JPS59139345A - Preparation of diphenyl ether derivative - Google Patents

Preparation of diphenyl ether derivative

Info

Publication number
JPS59139345A
JPS59139345A JP58013919A JP1391983A JPS59139345A JP S59139345 A JPS59139345 A JP S59139345A JP 58013919 A JP58013919 A JP 58013919A JP 1391983 A JP1391983 A JP 1391983A JP S59139345 A JPS59139345 A JP S59139345A
Authority
JP
Japan
Prior art keywords
compound
selectivity
yield
alkali
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58013919A
Other languages
Japanese (ja)
Inventor
Yoshiro Unno
海野 義郎
Kazuyuki Hamada
一行 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58013919A priority Critical patent/JPS59139345A/en
Publication of JPS59139345A publication Critical patent/JPS59139345A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To prepare the titled substance useful as an intermediate of agricultural chemicals, etc. in high yield, by using the easily available 2-nitro-5-halogenoacetophenone and 3-chloro-4-hydroxybenzotrifluoride as the raw materials. CONSTITUTION:The titled compound can be prepared by reacting (A) 3-chloro-4- hydroxybenzotrifluoride with (B) 2-nitro-5-halogenoacetophenone (the halogen is F, Cl or Br) in the presence of an alkali, especially potassium carbonate, in an aprotic polar organic solvent in the presence or absence of catalyst. The charged equivalent ratios of A:B:alkali are preferably 1:(0.7-1.2):(0.8-1.1). The charge concentration of A is preferably 40-400pts.wt. based on 1,000pts.wt. of the solvent. The compound B can be synthesized by the conventional nitration of 3-halogenoacetophenone.

Description

【発明の詳細な説明】 本発明は2−クロロ−4−トリフルオロメチル−3′−
アセチル−4′−ニトロジフェニルエーテル(以下、化
合物Eと略記する)を製造するにあたり、容易に製造で
きる2−ニトロ−5−7jL、オロアセトフェノン(以
下化合物Aと略記する)或は2’−: )ロー5−クロ
ロアセトフェノン(以下化合物Bと略記する)或は2−
ニトロ−5−ブロモアセトフェノン(以下化合物Cと略
記)と、3−クロロ−4−ヒドロキシペンシトリフルオ
ライド(以下化合物りと略記)とを用い、高収率又は高
選択率で化合物Eを得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides 2-chloro-4-trifluoromethyl-3'-
In producing acetyl-4'-nitrodiphenyl ether (hereinafter abbreviated as compound E), easily produced 2-nitro-5-7jL, oloacetophenone (hereinafter abbreviated as compound A) or 2'-: ) rho-5-chloroacetophenone (hereinafter abbreviated as compound B) or 2-
Regarding a method for obtaining compound E in high yield or high selectivity using nitro-5-bromoacetophenone (hereinafter abbreviated as compound C) and 3-chloro-4-hydroxypencitrifluoride (hereinafter abbreviated as compound ri). .

前記化合物Eは農薬等の中間原料として有用な物質であ
る。従来の化合物Eの合成法としては、メタヒドロキシ
アセトフェノンと3,4−ジクロロベンゾトリプルオラ
イドとをアルカリの存在下非プロトン性極性溶媒中で反
応させて2−クロロ−4−トリフルオロメチル−3′−
アセチルジフェニルエーテル(以下化合物Fと略記)を
合成し、これをニトロ化して化合物Eを得る方法(例え
ば米国特許第4263227号参照)があるが、この方
法では化合物Eの収率は約60%にとどまシ、又ニトロ
化工程に於ては化合物E以外にニトロ化位置異性体が3
0〜40%副生ずる為に収率は約60%が上限となシ、
従って通算収率は40%以下にとどまっているという問
題があった。加うるに化合物Eとニトロ化位置異性体と
の工業的な分離操作の実施には、多大な困難さとコスト
を件なうという問題がある。従って化合物Fを経由した
後にニトロ化して化合物Eを得るルートは、たとえ化合
物Fの合成収率を向上させることができても、ニトロ化
に伴う副生物分離の困難さから工業的に有利な方法とは
言えない。
The compound E is a substance useful as an intermediate raw material for agricultural chemicals and the like. A conventional method for synthesizing compound E is to react metahydroxyacetophenone and 3,4-dichlorobenzotrioleide in an aprotic polar solvent in the presence of an alkali to produce 2-chloro-4-trifluoromethyl-3. ′−
There is a method of synthesizing acetyldiphenyl ether (hereinafter abbreviated as compound F) and nitrating it to obtain compound E (see, for example, US Pat. No. 4,263,227), but with this method, the yield of compound E is only about 60%. Also, in the nitration step, there are 3 nitrated regioisomers in addition to compound E.
Since 0 to 40% of by-products are produced, the upper limit of the yield is about 60%.
Therefore, there was a problem in that the total yield remained below 40%. In addition, there is a problem in that it is extremely difficult and costly to carry out an industrial separation operation between compound E and the nitrated positional isomer. Therefore, the route to obtain compound E by nitration after passing through compound F is not an industrially advantageous method due to the difficulty of separating by-products accompanying nitration, even if the synthesis yield of compound F can be improved. It can not be said.

そこで本発明者らは化合物Fを経由する場合の大量のニ
トロ化位置異性体の分離の困難さを回避し、高収率又は
高選択率で化合物Et−得る方法を見い出すべく釧意努
力した結果、2−ニトロ−5−へロケ9ノアセトフェノ
ン(ハロダンは弗i、 塩素又は臭素)と化合物りとを
アルカリ存在下に非プロトン性極性有機溶媒中で反応さ
せてEを製造する方法を見い出し、本発明を完成させる
に至った。
Therefore, the present inventors made a concerted effort to avoid the difficulty of separating a large amount of nitrated positional isomers when passing through compound F, and to find a method for obtaining compound Et- with high yield or high selectivity. , discovered a method for producing E by reacting 2-nitro-5-haloke9noacetophenone (halodan is fluoride, chlorine or bromine) and a compound RI in an aprotic polar organic solvent in the presence of an alkali, The present invention has now been completed.

本発明に用いられる原料の2−ニトロ−5−一・ログノ
アセトフェノンは3−ハロダンアセトフェノンから常法
のニトロ化により容易かつ高収率で得ることができる。
The raw material 2-nitro-5-1-lognoacetophenone used in the present invention can be easily obtained in high yield from 3-halodaneacetophenone by nitration using a conventional method.

父本法によれば反応後の液中には化合物Eの他に未反応
の化合物りのアルカリ塩、未反応のA、B又はC1それ
に未確認副生物が存在するが、化合物Fを経由する場合
のような化合物Eのニトロ化位置異性体は存在しないの
で、化合物Eの即離及び化合物A、B又はCの回収及び
化合物りの回収は従来法に比してはるかに容易でおる。
According to the parent method, in addition to compound E, there are unreacted alkali salts of compounds, unreacted A, B, or C1, and unidentified by-products in the solution after the reaction, but if compound F is used, Since there are no nitrated positional isomers of compound E, the immediate release of compound E and recovery of compounds A, B or C and recovery of compound R are much easier than in conventional methods.

従って本発明に従えば従来法に比べて最も安価にかつ容
易に化合物Eを製造することができる。
Therefore, according to the present invention, Compound E can be produced most inexpensively and easily compared to conventional methods.

本発明に於ては、アルカリとして炭酸カリウム又は水酸
化カリウムが好ましく、特に好ましくは炭酸カリウムで
ある。又これらのアルカリは予め良く粉砕しておくこと
が望ましい。これらのアルカリは溶媒中に室温で添加し
、化合物りと室温で30分以上攪拌反応させてから化合
物A、B又はCを添加し、所定反応温度に昇温するのが
望ましい。所定反応温度にて化合物ASB又はCと化合
物りとの混合溶液中にアルカリを添加する方法は、化合
物A、B又はCの選択率を低下させることがあり好まし
くない。アルカリの所要量は化合物りに対し当量前後か
やや少なめ、即ち好ましくは0.8〜1.1当量比、更
に好ましくは0.9〜1.0当量比に調節する。アルカ
リを化合物りよりも過剰に用いると、化合物りの選択率
のみならず化合物A、B又はCの選択率をも低下させる
ので好ましくない。化合物A、B又はCは化合物りに対
しΦ÷モルの仕込で充分であり、過剰にあれば選択率の
低下につながる。従って化合物り対化合物A(又はBも
しくはC)対アルカリの仕込当量比は1:0.7〜1.
2:0.8〜1.1が適当である。
In the present invention, potassium carbonate or potassium hydroxide is preferred as the alkali, and potassium carbonate is particularly preferred. It is also desirable that these alkalis be thoroughly ground in advance. It is preferable that these alkalis be added to the solvent at room temperature, reacted with the compound at room temperature with stirring for 30 minutes or more, then add compound A, B or C, and raise the temperature to a predetermined reaction temperature. The method of adding an alkali to a mixed solution of compound ASB or C and compound R at a predetermined reaction temperature is not preferred because it may reduce the selectivity of compound A, B or C. The required amount of alkali is adjusted to about the equivalent amount or slightly less than the amount of the compound, ie, preferably 0.8 to 1.1 equivalent ratio, more preferably 0.9 to 1.0 equivalent ratio. If the alkali is used in excess of the compound, not only the selectivity of the compound but also the selectivity of the compounds A, B or C is undesirably reduced. It is sufficient to charge Compound A, B, or C in the amount of Φ÷mol relative to the compound, and if it is in excess, the selectivity will decrease. Therefore, the charging equivalent ratio of compound to compound A (or B or C) to alkali is 1:0.7 to 1.
2:0.8-1.1 is suitable.

尚アルカリの添加の代りに予め化合物りをアルカIJ 
mとし、これと化合物A、B又はCとを触媒の存在下又
は非存在下に非プロトン性極性有機溶媒中で反応させて
も何ら問題はないが操作が繁雑となる。
In addition, instead of adding alkali, add the compound in advance to alkali IJ.
m, and reacting this with compound A, B, or C in an aprotic polar organic solvent in the presence or absence of a catalyst causes no problem, but the operation becomes complicated.

化合物りの仕込濃度は溶媒1000重量部に対し40〜
400重量部が好′ましく、400部を超えても転化率
、収率の向上は望めず選択率はやや低下する。又40部
未満では収率が低く選択率の向上も見られないので不経
済である。
The concentration of the compound is 40 to 1000 parts by weight of the solvent.
The amount is preferably 400 parts by weight, and even if it exceeds 400 parts, no improvement in conversion or yield can be expected and the selectivity will decrease slightly. Further, if it is less than 40 parts, the yield is low and no improvement in selectivity is observed, which is uneconomical.

化合物へと用いる場合、溶媒はジメチルスルホキシド(
以下DMSOと略記)、ジメチルアセトアミド、ジメチ
ルホルアミド、ヘキサメチルリン酸トリアミド(以下H
MPA と略記)を用いるのが好ましく、反応温度は3
0℃から90℃が好ましい。
When used in compounds, the solvent is dimethyl sulfoxide (
(hereinafter abbreviated as DMSO), dimethylacetamide, dimethylforamide, hexamethylphosphoric triamide (hereinafter referred to as H
It is preferable to use MPA (abbreviated as MPA), and the reaction temperature is 3.
Preferably the temperature is from 0°C to 90°C.

30℃未満では反応時間が過大となり、又反応速度が充
分大な為90℃を超える必要はない。逆に110℃以上
であれば収率が低下傾向となる。
If it is less than 30°C, the reaction time will be too long, and since the reaction rate is sufficiently high, it is not necessary to exceed 90°C. Conversely, if the temperature is 110°C or higher, the yield tends to decrease.

一方、化合物B又はCを用いる場合はAと比べ反応性が
低いので以下に述べる反応条件が好ましい。即ち溶媒は
HMPA 、 DMSO又はその混合溶媒が最も好まし
く、ジメチルアセトアミド、ジメチルホルムアミド、N
−メチルビロリドy等、上記以外の溶媒では収率が劣る
。溶媒中の水分濃度はなるべく低いのが望ましい。反応
温度域の設定は化合物B又はCの転化率を調節するのに
重要であり、60〜140℃、好ましくは80〜130
℃に保つべきである。60℃未満であれば高収率を得よ
うとして長時間反応させても化合物B又はCの選択率が
低下する。逆に140℃を越える場合には、反応時間を
短くしても化合物B又はCの選択率は低い。
On the other hand, when using compound B or C, the reaction conditions described below are preferable since the reactivity is lower than that of compound A. That is, the solvent is most preferably HMPA, DMSO or a mixed solvent thereof, and dimethylacetamide, dimethylformamide, N
- Solvents other than those mentioned above, such as methyl birolide y, result in poor yields. It is desirable that the water concentration in the solvent is as low as possible. Setting the reaction temperature range is important for controlling the conversion rate of compound B or C, and is 60 to 140°C, preferably 80 to 130°C.
Should be kept at ℃. If the temperature is lower than 60°C, the selectivity of compound B or C will decrease even if the reaction is carried out for a long time in an attempt to obtain a high yield. On the other hand, if the temperature exceeds 140°C, the selectivity for compound B or C will be low even if the reaction time is shortened.

反応時間は化合物B又はCの選択率を低下させない限り
長時間でも良いが、経済的な観点から0.5〜6時間時
間表なる。反応温度と反応時間の関係は特に好ましくは
80〜110℃かつ1〜3時間である。
The reaction time may be long as long as it does not reduce the selectivity of Compound B or C, but from an economical point of view it is typically 0.5 to 6 hours. The relationship between reaction temperature and reaction time is particularly preferably 80 to 110°C and 1 to 3 hours.

炭酸カルシウムを触媒として添加することは、化合物B
又はC及び化合物りの選択率を向上させ、化合物Eの収
率を向上させるので有効である。この場合炭酸カルシウ
ムは化合物りの100重量部に対し5〜50重歌部添加
するのが好ましい。尚、炭酸カリウムのようなアルカリ
を添加せず、代りに炭酸カルシウムのみを化合物りに対
し肖量加えても反応は進行しない。
Adding calcium carbonate as a catalyst can reduce compound B
Alternatively, it is effective because it improves the selectivity of C and compound E and improves the yield of compound E. In this case, calcium carbonate is preferably added in an amount of 5 to 50 parts by weight per 100 parts by weight of the compound. Note that even if an alkali such as potassium carbonate is not added, and instead only calcium carbonate is added in a proportion to the compound, the reaction does not proceed.

反応器内の9間は、原料、生成物及び溶媒の変質を防ぐ
意味で9素のような不活性ガスによる置換及び遮光が望
ましい。
In order to prevent deterioration of raw materials, products, and solvents, it is desirable to replace the space in the reactor with an inert gas such as 9-element gas and to shield it from light.

以上のように充分厳密に制御された条件を選ぶことによ
り、HMPA溶媒では化合物B又はCの転化率65〜7
0%、化合物Eの収率に対するB又はCの選択率60〜
70%、又DMSO溶媒では化合物B又はCの転化率4
0〜50%、化合物Eの収率に対するB又はCの選択率
60〜70%で化合物Eを製造できる。これより少しで
も外れた条件を選ぶと、例えば化合物Bを原料とじHM
P A溶媒中150℃の反応温度を採用すると、反応時
間を30分に短かくしても化合物Eの収率は25%にと
どまり、一方化合物Bの転化率は97%、化合物りの転
化率は92%に達しているので、化合物Eの収率に対す
る化合物Bの選択率は26%、化合物Eの収率に対する
化合物りの選択率は27%にまで低下してしまい、工業
的に不利な製造方法となる。
By selecting sufficiently strictly controlled conditions as described above, the conversion rate of compound B or C was 65 to 7 in HMPA solvent.
0%, selectivity of B or C to yield of compound E 60~
70%, and in DMSO solvent the conversion of compound B or C is 4
Compound E can be produced with a selectivity of B or C of 0 to 50% and a selectivity of B or C relative to the yield of Compound E of 60 to 70%. If you choose conditions that deviate even slightly from this, for example, if compound B is combined as a raw material, HM
When a reaction temperature of 150 °C in P A solvent is adopted, the yield of compound E is only 25% even if the reaction time is shortened to 30 minutes, while the conversion of compound B is 97% and the conversion of compound R is 92%. %, the selectivity of compound B with respect to the yield of compound E decreases to 26%, and the selectivity of compound B with respect to the yield of compound E decreases to 27%, making it an industrially disadvantageous production method. becomes.

以下に本発明を実施例、参考例及び比較例によって更に
詳しく説明する・ 参考例1 11のフラスコにm−クロルアセトフェノン51、O,
P (0,33モル)を入れ、−10〜−15℃で激し
く攪拌しつつ濃硫酸200ノを滴下しくオレンジ色透明
粘稠液となる)、続いて混酸(70%硝酸46.6)+
?必硫酸313y−)を−5〜−10℃に保ちながら約
20分間にわたって滴下した。滴下終了後、更に5分間
攪拌を続け、砕いた氷上にあけた。生じた固体を炉別水
洗後、ジクロルメタンで抽出し、水洗後ソクロルメタン
N’lc分離乾煙し、エバポレーターでジクロルメタン
を留去して粗2−ニトロー5−クロロアセトフェノン6
5.5ノ(淡黄色固体純度90%)を得た。
The present invention will be explained in more detail with reference to Examples, Reference Examples, and Comparative Examples.Reference Example 1 Into a flask of 11, m-chloroacetophenone 51, O,
Add P (0.33 mol) and dropwise add 200 g of concentrated sulfuric acid while stirring vigorously at -10 to -15°C to become an orange transparent viscous liquid), followed by a mixed acid (70% nitric acid 46.6 mm) +
? Essential sulfuric acid (313y-) was added dropwise over about 20 minutes while maintaining the temperature at -5 to -10°C. After the dropwise addition was completed, stirring was continued for an additional 5 minutes, and the mixture was poured onto crushed ice. The resulting solid was washed with water in a separate furnace, extracted with dichloromethane, washed with water, separated with sochloromethane N'lc, dried and smoked, and dichloromethane was distilled off using an evaporator to obtain crude 2-nitro-5-chloroacetophenone 6.
5.5 pieces (pale yellow solid purity 90%) were obtained.

これをエタノール−n−ヘキサンにて再結晶精製し、淡
黄色針状結晶(純度98%以上、融点60℃)を得た。
This was recrystallized and purified using ethanol-n-hexane to obtain pale yellow needle crystals (purity 98% or higher, melting point 60°C).

定量分析は高速液体クロマトグラフィー(カラムはウォ
ーターズ社マイクローーンダノ9ツク自8であシ、展開
液はメタノール」−水(75+25 ) )を用いた。
Quantitative analysis was carried out using high performance liquid chromatography (the column was a Waters Micron Dano 9-8, the developing solution was methanol-water (75+25)).

実施例1 200m/ガラス製フラスコにIIMPA 103 、
Pを入れ、化合物D 9.8P(50ミIJモル)と粉
末状の炭酸カリウム3.45f(25ミリモル)を加え
て窒素シール下室温にて一夜攪拌した。これに化合物B
10.0ノ(50ミリモル)を加えた後、攪拌しながら
約15分かけて100℃に昇温し、100℃に保ちなが
ら2時間攪拌を続けた。
Example 1 IIMPA 103 in a 200 m/glass flask,
9.8 P (50 mmol) of Compound D and 3.45 f (25 mmol) of powdered potassium carbonate were added, and the mixture was stirred overnight at room temperature under a nitrogen blanket. Compound B
After adding 10.0 mmol (50 mmol), the temperature was raised to 100°C over about 15 minutes while stirring, and stirring was continued for 2 hours while maintaining the temperature at 100°C.

その後水バスにより室温まで冷却後、予めアセトニトリ
ル約500m/と水約3001nl!とを入れた11ビ
ーカー中にフラスコ内容物をあけた。これに攪拌しつつ
2規定塩酸を滴下して液を酸性(PH試験紙にてPH;
2〜3)とし、更にアセトニトリルを加えて全量を1ノ
とし、高速液体クロマトグラフィー(以下HLCと略記
する。カラムはウォーターズ社マイクロ?ンダパックC
!8)によシ定量し、化合物B3.3I?、化合物D 
5.3 ? s化合物E7.9y−なる結果を得た。こ
れは収率44%、化合物Bの転化率67%(選択率66
%)、化合物りの転化率46%(選択率96%)に和尚
する。
After that, after cooling to room temperature in a water bath, use approximately 500 m of acetonitrile and approximately 3001 nl of water! The contents of the flask were poured into a 11 beaker containing . 2N hydrochloric acid was added dropwise to this while stirring to make the solution acidic (pH measured with PH test paper;
2 to 3), and further added acetonitrile to bring the total volume to 1, followed by high performance liquid chromatography (hereinafter abbreviated as HLC).The column was Waters' Micro Nanda Pack C.
! 8) Quantified compound B3.3I? , compound D
5.3? s Compound E7.9y- was obtained. This means a yield of 44% and a conversion rate of compound B of 67% (selectivity of 66%).
%), the conversion rate of the compound was 46% (selectivity 96%).

この11溶液にトルエン500WLlを加えエバポレー
ターでアセトニトリルを留去シタ。アセトニトリル留去
後の釜残はトルエンと水の二層になっていたが、このう
ちトルエン層を分取し、水500rniに1規定水酸化
ナトリウム60m1を加えたアルカリ水溶液と良く振り
まぜた。静置後トルエン層を分取し、溶媒を留去後減圧
蒸留にて化合物B3.0/−、釜残よシ化合物E7.3
ノを得た。HLCによる分析値に対する回収率は各々9
1%、92%に相当する。アセトニトリル留去後の釜残
の水層及びトルエン抽残の水層を合わせ、トルエンを加
えた後2規定塩酸を滴下して水相の−1を2〜3に調節
した。トルエン相を分取し、溶媒を留去後瀦圧蒸留にて
化合物D4.7y−を得た。これは)ILCによる分析
値に対し回収率89%に相当する。
Add 500 WL of toluene to this 11 solution and distill off the acetonitrile using an evaporator. After distilling off the acetonitrile, the residue from the pot consisted of two layers of toluene and water, of which the toluene layer was separated and thoroughly mixed with an alkaline aqueous solution prepared by adding 60 ml of 1N sodium hydroxide to 500 rni of water. After standing still, separate the toluene layer, distill off the solvent, and distill under reduced pressure to obtain compound B3.0/- and compound E7.3 as residue.
I got no. The recovery rate for each HLC analysis value was 9.
1%, equivalent to 92%. The aqueous layer of the residue after acetonitrile distillation and the aqueous layer of the toluene raffinate were combined, toluene was added thereto, and 2N hydrochloric acid was added dropwise to adjust the -1 of the aqueous phase to 2 to 3. The toluene phase was separated, the solvent was distilled off, and compound D4.7y- was obtained by distillation under reduced pressure. This corresponds to a recovery rate of 89% based on the value analyzed by ILC.

以下余白 実施例 2 HMPA 51 、!;’ 、粉末状炭酸カリウム3.
45℃化合物B10.Og及び化合物D9.8pを実施
例1と同様にフラスコに仕込み、約25分かけて130
℃に昇温し、130℃に保ちながら1時間攪拌を続けた
。その後実施例1と同様に後処理し、HLCにて定量し
て化合物E 8.8 g、化合物B2.4g及び化合物
D3.2gなる結果を得た。これは収率49%、化合物
Bの転化率76%(選択率640、化合物りの転化率6
7%(選択率73チ)に相当する。
The following is a margin example 2 HMPA 51,! ;', Powdered potassium carbonate3.
45°C Compound B10. Og and Compound D9.8p were charged into a flask in the same manner as in Example 1, and the mixture was heated to 130% over about 25 minutes.
The temperature was raised to 130°C, and stirring was continued for 1 hour while maintaining the temperature at 130°C. Thereafter, it was post-treated in the same manner as in Example 1, and quantified by HLC to obtain 8.8 g of Compound E, 2.4 g of Compound B, and 3.2 g of Compound D. This yield is 49%, conversion rate of compound B is 76% (selectivity is 640, conversion rate of compound B is 640%, and conversion rate of compound B is 640%.
This corresponds to 7% (selection rate 73ch).

比較例 1 反応温度と反応時間を変えた以外は実施例1と同様な操
作を行ない、HLCによる定量の結果、下表の値を得た
Comparative Example 1 The same operation as in Example 1 was performed except that the reaction temperature and reaction time were changed, and as a result of quantitative determination by HLC, the values shown in the table below were obtained.

比較例 2 炭酸カリウム量を変えた以外は実施例1と同様な操作を
行ない、HLCKよる定量の結果、下表の値を得た。
Comparative Example 2 The same operation as in Example 1 was carried out except that the amount of potassium carbonate was changed, and as a result of quantitative determination by HLCK, the values shown in the table below were obtained.

実施例 3 HMPA30,9に化合物D5.90130ミリモル)
と粉末炭酸カリウム2.079(15ミリモル)とを加
えて弯素シール下室温にて1時間撰、拌稜、化合物C7
,32g(30ミリモル)を加え、約15分かけて75
℃姉昇濡した。75℃で6時間攪拌を続けた後、室温に
冷却し、1!メスフラスコに内容物を移した。水層20
0Mを加えた後、6規定塩酸IQalを添加し、アセト
ニトリルで全量を11とし穴。この溶液をHLCにて定
量し、化合物Eの収率36チ、化合物Cの転化率46%
(選択率78%)及び化合物りの転化率32チ(選択率
89チ)なる結果を得た。
Example 3 Compound D 5.90130 mmol in HMPA30.9)
and 2.079 (15 mmol) of powdered potassium carbonate were added, and the mixture was heated under a fluorine seal at room temperature for 1 hour.
, 32 g (30 mmol) and 75 min.
℃ sister got wet. After continuing stirring at 75°C for 6 hours, it was cooled to room temperature and 1! The contents were transferred to a volumetric flask. water layer 20
After adding 0M, add 6N hydrochloric acid IQal and bring the total volume to 11 with acetonitrile. This solution was quantified by HLC, and the yield of compound E was 36%, and the conversion rate of compound C was 46%.
(Selectivity: 78%) and conversion rate of compound RI: 32% (Selectivity: 89%).

実施例 4 約20分かけて100tl:に昇温後、1oot:にて
2時間撹拌を続けた以外は実施例3と同様の操作を行な
い、収率52チ、化合物Cの転化率77%(選択率68
%)、化合物りの転化率60%(選択率86チ)なる結
果を得た。
Example 4 The same operation as in Example 3 was carried out except that the temperature was raised to 100 tl over about 20 minutes and stirring was continued for 2 hours at 1 oot. Selection rate 68
%), and the conversion rate of the compound was 60% (selectivity 86%).

実施例 5 LOOwlW9y、環フラスコにDMSO55、!i’
を入れ、粉末状の炭酸カリウム3.45.9(25ミリ
モル)と粉末状の炭酸カルシウム0.50g(5ミリモ
ル)と化合物1) 9.89 (50ミリモル)とを加
え窒素シール下室心にて1時間攪拌した。これに化合物
B10.0.!17(50ミ!jモル)を加えた後、攪
拌しながら約15分かけて100℃に昇温し、100℃
に保ちながら2時間攪拌を続けた。その後水バスによシ
室温に冷却し、予めアセトニトリル約500dと水30
01とを入れた11ビーカー中にフラスコ内容物を投入
した。
Example 5 LOOwlW9y, DMSO55 in ring flask,! i'
3.45.9 (25 mmol) of powdered potassium carbonate, 0.50 g (5 mmol) of powdered calcium carbonate, and 9.89 (50 mmol) of compound 1) were added to the chamber under a nitrogen seal. The mixture was stirred for 1 hour. This was compounded by compound B10.0. ! After adding 17 (50 mmol), the temperature was raised to 100°C over about 15 minutes while stirring, and the temperature was increased to 100°C.
Stirring was continued for 2 hours while maintaining the temperature. After that, cool it to room temperature in a water bath, and add about 500 d of acetonitrile and 30 d of water in advance.
The contents of the flask were poured into a beaker containing 0.01 and 0.01.

攪拌しつつ2規定塩酸を滴下して液を酸性(pH試験紙
でpH=2〜3)とし、更にアセトニトリルを加えて全
量を11とした。HLCにて定量の結果、化合物Eの収
出29%、化合物Bの転化率45%(選択率64チ)、
化合物りの転化率56%(選択率52%)なる結果を得
た。
While stirring, 2N hydrochloric acid was added dropwise to make the solution acidic (pH = 2 to 3 using pH test paper), and acetonitrile was further added to bring the total amount to 11. As a result of quantitative determination by HLC, the yield of compound E was 29%, the conversion rate of compound B was 45% (selectivity 64%),
A conversion rate of 56% (selectivity 52%) of the compound was obtained.

比較例 3 化合物B又はCを用い、反応温度と反応時間を変え穴以
外は実施例5と同様な操作を行ないHLCにて定量した
結果、下表の値を得た。
Comparative Example 3 Compound B or C was used, the reaction temperature and reaction time were changed, and the same operation as in Example 5 was carried out except for the hole. As a result of quantitative determination by HLC, the values shown in the table below were obtained.

比較例 4 炭酸カリウム及び炭酸カルシウム量を変えた以外は実施
例5と同様の操作を行ない、HLCにて定量の結果下表
の値を得た。
Comparative Example 4 The same operation as in Example 5 was performed except that the amounts of potassium carbonate and calcium carbonate were changed, and the values shown in the table below were obtained as a result of quantitative determination by HLC.

以下余白 比較例 5 HMPAの代シにジメチルホルムアミドを溶媒として用
いた以外は実施例3と同様の操作を行々い、化合物Eの
収率23チ、化合物Cの転化率81%(選択率28%)
、化合物りの転化率36チ(選択率64%)なる個を得
た。
Comparative Example 5 The same operation as in Example 3 was performed except that dimethylformamide was used as a solvent instead of HMPA, and the yield of compound E was 23%, and the conversion rate of compound C was 81% (selectivity 28%). %)
A conversion rate of 36% (selectivity 64%) of the compound was obtained.

実施例 6 200dガラス製フラスコにDMS055 gを入れ、
化合物D9.80g(50ミ’7モル)と粉末状の炭酸
カリウム3.45g(25ミリモル)を加えて窒素シー
ル下室温にて1時間攪拌した。これに化合物A9.15
g(50ミ11モル)を加えた後、攪拌しながら約10
分かけて70℃に昇温し、70℃に保ちながら3時間攪
拌を続けた。
Example 6 Put 055 g of DMS into a 200d glass flask,
9.80 g (50 mmol) of Compound D and 3.45 g (25 mmol) of powdered potassium carbonate were added, and the mixture was stirred at room temperature for 1 hour under a nitrogen blanket. To this compound A9.15
After adding about 10 g (50 mm 11 mol) of
The temperature was raised to 70°C over several minutes, and stirring was continued for 3 hours while maintaining the temperature at 70°C.

その抜水パスによシ室温まで冷却後、予めアセトニトリ
ル約500Ktと水層300ゴとを入れた11ビーカー
中にフラスコ内容物をあけた。これに、攪拌しつつ2規
定塩酸を滴下して液を酸性(pH試験紙にてpH2〜3
)とし、更にアセトニトリルを加えて全景を11とし、
HLCによシ定量したところ、化合物A0.18g、化
合物DO,39g、化合物E16.5.!i’なる結果
を得た。これは収率92%、化合物Aの転化率98%、
Dの転化率96%に相当する。
After cooling to room temperature through the drainage path, the contents of the flask were poured into a beaker No. 11 containing about 500 Kt of acetonitrile and 300 Kt of aqueous layer in advance. To this, 2N hydrochloric acid was added dropwise while stirring to make the solution acidic (pH 2 to 3 using pH test paper).
), and then add acetonitrile to make the overall view 11,
As a result of quantitative determination by HLC, Compound A: 0.18 g, Compound DO: 39 g, Compound E: 16.5 g. ! I got the result i'. This is a yield of 92%, a conversion rate of compound A of 98%,
This corresponds to a conversion rate of D of 96%.

特許出願人 旭化成工業株式会社 特許出願代理人 弁理士 青 木    朗 弁理士 西 舘 和 之 弁理士 石 1)   敬 弁理士 山 口 昭 之patent applicant Asahi Kasei Industries, Ltd. patent application agent Patent attorney Akira Aoki Patent attorney Kazuyuki Nishidate Patent Attorney Ishi 1) Takashi Patent attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 1.3−クロロ−4−ヒドロキシペンシトリフルオライ
ドと2−ニトロ−5−710グツアセトフエノン(ハロ
ゲン原子は弗素、塩素又は臭素原子を表わす)とをアル
カリ存在下に、触媒の存在下又は非存在下、非プロトン
性極性有機溶媒中で反応させることを特徴とする2−ク
ロロ−4−トリフルオロメチル−3′−アセチル−4′
−ニトロジフェニルエーテルの製法。
1.3-Chloro-4-hydroxypencitrifluoride and 2-nitro-5-710gutacetophenone (halogen atom represents fluorine, chlorine or bromine atom) are mixed in the presence of an alkali in the presence or absence of a catalyst. 2-chloro-4-trifluoromethyl-3'-acetyl-4', characterized in that the reaction is carried out in an aprotic polar organic solvent in the presence of
-Production method of nitrodiphenyl ether.
JP58013919A 1983-01-31 1983-01-31 Preparation of diphenyl ether derivative Pending JPS59139345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58013919A JPS59139345A (en) 1983-01-31 1983-01-31 Preparation of diphenyl ether derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58013919A JPS59139345A (en) 1983-01-31 1983-01-31 Preparation of diphenyl ether derivative

Publications (1)

Publication Number Publication Date
JPS59139345A true JPS59139345A (en) 1984-08-10

Family

ID=11846575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58013919A Pending JPS59139345A (en) 1983-01-31 1983-01-31 Preparation of diphenyl ether derivative

Country Status (1)

Country Link
JP (1) JPS59139345A (en)

Similar Documents

Publication Publication Date Title
JP4275748B2 (en) Process for producing ethyl-N- (2,3-dichloro-6-nitrobenzyl) glycine
JP4838924B2 (en) Process for producing 2-chloro-5-chloromethylthiazole
KR940008916B1 (en) Process for the preparation of alkyl esters of tetrachloro 2-cyano benzoic acid
US3813446A (en) Production of trifluoromethylnitrophenols and related compounds
US5478963A (en) 2,3-difluoro-6-nitrobenzonitrile and 2-chloro-5,6-difluorobenzonitrile-(2,3-difluoro-6-chlorobenzonitrile), process for their preparation and their use for the preparation of 2,3,6-trifluorobenzoic acid
KR890001806B1 (en) Process for recovering and purifying herbicidal phenoxybenzoic acid derivatives
JPS59139345A (en) Preparation of diphenyl ether derivative
JP4653968B2 (en) Inorganic iodide recovery method
EP0433124A1 (en) 2,4-Dichloro-5-fluorobenzonitrile and methods for its preparation, its use in the preparation of 2-chloro-4,5-difluorobenzoic acid and new method of preparation of this acid
JPH07300445A (en) Preparation of 4-halo-2'-nitrobutyrophenone compound
JP2574667B2 (en) Novel fluorinated o-diaminobenzo-1,4-dioxene
US4658034A (en) Process for the preparation of 2,6-dichlorobenzoxazole
US2734084A (en) Synthesis of l-halo-z
JP4474921B2 (en) Method for producing 2,5-bis (trifluoromethyl) nitrobenzene
JPH0223535B2 (en)
US5569776A (en) Process for the preparation of 4-fluoroalkoxycinnamonitriles
JPS62198637A (en) Manufacture of 1, 1, 3-trichloroacetone
FR2602766A1 (en) DICHLOROTRIFLUOROMETHYLNITROTOLUENE COMPOUNDS AND PROCESS FOR THE PREPARATION OF AMINOTRIFLUOROMETHYLTOLUENES THEREFROM
JP4258695B2 (en) O- (perfluoroalkyl) dibenzofuranium salt derivative, production intermediate thereof, production method of the production intermediate, perfluoroalkylating agent, and perfluoroalkylation method
JP4258658B2 (en) Method for producing acetylene compound
JPH09143139A (en) Production of cyanofluorophenol
JP3261474B2 (en) Method for producing 2-chloro-4,5-difluorobenzoic acid
JP4318755B2 (en) Purification method of substituted p-nitrodiphenyl ethers
US3143576A (en) Process for making tetrabromohydroquinone
JPS62114939A (en) Production of fluorobenzene derivative