図、第2図は、ネツクイン加エ工
具1に缶胴体2が挿入されて、ネツクイン加工が開始す
る直前の状態を示す。
The present invention will be described below with reference to drawings showing embodiments of the invention. 1 and 2 show the state immediately before the can body 2 is inserted into the neck-in processing tool 1 and the neck-in processing is started.

缶胴体2は搬送具3によつて、その軸線がネツクイン工
具1の軸線と一致する位置に送られかつ保持される。図
示されていないが、3ピース缶用缶胴体の場合のように
、両開口端部がネツクイン加工される場合は、図の左側
にも同様なネツクイン工具が配設されている。2ピース
缶用缶胴体の場合のように、開口端部が一方のみの場合
は、缶底部の支承装置は図の左側に配設されている。
The can body 2 is conveyed and held by the carrier 3 to a position where its axis coincides with the axis of the neck-in tool 1. Although not shown, when both open ends are to be tied in, as in the case of a can body for a three-piece can, a similar necked-in tool is provided on the left side of the figure. If there is only one open end, as is the case with can bodies for two-piece cans, the support for the can bottom is arranged on the left side of the figure.

ネツクイン工具1は、絞り型4と中心型5を備えている
The neck-in tool 1 includes a drawing die 4 and a center die 5.

絞り型4は、保持型6、リング型7、スペーサ8および
超音波振動子9aとホーン9bよりなる超音波振動素子
9を有している。保持型6は、缶胴体2の外径と実質的
に等しい内径をし、かつ缶胴体の開口端部2aが挿入さ
れる円筒内周面6aを有しており、またリング型7およ
びスペーサ8を収納するための凹部6b1ならびに複数
個(本実施例では6個)の超音波ホーン9bを収納する
孔部6cを備えている。その先端部6dと反対側の端部
は支承軸10に取外し可能に固設されている。従つてリ
ング型7が磨耗した時などの交換.修理は容易に行なう
ことができる。リング型7の内面には、円筒面6aに接
続してテーパ部7aが設けられており、缶胴体の開口端
部2aがこのテーパ部7aに圧入されることにより絞り
(縮径)が行なわれる。リング型の円筒内周面7bの直
径は缶胴体ネツクイン部2c(第5図)の外径を規定す
る。リング型の外周面にはテーパ部7aにほぼ対向する
位置に超音波ホーン9bが螺着されている。超音波振動
子9aに巻かれたコイルは超音波発振器19に接続する
。支承軸10は図示されないカム機構により、一定のサ
イクルで軸線方向に往復動するように構成されている。
中心型5は中子型11および係止型12とよりなり、中
子型11は押えボルト13により当て金14を介して係
止型12に固着されており、一方係止型12は押えボル
ト13により中心軸15に固着されている。中心軸15
は図示されないカム機構により、支承軸10と独立に一
定のサイクルで軸線方向に往復動するように構成されて
いる。中子型11の外周面11aの直径は缶胴体ネツク
イン部2c(第5図)の内径より僅かに(017n7n
程度)小さい。係止型12の外周面12aはリング型7
の円筒内周面7bを摺動し、外周面12aと中子型の外
周面11aの間の係止型12の環状端面部12bは缶胴
体2を圧入のさいの係止面12bを構成しており、ネツ
クイン部2cの高さを規定する。支承軸10には圧力検
出素子16が付設されており、ネツクイン加工のさい支
承軸10に軸線方向の荷重が加わることにより圧力検出
素子16は出力する。
The aperture die 4 has a holding die 6, a ring die 7, a spacer 8, and an ultrasonic vibrating element 9 consisting of an ultrasonic vibrator 9a and a horn 9b. The holding mold 6 has an inner diameter substantially equal to the outer diameter of the can body 2, and has a cylindrical inner peripheral surface 6a into which the open end 2a of the can body is inserted, and also has a ring mold 7 and a spacer 8. A recess 6b1 for accommodating the ultrasonic horns 9b and a hole 6c for accommodating a plurality of (six in this embodiment) ultrasonic horns 9b. The end opposite to the tip 6d is removably fixed to the support shaft 10. Therefore, when the ring mold 7 becomes worn out, it must be replaced. Repairs can be easily made. A tapered part 7a is provided on the inner surface of the ring mold 7, connected to the cylindrical surface 6a, and the opening end 2a of the can body is press-fitted into this tapered part 7a to perform a narrowing (diameter reduction). . The diameter of the ring-shaped cylindrical inner circumferential surface 7b defines the outer diameter of the can body neck-in portion 2c (FIG. 5). An ultrasonic horn 9b is screwed onto the outer peripheral surface of the ring shape at a position substantially opposite to the tapered portion 7a. The coil wound around the ultrasonic transducer 9a is connected to an ultrasonic oscillator 19. The support shaft 10 is configured to reciprocate in the axial direction in a constant cycle by a cam mechanism (not shown).
The center mold 5 consists of a core mold 11 and a locking mold 12, and the core mold 11 is fixed to the locking mold 12 by a presser bolt 13 via a stopper 14. 13 to the central shaft 15. central axis 15
is configured to reciprocate in the axial direction in a constant cycle independently of the support shaft 10 by a cam mechanism (not shown). The diameter of the outer circumferential surface 11a of the core mold 11 is slightly smaller than the inner diameter of the can body neck-in portion 2c (Fig. 5).
degree) small. The outer peripheral surface 12a of the locking mold 12 is the ring mold 7
The annular end surface 12b of the locking mold 12 between the outer peripheral surface 12a and the outer peripheral surface 11a of the core mold forms a locking surface 12b when the can body 2 is press-fitted. This defines the height of the neck-in portion 2c. A pressure detection element 16 is attached to the support shaft 10, and the pressure detection element 16 outputs an output when an axial load is applied to the support shaft 10 during neck-in processing.

その出力は増巾器17で増巾された後、コンパレータ1
8で所定電圧(一般に低いレベルに設定される)と比較
される。19は超音波発振器20のスイツチ回路であつ
て、コンパレータ18への入力電圧が所定電圧より高い
場合は、超音波発振器20を0Nとし、低い場合は0F
Fとするように構成されている。
After the output is amplified by the amplifier 17, the output is amplified by the comparator 1.
8 to a predetermined voltage (generally set to a low level). 19 is a switch circuit for the ultrasonic oscillator 20, and when the input voltage to the comparator 18 is higher than a predetermined voltage, the ultrasonic oscillator 20 is set to 0N, and when it is lower, it is set to 0F.
It is configured to be F.

以上の装置により缶胴体2のネツクイン加工は次のよう
にして行なわれる。
Using the above-described apparatus, the can body 2 is tied in as follows.

缶胴体2は、通常約0.10〜0.35mw!厚さの錫
めつき鋼板、電解クロム酸処理鋼板等の低炭素薄鋼板を
素材とするブランク、あるいはアルミニウム合金板のブ
ランクより、半田付法、溶接法、接着法による側目継目
部の接合、もしくは絞り一しごき法等によつて形成され
る。
The can body 2 is usually about 0.10 to 0.35 mw! Joining of side joints using soldering, welding, or adhesive methods from blanks made of low-carbon thin steel sheets such as thick tin-plated steel sheets, electrolytic chromic acid-treated steel sheets, or aluminum alloy sheet blanks. Alternatively, it is formed by a drawing and ironing method or the like.

通常内外面に有機塗膜が形成されている。これらの缶胴
体2は先づ搬送具3により第1図の位置に停止される。
そのさいネツクイン工具1全体は、少なくとも保持型6
の先端部6dが、缶胴体2の端面の外側に位置している
。次に中心型5の係止面12bが絞り型4のリング型テ
ーパ部7aの後端部に位置する状態(第1図の状態)で
、中心型5と絞り型4が同時に図の左方へ移行し、第1
図に示されるように缶胴体の開口端部2aは保持型の円
筒内周面6aに挿入される。それまで超音波振動子9a
は付勢されていない。さらに中心型5と絞り型4が同時
に左方へ移行すると、第3図に示されるように、缶胴体
の開口端部2aの先端部は、リング型のテーパ部7aに
よつて絞られる。そのため支承軸10に所定値(一般に
低い値に設定される)以上の荷重が加わると、スイツチ
回路19が0Nとなつて超音波ホーン9bにより、リン
グ型7のテーパ部7aと接触する開口端部2bの部分に
超音波振動が印加される。超音波振動子1個当りの出力
は500W〜1kWが好ましい。500Wより小さい出
力では、皺防止等の効果が十分でなく、一方1kWより
も高い出力の場合は発熱が大きくなり、缶胴体2に塗布
された有機塗膜(例えばエポキシフエノール系塗膜)が
焦げる等のトラブルが起るからである。
Organic coatings are usually formed on the inner and outer surfaces. These can bodies 2 are first stopped at the position shown in FIG. 1 by the conveyor 3.
At that time, the entire neck-in tool 1 has at least the holding mold 6
The tip end 6d of the can body 2 is located outside the end surface of the can body 2. Next, with the locking surface 12b of the center die 5 located at the rear end of the ring-shaped tapered portion 7a of the drawing die 4 (the state shown in FIG. 1), the center die 5 and the drawing die 4 are simultaneously moved toward the left side of the figure. 1st
As shown in the figure, the open end 2a of the can body is inserted into the cylindrical inner peripheral surface 6a of the holding mold. Until then, ultrasonic transducer 9a
is not energized. Further, when the center mold 5 and the drawing mold 4 move to the left at the same time, the tip of the open end 2a of the can body is squeezed by the ring-shaped taper part 7a, as shown in FIG. Therefore, when a load of more than a predetermined value (generally set to a low value) is applied to the support shaft 10, the switch circuit 19 becomes 0N, and the ultrasonic horn 9b causes the open end to contact the tapered part 7a of the ring mold 7. Ultrasonic vibration is applied to part 2b. The output per ultrasonic transducer is preferably 500 W to 1 kW. If the output is lower than 500W, the effect of preventing wrinkles etc. will not be sufficient, while if the output is higher than 1kW, the heat generation will increase and the organic coating film (e.g. epoxyphenol coating film) applied to the can body 2 will burn. This is because problems such as this may occur.

周波数については特に制限はなく、通常の超音波加工の
周波数である約10kHz〜25kHzで好結果が得ら
れる。第3図の実施例のように振動方向が缶胴体2の軸
線に直角の場合は振輻は約2〜10pmが好ましい。約
2μmより小さいと皺防止等の効果が十分でなく、約1
0pmより大きいと加工表面に微小傷が発生し易いから
である。以上のようにして超音波振動を与えられながら
、開口端部2aの絞られた先端が係止型12の係止面1
2bに当接すると、第4図に示すように中心型5はその
位置に停止したままで、絞り型4のみが図の左方へ所定
距離移行し、リング型の円筒面7bと中子型の外周面1
1bとの間でネツクイン部2cが形成され、同時にネツ
クイン部2cと缶胴体2の本体との間にテーパ部2bが
形成される。
There is no particular restriction on the frequency, and good results can be obtained at a frequency of about 10 kHz to 25 kHz, which is the frequency of normal ultrasonic processing. When the vibration direction is perpendicular to the axis of the can body 2 as in the embodiment shown in FIG. 3, the vibration is preferably about 2 to 10 pm. If it is smaller than about 2 μm, the wrinkle prevention effect will not be sufficient, and if it is smaller than about 1 μm.
This is because if it is larger than 0 pm, minute scratches are likely to occur on the processed surface. While being subjected to ultrasonic vibration as described above, the constricted tip of the open end 2a becomes the locking surface 1 of the locking die 12.
2b, as shown in FIG. 4, the center die 5 remains at that position, and only the drawing die 4 moves a predetermined distance to the left in the figure, and the ring-shaped cylindrical surface 7b and the core die outer peripheral surface 1
A neck-in portion 2c is formed between the neck-in portion 2c and the main body of the can body 2. At the same time, a tapered portion 2b is formed between the neck-in portion 2c and the main body of the can body 2.

前記所定距離はネツクイン部2cの高さに対応する。以
上のネツクイン加工工程において、従来の超音波振動を
与えない方式の場合は、潤滑剤を塗布してリング型のテ
ーパ部7aおよび円筒内周面7bおよび中子型の外周面
11bと缶胴体の開口端部2a間の摩擦力を減少せしめ
て、塗膜の剥離、ネツクイン部2cにおける縦皺発生防
止、および絞り一しごき缶胴体の場合の座屈・変形の防
止を図つていた。しかし潤滑剤の減摩効果には限界があ
つて、上記のトラブルを完全に防止することは至難であ
つて、特に型面の摩耗と共に上記トラブルは発生し易い
ので、屡々型替えを行なわなければならなかつた。しか
し本発明に従つて超音波振動を印加した場合は、潤滑剤
を塗布しなくても上記トラブルは発生せず、また加エカ
も減少するので型面の摩耗も少なく、型替えの頻度を減
少させることができ、作業能率が大幅に増進することが
判明した。以上のようにしてネツクイン部2cの形成が
終了後、中心型5はその位置に止つたまま、絞り型4の
みが第5図に示されるように図の右方へ移行し、ネツク
イン部2cは絞り型4から外れ、同時に支承軸10に加
わる荷重が前記所定値以下となるので超音波発振は停止
する。
The predetermined distance corresponds to the height of the neck-in portion 2c. In the above neck-in processing process, in the case of the conventional method that does not apply ultrasonic vibration, lubricant is applied to connect the ring-shaped tapered part 7a, the cylindrical inner circumferential surface 7b, the core-shaped outer circumferential surface 11b, and the can body. By reducing the frictional force between the open ends 2a, it was intended to prevent peeling of the coating film, the occurrence of vertical wrinkles in the necked-in portion 2c, and to prevent buckling and deformation in the case of a drawn can body. However, there is a limit to the friction-reducing effect of lubricants, and it is extremely difficult to completely prevent the above-mentioned troubles.In particular, the above-mentioned troubles are likely to occur with wear of the mold surface, so it is necessary to change the mold frequently. It didn't happen. However, when applying ultrasonic vibration according to the present invention, the above trouble does not occur even without applying lubricant, and the applied stress is also reduced, so there is less wear on the mold surface and the frequency of mold changes is reduced. It has been found that work efficiency can be greatly improved. After the formation of the neck-in portion 2c is completed in the above manner, the center die 5 remains at that position, and only the drawing die 4 moves to the right side of the figure as shown in FIG. 5, and the neck-in portion 2c is The ultrasonic oscillation stops because the load applied to the support shaft 10 becomes equal to or less than the predetermined value at the same time as it is removed from the drawing die 4.

従つて超音波振動は実際にネツクイン加工が行なわれて
いる間のみ(全工程の約1/12の時間)印加されるの
で、エネルギーの節約、リング型7の温度上昇防止、リ
ング型7と保持型6やスペーサ8等との接触面の損耗の
防止等が実現できる。次いで係止具21が缶胴体2のテ
ーパ部2bに係合した後、第6図に示されるように中心
型5のみが図の右方に移行し、缶胴体2から中子型11
が抜かれ、缶胴体2は搬送具3によつて次工程へ送られ
る。次に第2の缶胴体が搬送具3によつて第6図の缶胴
体2の位置に送られ、絞り型4が図の左方へ移行するこ
とにより第1図の状態になり、以降前記のようにして次
のネツクイン加工が行なわれる。第7図は本発明の他の
実施例を示したものであつて、複数個の超音波ホーン9
bが、その軸線が支承軸10の軸線と平行になるように
して、等間隔にリング型7の後端面に螺着されている。
Therefore, the ultrasonic vibration is applied only during the actual neck-in processing (approximately 1/12 of the entire process), which saves energy, prevents the temperature of the ring mold 7 from rising, and holds the ring mold 7 together. It is possible to prevent wear and tear on the contact surfaces with the mold 6, spacer 8, etc. Next, after the locking tool 21 engages with the tapered portion 2b of the can body 2, only the center mold 5 moves to the right in the figure, as shown in FIG.
is removed, and the can body 2 is sent to the next process by the conveyor 3. Next, the second can body is sent by the conveyor 3 to the position of the can body 2 in FIG. 6, and the drawing die 4 moves to the left in the figure, resulting in the state shown in FIG. The next netquin processing is performed as follows. FIG. 7 shows another embodiment of the present invention, in which a plurality of ultrasonic horns 9
b are screwed onto the rear end surface of the ring mold 7 at equal intervals so that their axes are parallel to the axis of the support shaft 10.

この場合の超音波振動振幅は約5〜10pmが好ましい
。約5μmより小さいと皺発生防止等の効果が十分でな
く、約10pmより大きいと表面被膜の傷発生のおそれ
があるからである。それ以外の構成・効果については、
第1図の場合との差は特にない。また第8図に示すよう
に、さらに中子型11の後端面に超音波ホーン9′bを
固着すると、超音波エネルギーが中子型11の外周面1
1aから缶胴体の開口端部2a内面にも供給されるので
、本発明の効果は一層向土する。
In this case, the ultrasonic vibration amplitude is preferably about 5 to 10 pm. This is because if it is smaller than about 5 μm, the effect of preventing wrinkles etc. will not be sufficient, and if it is larger than about 10 pm, there is a risk of scratches on the surface coating. For other configurations and effects,
There is no particular difference from the case in Figure 1. Further, as shown in FIG.
Since it is also supplied from 1a to the inner surface of the open end 2a of the can body, the effect of the present invention is further improved.

以上の実施例では、ネツクイン加工の間常に同じエネル
ギーの超音波振動を印加した。
In the above examples, ultrasonic vibrations of the same energy were always applied during the neck-in process.

しかし本発明者等の知見によれば、第9図に示されるよ
うに、通常ネツクイン加工の初期のテーパ形成のための
絞りが終了するまでの段階、すなわち第3図の状態に達
するまでの間に大きな荷重が缶胴体2に加わり、以後ネ
ツクイン部形成中に加わる荷重は低下する。従つて上記
初期の短時間に比較的大きなエネルギーの超音波振動パ
ルスを印加し、以降は比較的小さなエネルギーの超音波
振動を印加することが、エネルギー効率や、発熱による
塗膜の焼付防止等の見地から好ましい。このような初期
に大きなエネルギーの超音波振動パルスを印加するため
の回路の実施例を第10図に示した。第10図において
、超音波発振器20の出力はスイツチ回路19、抵抗R
1、増幅器21を経て超音波振動子9aに入力する。R
2,R3は増巾器21の負帰還回路に互に直列に設けら
れた抵抗であつて、抵抗R2に並列にスイツチ回路22
が設けられている。コンパレータ18の信号はスイツチ
回路19に入力し、またタイマー回路23を経てスイツ
チ回路22に入力する。そしてコンパレータ18への入
力信号が前記所定電圧より高くなると、コンパレータ1
8よりの出力信号によりスイツチ回路19が0Nとなり
、またタイマー回路23も0Nとなり、タイマー回路の
0N信号にもとづいてスイツチ回路22が0FFとなり
、一定時間(通常は1/100秒のオーダのごく短時間
)経過するとタイマー回路23が0FFとなり、この0
FF信号にもとづいてスイツチ回路22が0Nとなり、
さらにコンパレータ18への入力信号が前記所定電圧よ
り低くなるとスイツチ回路19が0FFとなるように各
回路は構成されている。そして開口端部2aにリング型
のテーパ面7aが係合して、支承軸10に所定値以上の
荷重が加わると、コンパレータ18が出力して、スイツ
チ回路19が0Nとなり、同時にスイツチ回路22は0
FFとなる。従つて第11図に示されるように、超音波
振動子9aには(R2+R3)/R1倍に増巾されたエ
ネルギーの超音波振動パルスIが入力し、リング型7の
テーパ面7aと接触する開口端部2aの部分に超音波ホ
ーン9bにより、大きなエネルギーの超音波振動パルス
が印加される。ほぼ第3図の状態まで開口端部2aの絞
り(テーパ形成)が終了すると、タイマー回路23が作
動してスイツチ回路22が0Nとなる。従つてそれ以降
の超音波振動子に印加される超音波振動出力は超音波発
振器20の出力のR3/R1倍と減少する(第11図の
)。パルスIの出力は通常1kW以上で、持続時間約1
/200〜1/100秒であることが好ましく、定常出
力()は0.5kW以下で1/18〜1/3秒であるこ
とが好ましい。なお以上の実施例では、ネツクイン加具
が移行してネツクイン加工が行なわれたが、ネツクイン
加エ工具を固定して、缶胴体を工具に圧入する方法によ
つても、同様の効果を挙げられることはいうまでもなく
、本発明はかかる態様をも包含するものである。
However, according to the findings of the present inventors, as shown in FIG. 9, during the stage until the drawing for forming a taper in the initial stage of neck-in processing is completed, that is, until the state shown in FIG. 3 is reached. A large load is applied to the can body 2, and thereafter the load applied during the formation of the neck-in portion decreases. Therefore, it is important to apply ultrasonic vibration pulses with relatively large energy for a short period of time in the above-mentioned initial period, and apply ultrasonic vibrations with relatively small energy thereafter, in order to improve energy efficiency and prevent paint film from seizing due to heat generation. Favorable from this point of view. FIG. 10 shows an embodiment of a circuit for applying such an initial high-energy ultrasonic vibration pulse. In FIG. 10, the output of the ultrasonic oscillator 20 is connected to a switch circuit 19, a resistor R
1. Input to the ultrasonic transducer 9a via the amplifier 21. R
2 and R3 are resistors connected in series to the negative feedback circuit of the amplifier 21, and a switch circuit 22 is connected in parallel to the resistor R2.
is provided. The signal from the comparator 18 is input to a switch circuit 19 and also to a switch circuit 22 via a timer circuit 23. When the input signal to the comparator 18 becomes higher than the predetermined voltage, the input signal to the comparator 18 becomes higher than the predetermined voltage.
The switch circuit 19 becomes 0N due to the output signal from 8, and the timer circuit 23 also becomes 0N. Based on the 0N signal from the timer circuit, the switch circuit 22 becomes 0FF for a certain period of time (usually a very short time on the order of 1/100 seconds). time), the timer circuit 23 becomes 0FF, and this 0
Based on the FF signal, the switch circuit 22 becomes 0N,
Further, each circuit is configured such that when the input signal to the comparator 18 becomes lower than the predetermined voltage, the switch circuit 19 becomes OFF. When the ring-shaped tapered surface 7a engages with the open end 2a and a load of more than a predetermined value is applied to the support shaft 10, the comparator 18 outputs an output, the switch circuit 19 becomes 0N, and at the same time the switch circuit 22 0
Becomes FF. Therefore, as shown in FIG. 11, an ultrasonic vibration pulse I having an energy amplified by (R2+R3)/R1 is input to the ultrasonic vibrator 9a, and comes into contact with the tapered surface 7a of the ring type 7. Ultrasonic vibration pulses with large energy are applied to the open end portion 2a by the ultrasonic horn 9b. When the opening end 2a has been constricted (tapered) to approximately the state shown in FIG. 3, the timer circuit 23 is activated and the switch circuit 22 is turned ON. Therefore, the ultrasonic vibration output applied to the ultrasonic transducer thereafter is reduced to R3/R1 times the output of the ultrasonic oscillator 20 (as shown in FIG. 11). The output of pulse I is usually 1 kW or more, and the duration is about 1 kW.
/200 to 1/100 second, and the steady output () is preferably 0.5 kW or less and 1/18 to 1/3 second. In the above example, the neck-in processing tool was moved to perform the net-in processing, but the same effect can be achieved by fixing the neck-in processing tool and press-fitting the can body into the tool. Needless to say, the present invention includes such embodiments.

本発明によれば、缶胴体の開口端部をネツクイン加工す
るさいに該開口端部に型を介して超音波振動を印加する
ので、加エカと摩擦力が減少し、潤滑剤を特に使用する
ことなく、1回当りのネツクイン量(絞り率)を従来よ
り大きくしてもネツクイン部の皺発生や缶胴体の座屈も
しくは変形を防止できる。
According to the present invention, since ultrasonic vibration is applied to the open end through the mold when necking the open end of the can body, the applied stress and frictional force are reduced, and a lubricant is especially used. Even if the amount of neck-in (squeezing ratio) per one time is made larger than before, wrinkles in the neck-in part and buckling or deformation of the can body can be prevented.

従つて従来2工程で行なつていたネツクイン加工を1工
程で行なうことができるので、生産性の向上、設備の簡
素化等のメリツトが大きい。さらに型の摩粍が少ないの
で、その交換・再》研磨回数を減少することができるの
で、生産効率の向上、型費用の節減等経済的メリツトも
大きい。また潤滑剤を使用しないので塗料、金属粉、ほ
こり等による装置の汚れが少なく、そのため定時間毎に
型を取外して掃除する必要もないので、この点からも従
来法にくらべて生産効率の上昇は著るしい。さらにネツ
クイン加工時のみに、超音波振動を印加するように装置
を構成することにより、エネルギーの節約、型の温度土
昇および損耗等を防止できるという効果を奏することが
できる。この効果は、ネツクイン加工の初期に短時間高
い出力の超音波振動を印加し、以降比較的低い出力の超
音波振動を印加することによつて一層向上させることが
可能である。また超音波振動素子は、ネツクイン加工の
さい直接荷重を受けるリング型および/または中子型に
直接固着されているので、超音波振動印加の効率が高い
という利点を有する。以下実施例について説明する。実
施例 1 厚さ0.24mmの錫めつき鋼板を素材とする直径(外
径)53.13mm1高さ134.5mmの溶接缶胴体
(内面にフエノールエポキシ系塗料塗布焼付、外面に変
性アルキツド系インクを印刷硬化)を、第1図および第
2図の型式の1対の対向するネツクイン加工装置の間に
入れて、その両開口端部を毎分600個の速度で連続的
にネツクイン部の直径が50.72mm1押入み深さ6
.35m7!Lとなるようにネツクイン加工した。
Therefore, the neck-in process, which was conventionally performed in two steps, can be performed in one step, which has great advantages such as improved productivity and simplification of equipment. Furthermore, since there is less wear and tear on the mold, the number of times it must be replaced and re-polished can be reduced, resulting in great economic benefits such as improved production efficiency and reduced mold costs. In addition, since no lubricant is used, there is less contamination of the equipment due to paint, metal powder, dust, etc., and there is no need to remove and clean the mold at regular intervals, which also improves production efficiency compared to conventional methods. is remarkable. Furthermore, by configuring the device to apply ultrasonic vibration only during neck-in processing, it is possible to save energy and prevent temperature rise and wear and tear of the mold. This effect can be further improved by applying high-output ultrasonic vibration for a short time at the beginning of neck-in processing, and then applying relatively low-output ultrasonic vibration thereafter. Further, since the ultrasonic vibration element is directly fixed to the ring type and/or core type that receives direct load during neck-in processing, it has the advantage of high efficiency in applying ultrasonic vibration. Examples will be described below. Example 1 A welded can body with a diameter (outer diameter) of 53.13 mm and a height of 134.5 mm made of tin-plated steel plate with a thickness of 0.24 mm (phenol epoxy paint applied and baked on the inner surface, modified alkyd ink on the outer surface) is placed between a pair of opposing net-in processing devices of the type shown in Figs. is 50.72mm 1 penetration depth 6
.. 35m7! I processed it to make it L.

潤滑剤は使用しなかつた。超音波出力は0.5kW/ホ
ーン、周波数1.5kHz1振巾5μmとし、スイツチ
回路19を作動せしめて、ネツクインの絞り工程におい
てのみ超音波エネルギーを印加するようにした。連続加
工缶数1万個でもネツクイン部の皺発生は認められなか
つた。比較例 1 超音波振動を与えないことと、ワツクス系潤滑剤を溶剤
で希釈し、加工部にロールコーチングで塗布した点以外
は実施例1と同様にしてネツクイン加工を行なつた。
No lubricant was used. The ultrasonic output was 0.5 kW/horn, frequency 1.5 kHz, amplitude 5 μm, and the switch circuit 19 was activated to apply ultrasonic energy only during the neck-in drawing process. Even after 10,000 cans were continuously processed, no wrinkles were observed in the neck-in area. Comparative Example 1 Neck-in processing was carried out in the same manner as in Example 1, except that ultrasonic vibration was not applied and the wax-based lubricant was diluted with a solvent and applied to the processed area by roll coating.

加工缶数1万個でネツクイン部に皺の発生が認められ、
作業を中止して型を点検した所、リング型7の内周面と
中子型の外周面に著るしい擦り傷が発生しており、型の
交換が必要であつた。実施例 2 胴壁部厚さ0.20mm1底部厚さ0.32m7!L1
直径(外径)53.05m1L1高さ134.5m77
!の錫めつき鋼板を素材とする絞り一しごき缶胴体(内
外面塗膜は実施例1と同じ)の底部を保持装置で保持し
て、第8図の型式の装置(ただしホーン数は9bおよび
97bともに6個)により、開口端部(厚さは胴壁部と
同じ0.20m0をネツクイン部の直径50.40mm
1押込み深さ6,35m77!となるようにネツクイン
加工した。
After processing 10,000 cans, wrinkles were observed in the inner part.
When the work was stopped and the molds were inspected, significant scratches were found on the inner peripheral surface of the ring mold 7 and the outer peripheral surface of the core mold, and it was necessary to replace the molds. Example 2 Trunk wall thickness: 0.20mm1 Bottom thickness: 0.32m7! L1
Diameter (outer diameter) 53.05 m 1 L 1 Height 134.5 m 77
! The bottom part of the can body made of tin-plated steel plate (the inner and outer coatings are the same as in Example 1) is held by a holding device, and a device of the type shown in Fig. 8 (however, the number of horns is 9b and 97b), the opening end (thickness is the same as the trunk wall, 0.20m0) is connected to a diameter of 50.40mm.
1 push depth 6.35m77! Netsuquin processing was performed so that

潤滑剤は使用せず、両ホーンとも超音波出力は1.0k
W/ホーン、周波数20kHz1振巾8μmとした。ス
イツチ回路19を作動せしめて、ネツクインの絞り工程
においてのみ超音波エネルギーを印加するようにした。
連類加工数1万個でも、ネツクイン部の皺発生、および
底部附近の胴壁部の座屈は認められなかつた。比較例
2超音波振動を支えないことと、ワツクス系潤滑剤を加
工部に均一に塗布した点を除いては、実施例2と同様に
してネツクイン加工を行なつた。
No lubricant is used, and the ultrasonic output of both horns is 1.0k.
W/horn, frequency 20kHz, amplitude 8μm. The switch circuit 19 was activated to apply ultrasonic energy only during the neck-in drawing process.
Even after 10,000 pieces were connected, no wrinkles were observed in the neck-in part, and no buckling was observed in the body wall near the bottom. Comparative example
2. Net-in processing was carried out in the same manner as in Example 2, except that ultrasonic vibrations were not supported and a wax-based lubricant was uniformly applied to the processed portion.

加工開始後間もなく底部附近の胴壁部に座屈が発生して
作業を中止した。実施例 3 厚さ0.21m1Lの電解クロム酸処理鋼板(テインフ
リースチール)を素材とするナイロン12による接着缶
胴体(内外面ともフエノールエポキシ系塗料塗布焼付)
に対し、第10図の制御回路を有する装置を用いて、ネ
ツクイン加工の初期の1/100秒間、1,5kW/ホ
ーンの超音波出力を印加し、以降加工終了までの1/1
0秒間、0.2kW/ホーンの超音波出力を印加した点
を除いては、実施例1と同様にしてネツクイン加を行な
つた。
Shortly after processing began, buckling occurred in the trunk wall near the bottom, and work was stopped. Example 3 Adhesive can body made of nylon 12 made of electrolytic chromic acid-treated steel plate (tein-free steel) with a thickness of 0.21 m1L (phenol epoxy paint applied and baked on both inside and outside surfaces)
Using a device having the control circuit shown in Fig. 10, an ultrasonic output of 1.5 kW/horn was applied for the initial 1/100 second of neck-in processing, and thereafter for 1/1 of the time until the end of processing.
Net-in addition was performed in the same manner as in Example 1, except that an ultrasonic output of 0.2 kW/horn was applied for 0 seconds.

連続加工缶数1万個でネツクイン部の皺発生、塗膜の焦
げによる変色およびフランジ加工のさいの接着部の剥離
は認められなかつた。なお上記缶胴体を実施例1と同一
条件でネツクイン加工を行なつた場合は、加工缶数1万
個でネツクイン部の皺発生は認められなかつたが、フラ
ンジ加工のさい接着部の剥離の認められるものが5個発
生した。
After 10,000 cans were continuously processed, no wrinkles were observed in the neck-in area, no discoloration due to scorching of the coating film, and no peeling of the adhesive part during flange processing was observed. When the can body was subjected to neck-in processing under the same conditions as in Example 1, no wrinkles were observed in the neck-in part after 10,000 cans were processed, but peeling of the adhesive part was observed during flange processing. Five cases occurred.

ネツクイン加工時に発熱によりナイロン12(融点17
8℃)が溶融したためと思われる。
Nylon 12 (melting point 17
This is thought to be due to the temperature (8°C) melting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の装置の側面縦断面図、
第2図は第1図のH−H線からみた正面図、第3図は缶
胴体のテーパ部のみが形成された状態を示す第1図の装
置の側面縦断面図、第4図はネツクイン部の成形が終了
した状態を示す第1図の装置の側面縦断面図、第5図は
第4図の状態から絞り型のみを抜き出した状態を示す第
1図の装置の側面縦断面図、第6図は第5図の状態から
中心型を抜き出した状態を示す第1図の装置の側面縦断
面図、第7図は本発明の第2の実施例の装置の側面縦断
面図、第8図は本発明の第3の実施例の装置の側面縦断
面図、第9図はネツクイン加工の進行に伴う缶胴体に加
わる荷重の変化を示す説明図、第10図は本発明の第4
の実施例に使用される電気回路図、第11図は第4の実
施例における超音波出力の時間的変化を示す説明図であ
る。 2・・・・・・缶胴体、2a・・・・・・開口端部、2
b・・・・・・テーパ部、2c・・・・・・ネツクイン
部、4・・・・・・絞り型、5・・・・・・中心型、6
・・・・・・保持型、6a・・・・・・円筒状内周面、
7・・・・・・リング型、7a・・・・・・テーパ面、
7b・・・・・・円筒状内周面、9・・・・・・超音波
振動素子、11・・・・・・中子型、11a・・・・・
・外周面、12・・・・・・係止型、11b・・・・・
・係止面、16・・・・・・圧力検出素子(荷重を検出
する手段)、19・・・・・・スイツチ回路(超音波振
動素子を付勢・消勢する手段)、20・・・・・・超音
波発振器、22・・・・・・スイツチ回路(超音波振動
出力を制御する手段の一部)、23・・・・・・タイマ
ー回路(限時装置)。
FIG. 1 is a side longitudinal sectional view of a device according to a first embodiment of the present invention;
Figure 2 is a front view taken from the line H-H in Figure 1, Figure 3 is a side longitudinal sectional view of the device in Figure 1 showing only the tapered part of the can body, and Figure 4 is a net FIG. 5 is a side vertical cross-sectional view of the apparatus in FIG. 1 showing a state in which only the drawing die has been extracted from the state in FIG. 4; 6 is a side vertical cross-sectional view of the device of FIG. 1 showing the state in which the central die is removed from the state shown in FIG. 5; FIG. 7 is a side vertical cross-sectional view of the device of the second embodiment of the present invention; FIG. FIG. 8 is a side vertical cross-sectional view of the apparatus according to the third embodiment of the present invention, FIG. 9 is an explanatory diagram showing changes in the load applied to the can body as the neck-in process progresses, and FIG. 10 is the fourth embodiment of the present invention.
FIG. 11 is an explanatory diagram showing temporal changes in ultrasonic output in the fourth embodiment. 2... Can body, 2a... Open end, 2
b...Tapered part, 2c...Neck-in part, 4...Drawing die, 5...Center die, 6
...Retention type, 6a...Cylindrical inner peripheral surface,
7...Ring type, 7a...Tapered surface,
7b... Cylindrical inner peripheral surface, 9... Ultrasonic vibration element, 11... Core type, 11a...
・Outer peripheral surface, 12...Lock type, 11b...
- Locking surface, 16... Pressure detection element (means for detecting load), 19... Switch circuit (means for energizing/deenergizing the ultrasonic vibration element), 20... . . . Ultrasonic oscillator, 22 . . . Switch circuit (part of means for controlling ultrasonic vibration output), 23 . . . Timer circuit (time limit device).

Claims (1)

【特許請求の範囲】 1 円筒状の缶胴体の開口端部を絞つて、該缶胴体の主
部より内方に向うテーパ部と該テーパ部に連接する該缶
胴体主部よりも直径の小さいネックイン部を形成する缶
胴体のネックイン加工法において、該開口端部の該テー
パ部と該ネックイン部となるべき部分に超音波振動を印
加しながら絞ることを特徴とする缶胴体のネックイン加
工法。 2 円筒状の缶胴体の開口端部を絞つて、該缶胴体の主
部より内方に向うテーパ部と該テーパ部に連接する該缶
胴体主部よりも直径の小さいネックイン部を形成する缶
胴体のネックイン加工法において、該開口端部にネック
イン加工初期のテーパ形成のための絞りの間比較的高い
出力の超音波振動を印加し、その後該ネックイン部形成
が終了するまでの間比較的低い出力の超音波振動を印加
することを特徴とする缶胴体のネックイン加工法。 3 円筒状の缶胴体の開口端部を絞つて、該缶胴体の主
部より内方に向うテーパ部と該テーパ部に連接する該缶
胴体主部よりも直径の小さいネックイン部を形成する缶
胴体のネックイン加工装置において、該装置は絞り型と
中心型とを備えており、該絞り型は前記缶胴体の外径と
実質的に等しい内径の円筒状内周面を有する保持型と、
該円筒状内周面に接続しかつ前記テーパ部の外周面に対
応するテーパ面と該テーパ面に連接しかつ前記ネックイ
ン部の外径と内径が実質的に等して円筒状内周面とを有
するリング型とを備えており、該中心型は前記ネックイ
ン部の内径より僅かに小さい外径を有する外周面を有す
る中子型と該外周面の基部に接続して前記ネックイン部
の高さを規定するための係止面を有する係止型とを備え
ており、かつ超音波振動素子が該リング型および/また
は該中子型に固着されていることを特徴とする缶胴体の
ネックイン加工装置。 4 円筒状の缶胴体の開口端部を絞つて、該缶胴体の主
部より内方に向うテーパ部と該テーパ部に連接する該缶
胴体主部よりも直径の小さいネックイン部を形成する缶
胴体のネックイン加工装置において、該装置は絞り型と
中心型とを備えており、該絞り型は前記缶胴体の外径と
実質的に等しい内径の円筒状内周面を有する保持型と、
該円筒状内周面に接続しかつ前記テーパ部の外周面に対
応するテーパ面と該テーパ面に連接しかつ前記ネックイ
ン部の外径と内径が実質的に等しい円筒状内周面とを有
するリング型とを備えており、該中心型は前記ネックイ
ン部の内径より僅かに小さい外径を有する外周面を有す
る中子型と該外周面の基部に接続して前記ネックイン部
の高さを規定するための係止面を有する係止型とを備え
ており、かつ超音波振動素子が該リング型および/また
は該中子型に固着されており、さらに該装置は該リング
型に加わる荷重を検出する手段と、該手段による検出値
にもとづいて該超音波振動素子を付勢・消勢する手段と
を備えており、実質的に絞りが行なわれている間のみ該
超音波振動素子が付勢されることを特徴とする缶胴体の
ネックイン加工装置。 5 円筒状の缶胴体の開口端部を絞つて、該缶胴体の主
部より内方に向うテーパ部と該テーパ部に連接する該缶
胴体主部よりも直径の小さいネックイン部を形成する缶
胴体のネックイン加工装置において、該装置は絞り型と
中心型とを備えており、該絞り型は前記缶胴体の外径と
実質的に等しい内径の円筒状内周面を有する保持型と、
該円筒状内周面に接続しかつ前記テーパ部の外周面に対
応するテーパ面と該テーパ面に連接しかつ前記ネックイ
ン部の外径と内径が実質的に等しい円筒状内周面とを有
するリング型とを備えており、該中心型は前記ネックイ
ン部の内径より僅かに小さい外径を有する外周面を有す
る中子型と該外周面の基部に接続して前記ネックイン部
の高さを規定するための係止面を有する係止型とを備え
ており、かつ超音波振動素子が該リング型および/また
は該中子型に固着されており、さらに該装置は該リング
型に加わる荷重を検出する手段、該手段による検出値に
もとづいて該超音波振動素子を付勢・消勢する手段、超
音波振動出力を制御する手段ならびに限時装置を備えて
おり、実質的に絞りが行なわれている間のみ超音波振動
素子が付勢され、かつネックイン加工初期のテーパを形
成する絞りの間、比較的高い出力の超音波が該超音波振
動素子にフィードされ、その後該ネックイン部の形成が
終了するまでの間、比較的低い出力の超音波が該超音波
振動素子にフィードされることを特徴とする缶胴体のネ
ックイン加工装置。
[Scope of Claims] 1. The opening end of a cylindrical can body is constricted to form a tapered part facing inward from the main part of the can body and a diameter smaller than the main part of the can body connected to the tapered part. A method for neck-in processing of a can body to form a neck-in portion, the neck of a can body being squeezed while applying ultrasonic vibrations to the tapered portion of the open end and the portion to become the neck-in portion. In-processing method. 2. Squeeze the open end of the cylindrical can body to form a tapered part that goes inward from the main part of the can body and a neck-in part that is smaller in diameter than the main part of the can body and connected to the tapered part. In the neck-in processing method for can bodies, relatively high-output ultrasonic vibrations are applied to the open end during the drawing process to form a taper at the initial stage of the neck-in process, and then ultrasonic vibrations of relatively high power are applied to the opening end until the formation of the neck-in part is completed. A method for neck-in processing of can bodies, which is characterized by applying ultrasonic vibrations of relatively low output during the process. 3. Squeeze the open end of the cylindrical can body to form a tapered part that goes inward from the main part of the can body and a neck-in part that is smaller in diameter than the main part of the can body and connected to the tapered part. A neck-in processing device for a can body includes a drawing die and a center die, and the drawing die includes a holding die having a cylindrical inner circumferential surface having an inner diameter substantially equal to the outer diameter of the can body. ,
a tapered surface connected to the cylindrical inner circumferential surface and corresponding to the outer circumferential surface of the tapered part; and a cylindrical inner circumferential surface connected to the tapered surface and having substantially the same outer diameter and inner diameter of the neck-in part. and a ring mold having a core mold having an outer peripheral surface having an outer diameter slightly smaller than the inner diameter of the neck-in part, and a ring mold having a core mold having an outer peripheral surface having an outer diameter slightly smaller than the inner diameter of the neck-in part. a locking mold having a locking surface for defining the height of the can body, and an ultrasonic vibration element is fixed to the ring mold and/or the core mold. Neck-in processing equipment. 4. Squeeze the open end of the cylindrical can body to form a tapered part that goes inward from the main part of the can body and a neck-in part that is smaller in diameter than the main part of the can body and connected to the tapered part. A neck-in processing device for a can body includes a drawing die and a center die, and the drawing die includes a holding die having a cylindrical inner circumferential surface having an inner diameter substantially equal to the outer diameter of the can body. ,
A tapered surface connected to the cylindrical inner circumferential surface and corresponding to the outer circumferential surface of the tapered portion, and a cylindrical inner circumferential surface connected to the tapered surface and having an outer diameter and an inner diameter substantially equal to the neck-in portion. The center mold is connected to a base of the outer peripheral surface, and the center mold has an outer peripheral surface having an outer diameter slightly smaller than the inner diameter of the neck-in part, and the center mold is connected to the base of the outer peripheral surface and has a height of the neck-in part. a locking mold having a locking surface for defining the ring shape, and an ultrasonic vibration element is fixed to the ring mold and/or the core mold; The ultrasonic vibration element is provided with means for detecting the applied load and means for energizing or deenergizing the ultrasonic vibration element based on the detected value by the means, and the ultrasonic vibration is generated only while the aperture is being substantially performed. A can body neck-in processing device characterized in that an element is energized. 5. Squeeze the open end of the cylindrical can body to form a tapered part that goes inward from the main part of the can body and a neck-in part that is smaller in diameter than the main part of the can body and connected to the tapered part. A neck-in processing device for a can body includes a drawing die and a center die, and the drawing die includes a holding die having a cylindrical inner circumferential surface having an inner diameter substantially equal to the outer diameter of the can body. ,
A tapered surface connected to the cylindrical inner circumferential surface and corresponding to the outer circumferential surface of the tapered portion, and a cylindrical inner circumferential surface connected to the tapered surface and having an outer diameter and an inner diameter substantially equal to the neck-in portion. The center mold is connected to a base of the outer peripheral surface, and the center mold has an outer peripheral surface having an outer diameter slightly smaller than the inner diameter of the neck-in part, and the center mold is connected to the base of the outer peripheral surface and has a height of the neck-in part. a locking mold having a locking surface for defining the ring shape, and an ultrasonic vibration element is fixed to the ring mold and/or the core mold; It is equipped with a means for detecting the applied load, a means for energizing and deenergizing the ultrasonic vibration element based on the detected value by the means, a means for controlling the ultrasonic vibration output, and a timer, so that the aperture is substantially reduced. The ultrasonic vibrating element is energized only while the neck-in process is being performed, and relatively high output ultrasonic waves are fed to the ultrasonic vibrating element during the aperture forming the taper at the initial stage of the neck-in process. A neck-in processing apparatus for a can body, characterized in that relatively low output ultrasonic waves are fed to the ultrasonic vibrating element until the formation of the can body is completed.
JP872380A 1980-01-30 1980-01-30 Can body neck-in processing method and device Expired JPS5913934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP872380A JPS5913934B2 (en) 1980-01-30 1980-01-30 Can body neck-in processing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP872380A JPS5913934B2 (en) 1980-01-30 1980-01-30 Can body neck-in processing method and device

Publications (2)

Publication Number Publication Date
JPS56105838A JPS56105838A (en) 1981-08-22
JPS5913934B2 true JPS5913934B2 (en) 1984-04-02

Family

ID=11700864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP872380A Expired JPS5913934B2 (en) 1980-01-30 1980-01-30 Can body neck-in processing method and device

Country Status (1)

Country Link
JP (1) JPS5913934B2 (en)

Also Published As

Publication number Publication date
JPS56105838A (en) 1981-08-22

Similar Documents

Publication Publication Date Title
CA1280942C (en) Reducing the diameter of tubular bodies
US4411720A (en) Ultrasonic welding method for sealing a thermoplastic cap to the neck of a thermoplastic container
JP2002103056A (en) Method for diffusion bonding of butted projections and welded article
US10906130B2 (en) Method and apparatus for laser assisted power washing
JP2011212700A (en) Rivet joining method
JP3247318B2 (en) Method of forming a preform for internal high pressure molding and preform made by this method
JP2002001469A (en) Method of forming ring member composed of metallic sheet for container cap
JPS5913934B2 (en) Can body neck-in processing method and device
GB2081202A (en) Thin-walled metal tube
JPH05269855A (en) Method and apparatus for ultrasonic welding of rounded, all around extending sealing joint
CA2238057A1 (en) A method and an apparatus using ultrasound for fixedly welding a circular material blank
JPS5985382A (en) Method and device for producing welded can body
CN105666546B (en) A kind of high frequency Hybrid transducer vibration sponge takes strip device and application
US20020195426A1 (en) Bosses and method for fastening same
JPH079169A (en) Method and device for welding metal sheet
US3587285A (en) Method of forming welding studs from sheet-like material
US5626046A (en) Lightweight ram for bodymaker
JPH1024374A (en) Production of joined steel plate having smooth stepped part
JPH08313B2 (en) Manufacturing method of metal cylinder
US1472616A (en) Process of making metallic cans and articles produced
JPH08300144A (en) Welded drum with excellent washability, and method and device for manufacturing the drum
JPH11225890A (en) Metallic vessel and manufacture thereof
US3313906A (en) Welding method
US2281570A (en) Method of making containers
JPH0929370A (en) Forming method for aluminum can body