JP4653968B2 - Inorganic iodide recovery method - Google Patents

Inorganic iodide recovery method Download PDF

Info

Publication number
JP4653968B2
JP4653968B2 JP2004133544A JP2004133544A JP4653968B2 JP 4653968 B2 JP4653968 B2 JP 4653968B2 JP 2004133544 A JP2004133544 A JP 2004133544A JP 2004133544 A JP2004133544 A JP 2004133544A JP 4653968 B2 JP4653968 B2 JP 4653968B2
Authority
JP
Japan
Prior art keywords
iodide
ether
glycol
inorganic
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004133544A
Other languages
Japanese (ja)
Other versions
JP2005314158A (en
Inventor
哲 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Finechemicals Co Ltd
Original Assignee
Fujifilm Finechemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Finechemicals Co Ltd filed Critical Fujifilm Finechemicals Co Ltd
Priority to JP2004133544A priority Critical patent/JP4653968B2/en
Priority to CNB2005100670752A priority patent/CN100509616C/en
Publication of JP2005314158A publication Critical patent/JP2005314158A/en
Application granted granted Critical
Publication of JP4653968B2 publication Critical patent/JP4653968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、無機ヨウ化物の回収方法に関するものであり、詳しくは、無機ヨウ化物を含んだ反応廃棄物の混合無機塩水溶液から無機ヨウ化物を選択的に単離回収する方法に関する。また本発明は、脱ヨウ素イオン反応の基質であるヨウ素化化合物の製造に、この回収された無機ヨウ化物を再利用する方法に関する。   The present invention relates to a method for recovering inorganic iodide, and more particularly, to a method for selectively isolating and recovering inorganic iodide from a mixed inorganic salt aqueous solution of a reaction waste containing inorganic iodide. The present invention also relates to a method of reusing the recovered inorganic iodide in the production of an iodinated compound that is a substrate for deiodination ion reaction.

ヨウ素および無機ヨウ化物は化学合成分野において重要な触媒又は出発原料として使用されている。例えばヨウ素化化合物は電子写真や有機エレクトロルミネッセンス素子等の有機感光体や染料、農薬、医薬品等の中間体として利用されており、そのヨウ素化化合物の製造にはヨウ素や無機ヨウ化物が用いられている。
ただしヨウ素は産地が偏在する貴重な天然資源であり、かつ高価であるため、工業的には低コスト化のためにヨウ素源の回収と再利用が強く望まれている。一般にヨウ素化化合物を原料とした反応では脱ヨウ素イオンを伴うため副生物として無機ヨウ化物が得られる。この無機ヨウ化物を含む反応廃棄物からヨウ素を回収する方法としては無機ヨウ化物を含む水溶液に塩素を吹き込み析出したヨウ素を回収する方法や過酸化水素による酸化で析出したヨウ素を回収する方法などが知られている(非特許文献1)。
しかし廃棄物として得られる無機ヨウ化物には炭酸塩、燐酸塩、水酸化物など多くの無機不純物が高濃度で含まれている場合が多く、回収操作を行うにはこれら無機塩を除く前処理が必要となる。従来の前処理方法にはイオン交換樹脂を用いる方法(特許文献1)が挙げられるが、この方法を行うには特殊設備が必要とされる。同様にヨウ素の回収工程においても例えば毒性の強い塩素を使用する場合には過剰塩素の処理装置などの付帯設備が必要とされる。これらのことから、特殊設備を必要としない、より簡便なヨウ素源の回収技術の確立が求められていた。
Iodine and inorganic iodides are used as important catalysts or starting materials in the field of chemical synthesis. For example, iodinated compounds are used as intermediates for organic photoreceptors such as electrophotography and organic electroluminescence devices, dyes, agricultural chemicals, pharmaceuticals, etc., and iodine and inorganic iodides are used to produce the iodinated compounds. Yes.
However, since iodine is a precious natural resource that is unevenly distributed in production areas and is expensive, industrially, recovery and reuse of an iodine source is strongly desired to reduce the cost. In general, a reaction using an iodinated compound as a raw material is accompanied by deiodinated ions, so that an inorganic iodide is obtained as a by-product. Methods for recovering iodine from the reaction waste containing inorganic iodide include a method of recovering iodine precipitated by blowing chlorine into an aqueous solution containing inorganic iodide and a method of recovering iodine precipitated by oxidation with hydrogen peroxide. It is known (Non-Patent Document 1).
However, inorganic iodides obtained as waste often contain many inorganic impurities such as carbonates, phosphates, and hydroxides in high concentrations. Is required. A conventional pretreatment method includes a method using an ion exchange resin (Patent Document 1), and special equipment is required to perform this method. Similarly, in the iodine recovery process, for example, when highly toxic chlorine is used, ancillary equipment such as an excess chlorine treatment device is required. For these reasons, there has been a demand for establishment of a simpler iodine source recovery technique that does not require special equipment.

増補改定 ヨウ素総説 松岡敬一郎著 霞ヶ関出版 第二版p.73Supplementary revision Iodine review Keiichiro Matsuoka Kasumigaseki Publishing 2nd edition p. 73 特開平6−199501号公報JP-A-6-199501

本発明の目的は、無機ヨウ化物を含む混合無機塩水溶液から、特殊設備を必要とすることなく、簡便に、高含量の無機ヨウ化物を高収率で回収する方法を提供することにある。また本発明の別の目的は、この回収された無機ヨウ化物を脱ヨウ素イオン反応の基質であるヨウ素化化合物の製造に再利用し、目的物を低コストで得る方法を提供することにある。   An object of the present invention is to provide a method for easily recovering a high content of inorganic iodide in a high yield from a mixed inorganic salt aqueous solution containing inorganic iodide without requiring special equipment. Another object of the present invention is to provide a method for reusing the recovered inorganic iodide for the production of an iodinated compound which is a substrate for deiodination ion reaction and obtaining the desired product at a low cost.

本発明者は従来の問題点を解決すべく無機ヨウ化物の回収方法について鋭意検討を重ねた結果、驚くべきことに無機ヨウ化物を含む混合無機塩水溶液に有機溶媒を加え抽出する非常に簡便な操作で高純度の無機ヨウ化物が高収率に回収できることを見出した。
即ち、本発明は以下の構成を有するものである。
1. ヨウ化アンモニウム、ヨウ化鉄(II)、ヨウ化ニッケル、ヨウ化リチウム、ヨウ化カリウム、ヨウ化カルシウム、ヨウ化ナトリウム、ヨウ化バリウム、ヨウ化マグネシウム、ヨウ化セシウムからなる群より選択される少なくとも1つの無機ヨウ化物を含む、脱ヨウ素イオン反応の結果生じた混合無機塩水溶液に、ケトン類、アルコール類、多価アルコール類とその誘導体類、エ−テル類、エステル類、及び含窒素化合物からなる群より選択される少なくとも1種の、25℃の水に対する溶解度が5質量%以上である有機溶媒を加え、前記無機ヨウ化物を分離することを特徴とする無機ヨウ化物の回収方法。
2. 前記有機溶媒が、下記有機溶媒群より選択される少なくとも1種であることを特徴とする前記1.に記載の無機ヨウ化物の回収方法。
有機溶媒群:アセチルアセトン、アセトン、メチルエチルケトン、ジアセトンアルコ−ル、アセトアルデヒド、シクロヘキサノン、メタノ−ル、エタノ−ル、アリルアルコ−ル、イソプロピルアルコ−ル、テトラヒドロフルフリルアルコ−ル、n−ブタノール、sec−ブタノール、tert−ブタノ−ル、フルフリルアルコ−ル、プロパルギルアルコ−ル、1−プロパノ−ル、3−メチル−2−ブタノール、3−メチル−1−ペンチン−3−オール、エチレングリコ−ル、エチレンカルボナ−ト、エチレングリコールジアセタート、エチレングリコ−ルジグリシジルエ−テル、エチレングリコ−ルジメチルエ−テル、エチレングリコ−ルモノアセタ−ト、エチレングリコ−ルモノエチルエ−テル、エチレングリコ−ルモノエチルエ−テルアセタ−ト、エチレングリコ−ルモノブチルエ−テル、エチレングリコ−ルモノメチルエ−テル、エチレングリコ−ルモノメチルエ−テルアセタ−ト、エチレングリコ−ルモノメトキシメチルエ−テル、グリセリン、グリセリンジグリシジルエ−テル、グリセリントリジグリシジルエ−テル、グリセリン1,3−ジアセタ−ト、グリセリン1,2−ジメチルエ−テル、グリセリン1,3−ジメチルエ−テル、グリセリントリアセタ−ト、グリセリン1−モノアセタ−ト、2−クロロ−1,3−プロパンジオ−ル、3−クロロ−1,2−プロパンジオ−ル、ジエチレングリコ−ル、ジエチレングリコ−ルエチルメチルエ−テル、ジエチレングリコ−ルジアセタ−ト、ジエチレングリコ−ルジエチルエ−テル、ジエチレングリコ−ルジメチルエ−テル、ジエチレングリコ−ルモノエチルエ−テル、ジエチレングリコ−ルモノエチルエ−テルアセタ−ト、ジエチレングリコ−ルモノブチルエ−テル、ジエチレングリコ−ルモノメチルエ−テル、ジプロピレングリコ−ル、ジプロピレングリコ−ルモノエチルエ−テル、ジプロピレングリコ−ルモノメチルエ−テル、テトラエチレングリコ−ル、トリエチレングリコ−ル、トリエチレングリコ−ルジメチルエ−テル、トリエチレングリコ−ルモノエチルエ−テル、トリエチレングリコ−ルモノメチルエ−テル、トリプロピレングリコ−ル、トリメチレングリコ−ル、トリメチロ−ルエタン、トリメチロ−ルプロパン、1,2−ブタンジオ−ル、1,3−ブタンジオ−ル、プロピレングリコ−ル、プロピレングリコ−ルモノエチルエ−テル、プロピレングリコールモノブチルエーテル、プロピレングリコ−ルモノメチルエ−テル、ヘキシレングリコ−ル、1,5−ペンタンジオ−ル、ポリエチレングリコ−ル、ポリプロピレングリコ−ル、1,4−ジオキサン、ジプロピルエーテル、ジメチルエーテル、テトヒドロフラン、テトラヒドロピラン、トリオキサン、フルフラール、メチラール、メチル−t−ブチルエーテル、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、乳酸メチル、乳酸エチル、γ−ブチロラクトン、アセトニトリル、N−エチルモルホリン、ジイソプロピルエチルアミン、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N,N,N',N’−テトラメチルエチレンジアミン、テトラメチル尿素、トリエタノ−ルアミン、トリエチルアミン。
3. 前記無機ヨウ化物が溶解した前記有機溶媒を回収することを特徴とする前記1.又は2.に記載の無機ヨウ化物の回収方法。
. 前記脱ヨウ素イオン反応が、芳香族アミン化合物とヨウ素化芳香族化合物の縮合反応であることを特徴とする前記1.〜3.のいずれか1項に記載の無機ヨウ化物の回収方法。
5. 前記無機ヨウ化物を含む混合無機塩水溶液が、前記脱ヨウ素イオン反応を行った反応液に対して、25℃の水に対する溶解度が1.5重量%以下である有機溶剤を加え、濾別して得られた濾過残渣に対して水を加えて調製されたもの、又は、前記脱ヨウ素イオン反応を行った反応液に対して、25℃の水に対する溶解度が1.5重量%以下である有機溶剤と水とを加え、層分離させ、水溶液として分離回収されたものであることを特徴とする、前記1.〜4.のいずれか1項に記載の無機ヨウ化物の回収方法。
6. 前記1.〜5.のいずれか1項に記載の無機ヨウ化物の回収方法により回収された無機ヨウ化物をそのまま、または酸化剤と反応させてヨウ素に変換した後、ヨウ素化反応に用いることを特徴とするヨウ素化化合物の製造方法。
尚、本発明は、特許請求の範囲に記載されたものに関するものであるが、その他の事項についても参考の為に記載した。
As a result of intensive studies on a method for recovering inorganic iodide in order to solve the conventional problems, the present inventor has surprisingly found that it is very simple to add and extract an organic solvent to a mixed inorganic salt aqueous solution containing inorganic iodide. It has been found that high purity inorganic iodide can be recovered in high yield by the operation.
That is, the present invention has the following configuration.
1. At least selected from the group consisting of ammonium iodide, iron (II) iodide, nickel iodide, lithium iodide, potassium iodide, calcium iodide, sodium iodide, barium iodide, magnesium iodide, cesium iodide To a mixed inorganic salt aqueous solution containing one inorganic iodide as a result of deiodination ion reaction , from ketones, alcohols, polyhydric alcohols and derivatives thereof, ethers, esters, and nitrogen-containing compounds A method for recovering inorganic iodide, comprising adding at least one organic solvent selected from the group consisting of an organic solvent having a solubility in water at 25 ° C. of 5% by mass or more to separate the inorganic iodide.
2. The organic solvent is at least one selected from the following organic solvent group: A method for recovering inorganic iodide as described in 1. above.
Organic solvent group: acetylacetone, acetone, methyl ethyl ketone, diacetone alcohol, acetaldehyde, cyclohexanone, methanol, ethanol, allyl alcohol, isopropyl alcohol, tetrahydrofurfuryl alcohol, n-butanol, sec- Butanol, tert-butanol, furfuryl alcohol, propargyl alcohol, 1-propanol, 3-methyl-2-butanol, 3-methyl-1-pentyn-3-ol, ethylene glycol, Ethylene carbonate, ethylene glycol diacetate, ethylene glycol diglycidyl ether, ethylene glycol dimethyl ether, ethylene glycol monoacetate, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether Tar, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethoxymethyl ether, glycerin, glycerin diglycidyl ether, glycerin tridiglycidyl ether -Tell, glycerin 1,3-diacetate, glycerin 1,2-dimethyl ether, glycerin 1,3-dimethyl ether, glycerin triacetate, glycerin 1-monoacetate, 2-chloro-1,3 Propanediol, 3-chloro-1,2-propanediol, diethylene glycol, diethylene glycol ethyl methyl ether, diethylene glycol diacetate, diethylene glycol diethyl ether, diethylene glycol dimethyl ether Diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monomethyl ether, dipropylene glycol, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether, tetra Ethylene glycol, triethylene glycol, triethylene glycol dimethyl ether, triethylene glycol monoethyl ether, triethylene glycol monomethyl ether, tripropylene glycol, trimethylene glycol, trimethylol ethane , Trimethylolpropane, 1,2-butanediol, 1,3-butanediol, propylene glycol, propylene glycol monoethyl ether, propylene Lene glycol monobutyl ether, propylene glycol monomethyl ether, hexylene glycol, 1,5-pentanediol, polyethylene glycol, polypropylene glycol, 1,4-dioxane, dipropyl ether, dimethyl ether, tetohydro Furan, tetrahydropyran, trioxane, furfural, methylal, methyl-t-butyl ether, methyl formate, ethyl formate, methyl acetate, ethyl acetate, methyl lactate, ethyl lactate, γ-butyrolactone, acetonitrile, N-ethylmorpholine, diisopropylethylamine, 1 , 3-Dimethyl-2-imidazolidinone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N, N ′, N′-tetramethylethylenediamine, tetramethylurea, trieta - triethanolamine, triethylamine.
3. The organic solvent in which the inorganic iodide is dissolved is recovered . Or 2. A method for recovering inorganic iodide as described in 1. above.
4 . The deiodination ion reaction is a condensation reaction of an aromatic amine compound and an iodinated aromatic compound . ~ 3. The method for recovering an inorganic iodide according to any one of the above.
5. A mixed inorganic salt aqueous solution containing the inorganic iodide is obtained by adding an organic solvent having a solubility in water at 25 ° C. of 1.5% by weight or less to the reaction solution obtained by the deiodination ion reaction, and separating the solution. An organic solvent and water having a solubility in water at 25 ° C. of 1.5% by weight or less with respect to a solution prepared by adding water to the filtered residue or a reaction solution obtained by performing the deiodination ion reaction Are separated and recovered as an aqueous solution. ~ 4. The method for recovering an inorganic iodide according to any one of the above.
6). 1 above. ~ 5. An iodinated compound which is used for an iodination reaction after the inorganic iodide recovered by the method for recovering inorganic iodide according to any one of the above is used as it is or after reacting with an oxidizing agent to convert to iodine Manufacturing method.
In addition, although this invention relates to what was described in the claim, the other matter was also described for reference.

本発明によれば、無機ヨウ化物を含む混合無機塩水溶液から、特殊設備を必要とすることなく、簡便に、高含量の無機ヨウ化物を高収率で回収する方法が提供される。更に、本発明によれば、脱ヨウ素イオン反応の基質であるヨウ素化化合物の製造に、この回収された無機ヨウ化物を再利用する方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the method of collect | recovering a high content inorganic iodide with a high yield simply from a mixed inorganic salt aqueous solution containing an inorganic iodide is required, without requiring special equipment. Furthermore, according to the present invention, a method for reusing the recovered inorganic iodide for the production of an iodinated compound that is a substrate for deiodination ion reaction is provided.

以下、本発明を更に詳細に説明する。
本発明は、無機ヨウ化物を含む混合無機塩水溶液から高純度の無機ヨウ化物のみを低コストかつ簡便な操作で高収率で分離回収する方法と、回収された無機ヨウ化物を工業的に再利用する方法に関する。特に脱ヨウ素イオンを伴う反応を工業的に行った場合には無機ヨウ化物を含む混合無機塩が反応副生物として大量に排出されるため、高価なヨウ素源を回収し再利用することが望ましい。
Hereinafter, the present invention will be described in more detail.
The present invention provides a method for separating and recovering only high-purity inorganic iodide from a mixed inorganic salt aqueous solution containing inorganic iodide in a high yield with a low-cost and simple operation, and industrially reusing the recovered inorganic iodide. It relates to the method to use. In particular, when a reaction involving deiodination ions is carried out industrially, a mixed inorganic salt containing inorganic iodide is discharged in large quantities as a reaction byproduct, and therefore it is desirable to recover and reuse an expensive iodine source.

工業的に用いられている脱ヨウ素イオン反応としては以下の例が挙げられる。本発明によってこれらの反応で排出され得る混合無機塩から高純度の無機ヨウ化物を回収することができるが、本発明が回収処理する反応の範囲は以下に限定されるものではない。
(a)ヨウ素化化合物によるカップリング反応(例えばChem.Rev.,38,139(1946);J.Am.Chem.Soc.,103,6460(1981)等)
(b)ヨウ素化化合物とアンモニア、イミド、アミド、アジドを含むアミン類による縮合反応(例えばJ.Am.Chem.Soc.,109,1496(1987);Tetrahedron Lett.,39,2367(1998)等)
(c)ヨウ素化化合物とアルコール類もしくはフェノキシド、アルコキシドを含むフェノール類によるエーテル化反応(例えばChem.Rev.,14,409(1934)等)
(d)ヨウ素化化合物とチオフェノールを含むチオール類によるチオエーテル化反応(例えばOrg.Synth.,4,396(1963)等)
(e)ヨウ素化化合物と活性メチレン化合物によるカップリング反応(例えばJ.Chem.Soc.,1870(1929)等)
(f)ヨウ素化化合物と末端オレフィン化合物とのカップリング反応(例えばOrg.React.,27,345(1982)等)
(g)ヨウ素化化合物と有機スズ化合物とのカップリング反応(例えばAngew.Chem.Int.Eng.Ed.,25,508(1986);J.Org.Chem.,54,5856(1989)等)
(h)ヨウ素化化合物と有機ホウ素化合物とのカップリング反応(例えばJ.Am.Chem.Soc.,107,972(1985)等)
(i)ヨウ素化化合物と有機燐化合物とのカップリング反応(例えばTetrahedron 23,4677(1967)等)
(j)ヨウ素化化合物と末端アセチレン化合物(銅アセチリド化合物を含む)とのカップリング反応(例えばJ.Org.Chem.,28,3313(1963);Tetrahedron Lett.,50,4467(1975)等)
(k)ヨウ素化化合物と有機グリニア化合物とのカップリング反応(例えばSynthesis 303(1971)等)
The following examples are given as industrially used deiodination ion reactions. Although high purity inorganic iodide can be recovered from the mixed inorganic salt that can be discharged in these reactions according to the present invention, the range of the reaction that the present invention recovers is not limited to the following.
(A) Coupling reaction with an iodinated compound (for example, Chem. Rev., 38, 139 (1946); J. Am. Chem. Soc., 103, 6460 (1981), etc.)
(B) Condensation reaction between an iodinated compound and amines including ammonia, imide, amide, azide (for example, J. Am. Chem. Soc., 109, 1496 (1987); Tetrahedron Lett., 39, 2367 (1998)) )
(C) Etherification reaction with iodinated compounds and phenols containing alcohols or phenoxides or alkoxides (for example, Chem. Rev., 14, 409 (1934))
(D) Thioetherification reaction with thiols containing an iodinated compound and thiophenol (for example, Org. Synth., 4, 396 (1963), etc.)
(E) Coupling reaction between an iodinated compound and an active methylene compound (for example, J. Chem. Soc., 1870 (1929))
(F) Coupling reaction between iodinated compound and terminal olefin compound (for example, Org. React., 27, 345 (1982))
(G) Coupling reaction between an iodinated compound and an organotin compound (for example, Angew. Chem. Int. Eng. Ed., 25, 508 (1986); J. Org. Chem., 54, 5856 (1989), etc.)
(H) Coupling reaction between an iodinated compound and an organic boron compound (for example, J. Am. Chem. Soc., 107, 972 (1985))
(I) Coupling reaction between an iodinated compound and an organic phosphorus compound (for example, Tetrahedron 23, 4679 (1967))
(J) Coupling reaction between an iodinated compound and a terminal acetylene compound (including a copper acetylide compound) (for example, J. Org. Chem., 28, 3313 (1963); Tetrahedron Lett., 50, 4467 (1975), etc.)
(K) Coupling reaction between an iodinated compound and an organic grinder compound (for example, Synthesis 303 (1971))

なお本発明において、脱ヨウ素イオン反応は、アミン化合物とヨウ素化化合物の縮合反応、とくに芳香族アミン化合物とヨウ素化芳香族化合物との縮合反応であるのが好ましい。   In the present invention, the deiodination ion reaction is preferably a condensation reaction between an amine compound and an iodinated compound, particularly a condensation reaction between an aromatic amine compound and an iodinated aromatic compound.

以下に、脱ヨウ素イオン反応の結果生じた混合無機塩水溶液から無機ヨウ化物を回収する場合を例にとり説明する。
まず、(1)脱ヨウ素イオン反応液中から混合無機塩を分離する。
この(1)の工程では下記の操作のどちらかを選択して行う。
操作1:反応液を有機溶剤で希釈し、濾別して混合無機塩を分離する操作
操作2:反応液に有機溶剤と水を添加し水層を分液して混合無機塩を分離する操作
これらの操作のいずれかを行うことにより、未反応の原料化合物や反応溶媒は有機溶媒層に回収され、混合無機塩は操作1では濾過残渣、操作2では水溶液として分離回収される。上記操作は反応生成物(目的物質)や回収するヨウ化物の溶解度、その濾過性等を考慮し、どちらか適切な操作を選択する。
The case where inorganic iodide is recovered from the mixed inorganic salt aqueous solution generated as a result of the deiodination ion reaction will be described below as an example.
First, (1) the mixed inorganic salt is separated from the deiodination ion reaction solution.
In step (1), one of the following operations is selected and performed.
Operation 1: Operation for diluting the reaction solution with an organic solvent and separating by filtration to separate the mixed inorganic salt Operation 2: Operation for adding the organic solvent and water to the reaction solution and separating the aqueous layer to separate the mixed inorganic salt By performing any of the operations, unreacted raw material compounds and reaction solvents are recovered in the organic solvent layer, and the mixed inorganic salt is separated and recovered as a filtration residue in operation 1 and as an aqueous solution in operation 2. The above operation is selected in consideration of the solubility of the reaction product (target substance) and the iodide to be recovered, its filterability, and the like.

(1)の工程で使用される有機溶剤としては、例えば水にほとんど溶解しない有機溶剤、好ましくは水(25℃)に対する溶解度が、1.5質量%以下である有機溶剤であり、具体的には、トルエン、キシレン、メシチレン、デュレン、エチルベンゼン、ジエチルベンゼン、n−プロピルベンゼン、イソプロピルベンゼン、ジイソプロピルベンゼン、n−ブチルベンゼン、iso−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン、ジ−tert−ブチルベンゼン等の芳香族炭化水素溶媒、ジクロロメタン、ジクロロエタン、トリクロロエタン、クロロホルム、クロルベンゼン、o−ジクロルベンゼン等のハロゲン系炭化水素溶媒、ニトロベンゼン、ニトロトルエン等の芳香族ニトロ化合物などが挙げられる。その中でも安価で比較的除去しやすいトルエン、キシレンが好ましい。操作1の有機溶剤の使用量は反応生成物が完全に溶解する量であればよく、通常反応生成物1モルに対して50ml〜5000mlの範囲で使用され、好ましくは500ml〜2000mlの範囲で使用される。同様に操作2で使用する有機溶剤量は生成する反応生成物1モルに対して50ml〜5000mlの範囲で使用され、好ましくは500ml〜2000mlの範囲で使用される。抽出で使用する水量は20〜80℃、好ましくは50〜80℃の温度条件で系内の無機塩を完全に溶解する量に設定する。抽出圧力は、通常は常圧であり、抽出時間は、例えば5〜120分間である。   The organic solvent used in the step (1) is, for example, an organic solvent that hardly dissolves in water, preferably an organic solvent having a solubility in water (25 ° C.) of 1.5% by mass or less. Is toluene, xylene, mesitylene, durene, ethylbenzene, diethylbenzene, n-propylbenzene, isopropylbenzene, diisopropylbenzene, n-butylbenzene, iso-butylbenzene, sec-butylbenzene, tert-butylbenzene, di-tert-butyl. Aromatic hydrocarbon solvents such as benzene, halogen-based hydrocarbon solvents such as dichloromethane, dichloroethane, trichloroethane, chloroform, chlorobenzene and o-dichlorobenzene, and aromatic nitro compounds such as nitrobenzene and nitrotoluene. Of these, toluene and xylene are preferable because they are inexpensive and relatively easy to remove. The amount of the organic solvent used in Operation 1 may be an amount that completely dissolves the reaction product, and is usually used in a range of 50 ml to 5000 ml, preferably in a range of 500 ml to 2000 ml, with respect to 1 mol of the reaction product. Is done. Similarly, the amount of the organic solvent used in operation 2 is in the range of 50 ml to 5000 ml, preferably in the range of 500 ml to 2000 ml, with respect to 1 mol of the reaction product produced. The amount of water used in the extraction is set to an amount that completely dissolves the inorganic salt in the system under a temperature condition of 20 to 80 ° C, preferably 50 to 80 ° C. The extraction pressure is usually normal pressure, and the extraction time is, for example, 5 to 120 minutes.

次に、(2)分離した混合無機塩から無機ヨウ化物を選択的に回収する。この(2)の工程が本発明の主な特徴である。
分離した混合無機塩から無機ヨウ化物を回収する場合は水溶液の状態で行う。なお、前記操作2において、反応液から分液して得られた混合無機塩水溶液はそのまま使用することが出来る。また前記操作1において、濾別して得た混合無機塩の場合は、無機塩が完全に溶解するできるだけ少ない量の水を加えて水溶液を調整する。この場合、混合無機塩の濃度は、水溶液中の無機ヨウ化物の濃度が3〜80質量%の範囲となるように調整するのがよく、好ましくは5〜70質量%、より好ましくは10〜60質量%である。水溶液の濃度を調整する際の温度は10〜100℃であり、好ましくは20〜95℃、より好ましくは50〜80℃の範囲である。また、混合無機塩に有機溶媒が付着している場合は、分液を行って水層のみを取り出す。
無機ヨウ化物の回収は、この混合無機塩水溶液に有機溶媒を添加して行う。混合無機塩水溶液は有機溶媒を加えることにより、二層に分離(水性二層抽出)した状態、あるいは無機ヨウ化物以外の無機塩が結晶として析出した状態になる。この状態の有機溶媒層には非常に高い選択性で無機ヨウ化物が溶解する。そのため、この有機溶媒層を分離し溶媒を濃縮することで無機ヨウ化物の水溶液、もしくは無機ヨウ化物の結晶を単離することができる。このことは、本発明者が初めて見出した見地である。また、回収した無機ヨウ化物を公知の方法(例えば、“ヨウ素総説”松岡敬一郎著 霞ヶ関出版 第二版 p.73)でヨウ素に転化し使用することもできる。
Next, (2) inorganic iodide is selectively recovered from the separated mixed inorganic salt. This step (2) is the main feature of the present invention.
When recovering inorganic iodide from the separated mixed inorganic salt, it is carried out in the state of an aqueous solution. In the operation 2, the mixed inorganic salt aqueous solution obtained by separating from the reaction solution can be used as it is. In the case of the mixed inorganic salt obtained by filtration in the operation 1, the aqueous solution is prepared by adding as little water as possible so that the inorganic salt is completely dissolved. In this case, the concentration of the mixed inorganic salt is adjusted so that the concentration of the inorganic iodide in the aqueous solution is in the range of 3 to 80% by mass, preferably 5 to 70% by mass, more preferably 10 to 60%. % By mass. The temperature at which the concentration of the aqueous solution is adjusted is 10 to 100 ° C, preferably 20 to 95 ° C, more preferably 50 to 80 ° C. Moreover, when the organic solvent has adhered to mixed inorganic salt, liquid separation is performed and only an aqueous layer is taken out.
The inorganic iodide is recovered by adding an organic solvent to the mixed inorganic salt aqueous solution. By adding an organic solvent, the mixed inorganic salt aqueous solution is separated into two layers (aqueous two-layer extraction) or an inorganic salt other than inorganic iodide is precipitated as crystals. In this state, the inorganic iodide is dissolved in the organic solvent layer with very high selectivity. Therefore, an aqueous solution of inorganic iodide or an inorganic iodide crystal can be isolated by separating the organic solvent layer and concentrating the solvent. This is the point of view that the present inventors have found for the first time. In addition, the recovered inorganic iodide can be converted into iodine and used by a known method (for example, “Iodine Review” by Keiichiro Matsuoka, Kasumigaseki Publishing, second edition, p. 73).

(2)の工程で添加する有機溶媒は特に限定されないが、ケトン類、アルコール類、多価アルコール類とその誘導体類、エ−テル類、エステル類、含窒素化合物等が挙げられ、その中でも水(25℃)に対する溶解度が5質量%以上であるものが好ましい。   The organic solvent to be added in the step (2) is not particularly limited, and examples thereof include ketones, alcohols, polyhydric alcohols and derivatives thereof, ethers, esters, nitrogen-containing compounds, and the like. Those having a solubility with respect to (25 ° C.) of 5% by mass or more are preferred.

以下に、本発明で用いる有機溶媒の具体例を挙げる。カッコ内は水に対する溶解度(質量%)である。また「任意」とあるのは、水に対し任意の割合で均一に混合可能であることを意味する。
(i)ケトン類:アセチルアセトン(12.5)、アセトン(任意)、メチルエチルケトン(26.8)、ジアセトンアルコ−ル(任意)、アセトアルデヒド(任意)、シクロヘキサノン(5.0)等。
(ii)アルコ−ル類:メタノ−ル(任意)、エタノ−ル(任意)、アリルアルコ−ル(任意)、イソプロピルアルコ−ル(任意)、テトラヒドロフルフリルアルコ−ル(任意)、n−ブタノール(6.4)、sec−ブタノール(20.2)、tert−ブタノ−ル(任意)、フルフリルアルコ−ル(任意)、プロパルギルアルコ−ル(任意)、1−プロパノ−ル(任意)、3−メチル−2−ブタノール(6.07)、3−メチル−1−ペンチン−3−オール(9.9)等。
(iii)多価アルコール類とその誘導体類:エチレングリコ−ル(任意)、エチレンカルボナ−ト(任意)、エチレングリコールジアセタート(14.0)、エチレングリコ−ルジグリシジルエ−テル(任意)、エチレングリコ−ルジメチルエ−テル(任意)、エチレングリコ−ルモノアセタ−ト(任意)、エチレングリコ−ルモノエチルエ−テル(任意)、エチレングリコ−ルモノエチルエ−テルアセタ−ト(22.9)、エチレングリコ−ルモノブチルエ−テル(任意)、エチレングリコ−ルモノメチルエ−テル(任意)、エチレングリコ−ルモノメチルエ−テルアセタ−ト(任意)、エチレングリコ−ルモノメトキシメチルエ−テル(任意)、グリセリン(任意)、グリセリンジグリシジルエ−テル(任意)、グリセリントリジグリシジルエ−テル(任意)、グリセリン1,3−ジアセタ−ト(任意)、グリセリン1,2−ジメチルエ−テル(任意)、グリセリン1,3−ジメチルエ−テル(任意)、グリセリントリアセタ−ト(70.0)、グリセリン1−モノアセタ−ト(任意)、2−クロロ−1,3−プロパンジオ−ル(任意)、3−クロロ−1,2−プロパンジオ−ル(任意)、ジエチレングリコ−ル(任意)、ジエチレングリコ−ルエチルメチルエ−テル(任意)、ジエチレングリコ−ルジアセタ−ト(任意)、ジエチレングリコ−ルジエチルエ−テル(任意)、ジエチレングリコ−ルジメチルエ−テル(任意)、ジエチレングリコ−ルモノエチルエ−テル(任意)、ジエチレングリコ−ルモノエチルエ−テルアセタ−ト(任意)、ジエチレングリコ−ルモノブチルエ−テル(任意)、ジエチレングリコ−ルモノメチルエ−テル(任意)、ジプロピレングリコ−ル(任意)、ジプロピレングリコ−ルモノエチルエ−テル(任意)、ジプロピレングリコ−ルモノメチルエ−テル(任意)、テトラエチレングリコ−ル(任意)、トリエチレングリコ−ル(任意)、トリエチレングリコ−ルジメチルエ−テル(任意)、トリエチレングリコ−ルモノエチルエ−テル(任意)、トリエチレングリコ−ルモノメチルエ−テル(任意)、トリプロピレングリコ−ル(任意)、トリメチレングリコ−ル(任意)、トリメチロ−ルエタン(任意)、トリメチロ−ルプロパン(任意)、1,2−ブタンジオ−ル(任意)、1,3−ブタンジオ−ル(任意)、プロピレングリコ−ル(任意)、プロピレングリコ−ルモノエチルエ−テル(任意)、プロピレングリコールモノブチルエーテル(任意)、プロピレングリコ−ルモノメチルエ−テル(任意)、ヘキシレングリコ−ル(任意)、1,5−ペンタンジオ−ル(任意)、ポリエチレングリコ−ル(任意)、ポリプロピレングリコ−ル(任意)等。
(iv)エ−テル類:1,4−ジオキサン(任意)、ジプロピルエーテル(任意)、ジメチルエーテル(任意)、テトヒドロフラン(任意)、テトラヒドロピラン(任意)、トリオキサン(21.1)、フルフラール(7.9)、メチラール(32.3)、メチル−t−ブチルエーテル(5.1)等。
(v)エステル類:蟻酸メチル(20.0)、蟻酸エチル(11.8)、酢酸メチル(24.5)、酢酸エチル(8.08)、乳酸メチル(任意)、乳酸エチル(任意)、γ−ブチロラクトン(任意)等。
(vi)含窒素化合物;アセトニトリル(任意)、N−エチルモルホリン(任意)、ジイソプロピルエチルアミン(任意)、1,3−ジメチル−2−イミダゾリジノン(任意)、N,N−ジメチルアセトアミド(任意)、N,N−ジメチルホルムアミド(任意)、N,N,N',N’−テトラメチルエチレンジアミン(任意)、テトラメチル尿素(任意)、トリエタノ−ルアミン(任意)、トリエチルアミン(任意)等。
Specific examples of the organic solvent used in the present invention are given below. In parentheses are solubility in water (% by mass). The term “arbitrary” means that it can be uniformly mixed with water at an arbitrary ratio.
(i) Ketones: acetylacetone (12.5), acetone (arbitrary), methyl ethyl ketone (26.8), diacetone alcohol (arbitrary), acetaldehyde (arbitrary), cyclohexanone (5.0) and the like.
(Ii) alcohols: methanol (arbitrary), ethanol (arbitrary), allyl alcohol (arbitrary), isopropyl alcohol (arbitrary), tetrahydrofurfuryl alcohol (arbitrary), n-butanol (6.4), sec-butanol (20.2), tert-butanol (optional), furfuryl alcohol (optional), propargyl alcohol (optional), 1-propanol (optional), 3-methyl-2-butanol (6.07), 3-methyl-1-pentyn-3-ol (9.9) and the like.
(Iii) Polyhydric alcohols and derivatives thereof: ethylene glycol (optional), ethylene carbonate (optional), ethylene glycol diacetate (14.0), ethylene glycol diglycidyl ether (optional) , Ethylene glycol dimethyl ether (optional), ethylene glycol monoacetate (optional), ethylene glycol monoethyl ether (optional), ethylene glycol monoethyl ether acetate (22.9), ethylene glycol monobutyl ether Tellurium (optional), ethylene glycol monomethyl ether (optional), ethylene glycol monomethyl ether acetate (optional), ethylene glycol monomethoxymethyl ether (optional), glycerin (optional), glycerin diglycidyl ether Tell (optional), glycerin tridiglycid Ether (arbitrary), glycerin 1,3-diacetate (arbitrary), glycerin 1,2-dimethyl ether (arbitrary), glycerin 1,3-dimethyl ether (arbitrary), glycerin triacetate (70 0.0), glycerin 1-monoacetate (optional), 2-chloro-1,3-propanediol (optional), 3-chloro-1,2-propanediol (optional), diethylene glycol (optional) (Optional), diethylene glycol ethyl methyl ether (optional), diethylene glycol diacetate (optional), diethylene glycol diethyl ether (optional), diethylene glycol dimethyl ether (optional), diethylene glycol monoethyl ether (optional), diethylene glycol Lumonoethyl ether acetate (optional), diethylene glycol monobutyl -Tel (optional), diethylene glycol monomethyl ether (optional), dipropylene glycol (optional), dipropylene glycol monoethyl ether (optional), dipropylene glycol monomethyl ether (optional), tetraethylene glycol (Optional), triethylene glycol (optional), triethylene glycol dimethyl ether (optional), triethylene glycol monoethyl ether (optional), triethylene glycol monomethyl ether (optional), tripropylene glycol -Rule (optional), Trimethylene glycol (optional), Trimethylolethane (optional), Trimethylolpropane (optional), 1,2-butanediol (optional), 1,3-butanediol (optional) , Propylene glycol (optional), propylene glycol monoethyl ether Tellurium (optional), propylene glycol monobutyl ether (optional), propylene glycol monomethyl ether (optional), hexylene glycol (optional), 1,5-pentanediol (optional), polyethylene glycol (optional) , Polypropylene glycol (optional), etc.
(Iv) Ethers: 1,4-dioxane (optional), dipropyl ether (optional), dimethyl ether (optional), tetohydrofuran (optional), tetrahydropyran (optional), trioxane (21.1), furfural (7.9), methylal (32.3), methyl-t-butyl ether (5.1) and the like.
(V) Esters: methyl formate (20.0), ethyl formate (11.8), methyl acetate (24.5), ethyl acetate (8.08), methyl lactate (optional), ethyl lactate (optional), γ-butyrolactone (optional) and the like.
(Vi) Nitrogen-containing compounds: acetonitrile (arbitrary), N-ethylmorpholine (arbitrary), diisopropylethylamine (arbitrary), 1,3-dimethyl-2-imidazolidinone (arbitrary), N, N-dimethylacetamide (arbitrary) N, N-dimethylformamide (optional), N, N, N ′, N′-tetramethylethylenediamine (optional), tetramethylurea (optional), triethanolamine (optional), triethylamine (optional), and the like.

これらの有機溶媒の中でも好ましくはケトン類、アルコール類、エーテル類、含窒素化合物であり、さらに好ましくはアセトン、メタノ−ル、エタノール、テトラヒドロフラン、アセトニトリルである。これらの有機溶媒は1種単独もしくは2種類以上を組み合わせて使用することが出来る。
有機溶媒の使用量は、混合無機塩水溶液に含まれる水の質量に対し0.1〜1000倍量、好ましくは0.5〜100倍量、より好ましくは1〜50倍量である。無機ヨウ化物を分離回収した後の有機溶媒は回収可能であり、回収溶媒中の水分量を管理することで次の回収操作に繰り返し使用することができる。
Among these organic solvents, preferred are ketones, alcohols, ethers and nitrogen-containing compounds, and more preferred are acetone, methanol, ethanol, tetrahydrofuran and acetonitrile. These organic solvents can be used alone or in combination of two or more.
The usage-amount of an organic solvent is 0.1-1000 times amount with respect to the mass of the water contained in mixed inorganic salt aqueous solution, Preferably it is 0.5-100 times amount, More preferably, it is 1-50 times amount. The organic solvent after separating and recovering the inorganic iodide can be recovered, and can be repeatedly used for the next recovery operation by controlling the amount of water in the recovered solvent.

混合無機塩水溶液に有機溶媒を添加して分液状態になる場合は、分液操作で無機塩の除去ができる。この分液状態では無機ヨウ化物は有機溶媒層に溶存する。無機ヨウ化物の抽出温度は溶媒の沸点以下であれば特に制限されないが、収率や品質、作業性の面からみて−20〜150℃、好ましくは−10〜100℃、より好ましくは−5〜40℃の範囲である。また、無機ヨウ化物の抽出を行う場合の圧力は特に制限されないが、好ましくは大気圧下である。無機ヨウ化物の抽出操作における混合時間および静置時間も特に制限されないが、生産性と分離効率の面から通常1分〜48時間、好ましくは5分間〜30時間の範囲内で行う。   When an organic solvent is added to the mixed inorganic salt aqueous solution to form a liquid separation state, the inorganic salt can be removed by a liquid separation operation. In this liquid separation state, the inorganic iodide is dissolved in the organic solvent layer. The extraction temperature of the inorganic iodide is not particularly limited as long as it is equal to or lower than the boiling point of the solvent, but is −20 to 150 ° C., preferably −10 to 100 ° C., more preferably −5 to 5 in terms of yield, quality, and workability. It is in the range of 40 ° C. Moreover, the pressure in particular when extracting an inorganic iodide is although it does not restrict | limit, Preferably it is under atmospheric pressure. The mixing time and standing time in the extraction operation of the inorganic iodide are not particularly limited, but are usually 1 minute to 48 hours, preferably 5 minutes to 30 hours in terms of productivity and separation efficiency.

混合無機塩水溶液に有機溶媒を添加して無機塩の結晶が析出する場合は、ろ過またはデカントにより析出無機塩と母液中に溶存する無機ヨウ化物とを分離することができる。この操作を行う場合の温度、圧力は特に制限されない。また、無機塩析出後の攪拌時間は特に制限されないが、好ましくは生産性と分離効率の面から通常1分〜48時間、さらに好ましくは5分間〜30時間の範囲内で行う。   When an organic solvent is added to the mixed inorganic salt aqueous solution to precipitate inorganic salt crystals, the precipitated inorganic salt and the inorganic iodide dissolved in the mother liquor can be separated by filtration or decantation. The temperature and pressure when performing this operation are not particularly limited. Further, the stirring time after the inorganic salt precipitation is not particularly limited, but it is preferably performed in the range of usually 1 minute to 48 hours, more preferably 5 minutes to 30 hours in terms of productivity and separation efficiency.

上記の操作で得られた有機溶媒層を濃縮することで無機ヨウ化物を回収できる。この場合の濃縮温度は使用した溶媒種や操作圧力により異なるが、通常−15〜200℃で行う。また、濃縮時の圧力は特に制限されないが、好ましくは濃縮時間を短縮する目的から0.4kPa〜常圧の範囲で行うのがよい。
濃縮後に無機ヨウ化物を取り出す方法としてはそのまま結晶として取りだしてもよいし、その結晶に再度水や有機溶剤を加えて取り出してもよい。本発明で得られる無機ヨウ化物は極めて高純度であり、工業的に再利用することが可能である。しかも回収の一連の操作は一般的な設備で実施することができ、使用する釜も形状、材質等の制限を受けずに実施することが可能である。
Inorganic iodide can be recovered by concentrating the organic solvent layer obtained by the above operation. The concentration temperature in this case varies depending on the type of solvent used and the operating pressure, but is usually from −15 to 200 ° C. Further, the pressure at the time of concentration is not particularly limited, but it is preferably carried out in the range of 0.4 kPa to normal pressure for the purpose of shortening the concentration time.
As a method of taking out the inorganic iodide after concentration, it may be taken out as a crystal as it is, or it may be taken out by adding water or an organic solvent to the crystal again. The inorganic iodide obtained in the present invention has a very high purity and can be reused industrially. In addition, a series of operations for recovery can be performed with general equipment, and the pot to be used can also be performed without being limited by the shape, material, and the like.

濃縮で留去した有機溶媒を繰り返して再利用するには、留去した有機溶媒中に水が含まれないように濃縮条件を選択する必要がある。この濃縮条件は使用する有機溶媒の沸点により異なるが、共沸温度を持たない場合には濃縮時の減圧度における水の沸点を基準に分留を行うのが好ましい。共沸点を持つ場合には共沸温度を基準に分留を行うのが好ましい。有機溶媒の水分値をカールフィッシャー法等で測定し水分含量を管理することで、繰り返して使用することが出来る。管理する水分値は使用する有機溶媒によって異なるが、水と共沸点を持たない溶媒の場合には0〜10%が好ましく、より好ましくは0〜5%以下である。水と共沸点を持つ溶媒の場合には1〜20%が好ましく、より好ましくは1〜10%である。   In order to repeatedly reuse the organic solvent distilled off by concentration, it is necessary to select a concentration condition so that water is not contained in the distilled organic solvent. This concentration condition varies depending on the boiling point of the organic solvent to be used, but when the azeotropic temperature is not provided, it is preferable to perform fractional distillation based on the boiling point of water at the degree of reduced pressure during concentration. When it has an azeotropic point, it is preferable to carry out fractional distillation based on the azeotropic temperature. It can be used repeatedly by measuring the water content of the organic solvent by the Karl Fischer method and controlling the water content. Although the moisture value to be controlled varies depending on the organic solvent used, it is preferably 0 to 10%, more preferably 0 to 5% or less in the case of a solvent having no azeotropic point with water. In the case of a solvent having an azeotropic point with water, the content is preferably 1 to 20%, more preferably 1 to 10%.

回収される無機ヨウ化物の種類としては、脱ヨウ素イオン反応の原料によっても異なるが、例えばヨウ化アンモニウム、ヨウ化鉄(II)、ヨウ化ニッケル、ヨウ化リチウム、ヨウ化カリウム、ヨウ化カルシウム、ヨウ化ナトリウム、ヨウ化バリウム、ヨウ化マグネシウム、ヨウ化セシウム等が挙げられる。   The type of inorganic iodide recovered varies depending on the raw material of the deiodination ion reaction. For example, ammonium iodide, iron (II) iodide, nickel iodide, lithium iodide, potassium iodide, calcium iodide, Examples thereof include sodium iodide, barium iodide, magnesium iodide, cesium iodide and the like.

本発明で回収される無機ヨウ化物は極めて高純度であり、工業的に再利用(リサイクル)することが可能である。
例えば、ヨウ素化化合物とそれ以外の任意の化合物とを脱ヨウ素イオン反応により反応させ、目的物質を得るに際し、本発明の回収方法を適用し、回収された無機ヨウ化物をリサイクルすることができる。具体的には、下記(1)〜(5)の工程をサイクルさせることにより、回収された無機ヨウ化物をリサイクルすることができ、コスト的に極めて有利となる。
(1)ヨウ素化化合物とそれ以外の任意の化合物、もしくはヨウ素化化合物同士の脱ヨウ素イオン反応により反応させ、目的物を得る。
(2)前記(1)工程の脱ヨウ素イオン反応の結果生じた無機ヨウ化物を含む混合無機塩水溶液に有機溶媒を加え、前記無機ヨウ化物を分離する。
(3)前記(2)工程で得られた無機ヨウ化物をそのまま、または酸化剤と反応させてヨウ素に変換した後、被反応物と反応させてヨウ素化化合物を得る。
(4)前記(3)工程で得られたヨウ素化化合物を、前記(1)工程に利用し、目的物質を得る。
The inorganic iodide recovered in the present invention has an extremely high purity and can be industrially reused (recycled).
For example, when the iodinated compound and any other compound are reacted by deiodination ion reaction to obtain the target substance, the recovered inorganic iodide can be recycled by applying the recovery method of the present invention. Specifically, by recycling the following steps (1) to (5), the recovered inorganic iodide can be recycled, which is extremely advantageous in terms of cost.
(1) A target product is obtained by reacting with an iodinated compound and any other compound or a deiodination ion reaction between iodinated compounds.
(2) An organic solvent is added to the mixed inorganic salt aqueous solution containing the inorganic iodide generated as a result of the deiodination ion reaction in the step (1), and the inorganic iodide is separated.
(3) The inorganic iodide obtained in the step (2) is converted into iodine as it is or reacted with an oxidizing agent, and then reacted with the reactant to obtain an iodinated compound.
(4) The iodinated compound obtained in the step (3) is used in the step (1) to obtain a target substance.

さらに具体的に、図1を参照しながら説明する。図1は、本発明の回収方法により回収された無機ヨウ化物の工業的なリサイクル方法を説明するための図である。
図1において、ヨウ素化化合物を含む原料(符号11)を脱ヨウ素イオン反応に施し、前記の操作1または2(符号12)により脱ヨウ素イオン反応液中から混合無機塩(符号13)を分離し、目的物質(符号14)を得る。この無機ヨウ化物を含む混合無機塩(符号13)に有機溶媒を加え、有機溶媒層中に無機ヨウ化物を分離する(符号15)。なお、無機ヨウ化物以外のその他の無機塩(符号16)は廃棄する。次に有機溶媒層を濃縮し(符号17)、無機ヨウ化物の水溶液もしくは無機ヨウ化物の結晶(符号18)を回収する。なお使用済みの有機溶媒は回収し、必要に応じて補充し(符号19)再利用することができる。続いて、回収された無機ヨウ化物は酸化剤(符号23)と反応させヨウ素(符号20)を得、このヨウ素と、被反応物(符号24)とを反応させ、ヨウ素化化合物(符号21)を得、これを原料(符号11)におけるヨウ素化化合物として用いる。あるいは、回収された無機ヨウ化物(符号18)に直接被反応物(符号24)を反応させヨウ素化化合物(符号21)を得る(符号22)ことができるものもある。
More specific description will be given with reference to FIG. FIG. 1 is a diagram for explaining an industrial recycling method of inorganic iodide recovered by the recovery method of the present invention.
In FIG. 1, a raw material (symbol 11) containing an iodinated compound is subjected to deiodination ion reaction, and the mixed inorganic salt (symbol 13) is separated from the deiodination ion reaction solution by the above-described operation 1 or 2 (symbol 12). To obtain the target substance (symbol 14). An organic solvent is added to this mixed inorganic salt containing inorganic iodide (reference numeral 13), and the inorganic iodide is separated into the organic solvent layer (reference numeral 15). In addition, other inorganic salts (reference numeral 16) other than inorganic iodide are discarded. Next, the organic solvent layer is concentrated (symbol 17), and an aqueous solution of inorganic iodide or inorganic iodide crystals (symbol 18) is recovered. The used organic solvent can be recovered and replenished as necessary (reference numeral 19) for reuse. Subsequently, the recovered inorganic iodide is reacted with an oxidizing agent (symbol 23) to obtain iodine (symbol 20), and this iodine is reacted with the reactant (symbol 24) to produce an iodinated compound (symbol 21). This is used as the iodinated compound in the raw material (symbol 11). Alternatively, there is a compound that can react with a recovered substance (symbol 24) directly with the recovered inorganic iodide (symbol 18) to obtain an iodinated compound (symbol 21) (symbol 22).

前記の(3)工程において、ヨウ素化化合物を得る方法について説明する。
置換反応によるヨウ素化の場合には、本発明で回収した無機ヨウ化物またはその水溶液をそのまま使用することができる。または公知の酸化剤でヨウ素に変換してから置換ヨウ素化反応に用いても良いし、あるいは酸化剤存在下で反応系に無機ヨウ化物をそのまま添加して置換ヨウ素化反応を行っても良い。
直接ヨウ素化する場合には、公知の酸化剤で予め無機ヨウ化物をヨウ素に変換してからヨウ素化反応に用いるか、あるいは酸化剤存在下でヨウ素化反応の系に無機ヨウ化物をそのまま添加してヨウ素化反応が行われる。また、この場合は必要に応じて酸触媒を使用すると反応がより短時間で終了するので好ましい。酸触媒としては硫酸、塩酸、硫酸と硝酸の混酸等の無機酸;p−トルエンスルホン酸等の有機酸;過酢酸、過硫酸塩等の過酸化物;強酸性イオン交換樹脂等の固体酸触媒が使用される。なかでも硫酸およびp−トルエンスルホン酸が好ましく、硫酸が安価で反応も短時間で終了するのでより好ましい。これら酸触媒は1種単独で、または2種以上を組み合わせて使用することができる。
また、直接ヨウ素化反応または置換ヨウ素化反応では、必要に応じて助触媒を使用することができる。例えば第4級アンモニウム塩やクラウンエーテルなどの相間移動触媒や、Fe、Ni、Cu、Zn、Al、Ga、Si、Ge、Sn、Pb、P、As、Sbなどの元素を含む化合物が挙げられる。
A method for obtaining an iodinated compound in the step (3) will be described.
In the case of iodination by a substitution reaction, the inorganic iodide recovered in the present invention or an aqueous solution thereof can be used as it is. Alternatively, it may be converted to iodine with a known oxidant and then used for the substitution iodination reaction, or the substitution iodination reaction may be performed by adding inorganic iodide as it is to the reaction system in the presence of the oxidant.
In the case of direct iodination, the inorganic iodide is converted into iodine in advance with a known oxidant and then used for the iodination reaction, or the inorganic iodide is directly added to the iodination reaction system in the presence of the oxidant. The iodination reaction is carried out. In this case, it is preferable to use an acid catalyst as necessary, because the reaction is completed in a shorter time. As the acid catalyst, inorganic acid such as sulfuric acid, hydrochloric acid, mixed acid of sulfuric acid and nitric acid; organic acid such as p-toluenesulfonic acid; peroxide such as peracetic acid and persulfate; solid acid catalyst such as strongly acidic ion exchange resin Is used. Of these, sulfuric acid and p-toluenesulfonic acid are preferable, and sulfuric acid is more preferable because it is inexpensive and the reaction is completed in a short time. These acid catalysts can be used alone or in combination of two or more.
In the direct iodination reaction or substituted iodination reaction, a cocatalyst can be used as necessary. Examples thereof include phase transfer catalysts such as quaternary ammonium salts and crown ethers, and compounds containing elements such as Fe, Ni, Cu, Zn, Al, Ga, Si, Ge, Sn, Pb, P, As, and Sb. .

前記のヨウ素化反応に用いられる被反応物(基質)としては、従来ヨウ素化反応に用いられている化合物を使用することができる。例えばアルケニル基、アルキニル基、ヒドロキシ基、アミノ基、フッ素、塩素、臭素などを有する有機化合物、芳香族化合物、複素環化合物などが挙げられるが、化合物はこれらに限定されない。その中でも好ましくは芳香族化合物、複素環化合物である。ヨウ素化される化合物とヨウ素物の使用割合は、化合物1分子にヨウ素を導入する個数によって適切に選択される。   As the reactant (substrate) used in the iodination reaction, compounds conventionally used in the iodination reaction can be used. For example, an organic compound having an alkenyl group, an alkynyl group, a hydroxy group, an amino group, fluorine, chlorine, bromine, an aromatic compound, a heterocyclic compound, and the like can be given, but the compound is not limited to these. Of these, aromatic compounds and heterocyclic compounds are preferred. The use ratio of the compound to be iodinated and the iodine substance is appropriately selected depending on the number of iodine introduced into one molecule of the compound.

ヨウ素化反応で使用できる公知の酸化剤の例を以下に挙げる。
(A)次亜塩素酸リチウム、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸のアルカリ金属塩;
(B)亜塩素酸リチウム、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸のアルカリ金属塩;
(C)塩素酸リチウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸のアルカリ金属塩;
(D)過塩素酸および過塩素酸ナトリウム、過塩素酸カリウム、過塩素酸マグネシウム、過塩素酸バリウム等の過塩素酸のアルカリ金属塩、又はアルカリ土類金属塩;
(E)臭素酸および臭素酸リチウム、臭素酸ナトリウム、臭素酸カリウム等の臭素酸のアルカリ金属塩;
(F)ヨウ素酸およびヨウ素酸リチウム、ヨウ素酸ナトリウム、ヨウ素酸カリウム等のヨウ素酸のアルカリ金属塩;
(G)過ヨウ素酸、過ヨウ素酸ニ水和物および過ヨウ素酸リチウム、過ヨウ素酸ナトリウム、過ヨウ素酸カリウム等の過ヨウ素酸のアルカリ金属塩;
(H)過ホウ素酸ナトリウム等の過ホウ素酸のアルカリ金属塩;
(I)過酸化水素および過酸化ナトリウム、過酸化カルシウム、過酸化バリウム、過酸化亜鉛、過酸化マンガン等の過酸化物の塩;
(J)過酢酸;
(K)硝酸;
(L)過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩等。
これらの酸化剤は1種単独で、または2種以上を組み合わせて使用することができる。またこれらの酸化剤は無機ヨウ化物のヨウ素陰イオンに対して0.1〜5倍モル、好ましくは0.5〜2.0倍モル、更に好ましくは0.8〜1.8倍モル使用する。
Examples of known oxidizing agents that can be used in the iodination reaction are listed below.
(A) alkali metal salts of hypochlorous acid such as lithium hypochlorite, sodium hypochlorite, potassium hypochlorite;
(B) alkali metal salts of chlorous acid such as lithium chlorite, sodium chlorite, potassium chlorite;
(C) alkali metal salts of chloric acid such as lithium chlorate, sodium chlorate, potassium chlorate;
(D) alkali metal salt or alkaline earth metal salt of perchloric acid such as perchloric acid and sodium perchlorate, potassium perchlorate, magnesium perchlorate, barium perchlorate;
(E) alkali metal salts of bromic acid such as bromic acid and lithium bromate, sodium bromate, potassium bromate;
(F) Iodic acid and alkali metal salts of iodic acid such as lithium iodate, sodium iodate, and potassium iodate;
(G) Periodic acid, periodic acid dihydrate and alkali metal salts of periodic acid such as lithium periodate, sodium periodate, potassium periodate;
(H) an alkali metal salt of perboric acid such as sodium perborate;
(I) peroxide salts such as hydrogen peroxide and sodium peroxide, calcium peroxide, barium peroxide, zinc peroxide, manganese peroxide;
(J) peracetic acid;
(K) nitric acid;
(L) Persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate.
These oxidizing agents can be used alone or in combination of two or more. These oxidizing agents are used in an amount of 0.1 to 5 times mol, preferably 0.5 to 2.0 times mol, more preferably 0.8 to 1.8 times mol, of iodine anion of inorganic iodide. .

次に実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。なお、無機ヨウ化物の純度測定はイオンクロマト法にて行った。   EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The purity of inorganic iodide was measured by ion chromatography.

(実施例1)
ジフェニルアミン104.4g(616.9mmol)、4,4’−ジヨ−ドビフェニル62.7g(154.4mmol)、炭酸カリウム42.1g(300mmol)、硫酸銅5水和物0.3g(1.2mmol)を四つ口フラスコに仕込み、内温235〜240℃で3時間反応を行った。反応終了後内温を100℃まで冷却し、トルエン200mlと水57.4mlを加えて10分間攪拌し、その後10分間静置して有機層と水層を分離した。両層を分液後、有機層は減圧濃縮により溶剤を除去し、アセトン245mlを加えて晶析後濾過し、乾燥してN,N,N’,N’−テトラフェニルベンジジン67.9g(収率90.0%)を得た。水層を取り出し、ヨウ化カリウムを含む混合無機塩水溶液として126gを得た。次に、得られた水層にアセトン252mlを加え1分間振り混ぜてから静置すると、有機層と水層とに分離した。外温5℃で更に30分間静置し、有機層を分液し減圧濃縮した。得られたヨウ化カリウムの質量は47.8g(理論回収率93.3%)、純度は98.5%であった。
Example 1
104.4 g (616.9 mmol) of diphenylamine, 62.7 g (154.4 mmol) of 4,4′-diodobiphenyl, 42.1 g (300 mmol) of potassium carbonate, 0.3 g of copper sulfate pentahydrate (1.2 mmol) ) Was charged into a four-necked flask and reacted at an internal temperature of 235 to 240 ° C. for 3 hours. After completion of the reaction, the internal temperature was cooled to 100 ° C., 200 ml of toluene and 57.4 ml of water were added and stirred for 10 minutes, and then allowed to stand for 10 minutes to separate the organic layer and the aqueous layer. After separating the two layers, the solvent was removed from the organic layer by concentration under reduced pressure, 245 ml of acetone was added for crystallization, filtration, drying, and 67.9 g of N, N, N ′, N′-tetraphenylbenzidine (concentration). 90.0%). The aqueous layer was taken out, and 126 g was obtained as a mixed inorganic salt aqueous solution containing potassium iodide. Next, 252 ml of acetone was added to the obtained aqueous layer, shaken for 1 minute, and allowed to stand to separate into an organic layer and an aqueous layer. The mixture was allowed to stand for another 30 minutes at an external temperature of 5 ° C., and the organic layer was separated and concentrated under reduced pressure. The mass of the obtained potassium iodide was 47.8 g (theoretical recovery rate: 93.3%), and the purity was 98.5%.

(実施例2〜21)
実施例1において、用いる有機溶媒とその使用量を代えた以外は実施例1と同様の方法で行った。その結果を表1に示す。
(Examples 2 to 21)
In Example 1, it carried out by the same method as Example 1 except having changed the organic solvent to be used and its usage-amount. The results are shown in Table 1.

Figure 0004653968
Figure 0004653968

(実施例22)
ジフェニルアミン104.4g(616.9mmol)、4,4’−ジヨ−ドビフェニル62.7g(154.4mmol)、炭酸ナトリウム32.3g(300mmol)、硫酸銅5水和物0.3g(1.2mmol)を仕込み、内温235〜240℃で5時間反応した。反応終了後内温100℃まで冷却し、トルエン200mlと水95mlを加えて10分間攪拌し、内温60℃で10分間静置して有機層(上層)と水層(下層)を分液した。有機層を減圧濃縮して溶剤を除去し、アセトン245mlを加えて晶析した。結晶を濾別し、乾燥してN,N,N’,N’−テトラフェニルベンジジン66.8g(収率88.5%)を得た。一方、分液した水層はヨウ化ナトリウムを含む混合無機塩水溶液であり、その質量は155gであった。
次に、上記の水層(混合無機塩層)全量を1000ml四つ口フラスコに仕込み、有機溶剤としてアセトン400mlを加えたところ灰色の無機塩が析出した。外温0℃で冷却しながら更に30分間攪拌し、濾別して残渣を廃棄した。残った濾液を減圧濃縮し、ヨウ化ナトリウム42.2g(理論回収率91.2%)を得た。その純度は98.4%であった。
(Example 22)
104.4 g (616.9 mmol) of diphenylamine, 62.7 g (154.4 mmol) of 4,4′-diodobiphenyl, 32.3 g (300 mmol) of sodium carbonate, 0.3 g of copper sulfate pentahydrate (1.2 mmol) ) And reacted at an internal temperature of 235 to 240 ° C. for 5 hours. After completion of the reaction, the reaction solution was cooled to an internal temperature of 100 ° C., 200 ml of toluene and 95 ml of water were added and stirred for 10 minutes, and allowed to stand at an internal temperature of 60 ° C. for 10 minutes to separate an organic layer (upper layer) and an aqueous layer (lower layer). . The organic layer was concentrated under reduced pressure to remove the solvent, and 245 ml of acetone was added for crystallization. The crystals were separated by filtration and dried to obtain 66.8 g (yield: 88.5%) of N, N, N ′, N′-tetraphenylbenzidine. On the other hand, the separated aqueous layer was a mixed inorganic salt aqueous solution containing sodium iodide, and its mass was 155 g.
Next, when the whole amount of the aqueous layer (mixed inorganic salt layer) was charged into a 1000 ml four-necked flask and 400 ml of acetone was added as an organic solvent, a gray inorganic salt was precipitated. The mixture was further stirred for 30 minutes while cooling at an external temperature of 0 ° C., and filtered to discard the residue. The remaining filtrate was concentrated under reduced pressure to obtain 42.2 g of sodium iodide (theoretical recovery rate: 91.2%). Its purity was 98.4%.

(実施例23)
回収ヨウ化カリウムを用いた4、4’−ジヨードビフェニルの合成
実施例1で反応液から分離した混合無機塩水溶液32.0gにアセトン64mlを添加し、1分間振り混ぜた後外温5℃に冷却して30分間静置した。分液して下層を廃棄し、上層の有機層全量を四つ口フラスコに移した。外温40℃、266kPaの条件で、内温が35℃に到達するまでフラスコ内のアセトン層を減圧濃縮した。濃縮終了後、濃縮液に氷酢酸45.3g、精製濃硫酸7.4g、ジフェニル5.0g(32.4mmol)、過硫酸アンモニウム18.1g(79.3mmol)を仕込み、内温80〜85℃で4時間反応した。反応液にトルエン127ml、水45mlを加えて10分間攪拌した後、80℃を保ちながら10分間静置した。下層の水層を廃棄し、有機層に80℃の温水50mlを加え1分間攪拌し、80℃に保温しながら10分間静置した。再度下層の水層を廃棄し、残った有機層を内温0〜5℃で2時間攪拌晶析した。結晶を濾過し、メタノ−ル30mlで洗浄し、得られた結晶を乾燥して淡黄色鱗片状結晶の目的物10.1g(収率76.7%)を得た。ガスクロマトグラフィー(以下、GCと記載する)による純度は99.9%であった。
(Example 23)
Synthesis of 4,4′-diiodobiphenyl using recovered potassium iodide 64 ml of acetone was added to 32.0 g of the mixed inorganic salt aqueous solution separated from the reaction solution in Example 1, and the mixture was shaken for 1 minute, and then the external temperature was 5 ° C. The mixture was cooled to 30 minutes and allowed to stand for 30 minutes. Liquid separation was performed, the lower layer was discarded, and the entire amount of the upper organic layer was transferred to a four-necked flask. Under the conditions of an external temperature of 40 ° C. and 266 kPa, the acetone layer in the flask was concentrated under reduced pressure until the internal temperature reached 35 ° C. After completion of concentration, 45.3 g of glacial acetic acid, 7.4 g of purified concentrated sulfuric acid, 5.0 g (32.4 mmol) of diphenyl, and 18.1 g (79.3 mmol) of ammonium persulfate were charged into the concentrated solution at an internal temperature of 80 to 85 ° C. Reacted for 4 hours. To the reaction solution, 127 ml of toluene and 45 ml of water were added and stirred for 10 minutes, and then allowed to stand for 10 minutes while maintaining 80 ° C. The lower aqueous layer was discarded, 50 ml of warm water at 80 ° C. was added to the organic layer, stirred for 1 minute, and allowed to stand for 10 minutes while keeping at 80 ° C. The lower aqueous layer was discarded again, and the remaining organic layer was crystallized with stirring at an internal temperature of 0 to 5 ° C. for 2 hours. The crystals were filtered, washed with 30 ml of methanol, and the obtained crystals were dried to obtain 10.1 g (yield: 76.7%) of the desired product as pale yellow scaly crystals. The purity by gas chromatography (hereinafter referred to as GC) was 99.9%.

(実施例24)
回収ヨウ化ナトリウムを用いる4−ヨードビフェニルの合成
実施例22で反応液から分離した混合無機塩水溶液39.4gにアセトン101mlを加え、外温5℃に冷却し30分間攪拌した。析出した結晶を濾別し、濾液を外温40℃、266kPaの条件で内温が35℃に到達するまで減圧濃縮した。濃縮液に氷酢酸76.8g、精製濃硫酸6.2g、ジフェニル28.2g(182.9mmol)、水55g、30%過酸化水素水8.3g(73.2mmol)を仕込み、40℃で30分間攪拌後、内温85〜90℃で4時間反応した。反応液にトルエン41mlを加え10分間攪拌した後、60℃に保温して10分間静置した。下層の水層を廃棄し、25%水酸化ナトリウム水溶液2.0g、水40ml、チオ硫酸ナトリウム2.0gを加え3分間攪拌し、60℃に保温しながら10分間静置した。下層の水層を廃棄し、20%の塩化ナトリウム水溶液40gを加え1分間攪拌し、60℃に保温しながら10分間静置した。下層の水層を廃棄し、残った有機層にメタノール160mlを加えて攪拌しながら内温10℃まで冷却した。内温6〜10℃で5時間晶析し、結晶を濾過してメタノール15mlで洗浄した。得られた結晶を乾燥して微黄色鱗片状結晶の目的物11.7g(収率57.1%)を得た。GCによる純度は97.8%であった。
(Example 24)
Synthesis of 4-iodobiphenyl using recovered sodium iodide 101 ml of acetone was added to 39.4 g of the mixed inorganic salt aqueous solution separated from the reaction solution in Example 22, and the mixture was cooled to an external temperature of 5 ° C. and stirred for 30 minutes. The precipitated crystals were separated by filtration, and the filtrate was concentrated under reduced pressure under the conditions of an external temperature of 40 ° C. and 266 kPa until the internal temperature reached 35 ° C. The concentrated solution was charged with 76.8 g of glacial acetic acid, 6.2 g of purified concentrated sulfuric acid, 28.2 g (182.9 mmol) of diphenyl, 55 g of water, and 8.3 g (73.2 mmol) of 30% aqueous hydrogen peroxide, and the mixture was stirred at 40 ° C. for 30 minutes. After stirring for a minute, the reaction was carried out at an internal temperature of 85 to 90 ° C. for 4 hours. After adding 41 ml of toluene to the reaction solution and stirring for 10 minutes, the mixture was kept at 60 ° C. and allowed to stand for 10 minutes. The lower aqueous layer was discarded, 2.0 g of 25% aqueous sodium hydroxide solution, 40 ml of water and 2.0 g of sodium thiosulfate were added, stirred for 3 minutes, and allowed to stand for 10 minutes while keeping at 60 ° C. The lower aqueous layer was discarded, 40 g of a 20% aqueous sodium chloride solution was added, the mixture was stirred for 1 minute, and allowed to stand for 10 minutes while being kept at 60 ° C. The lower aqueous layer was discarded, and 160 ml of methanol was added to the remaining organic layer and cooled to an internal temperature of 10 ° C. with stirring. Crystallization was performed at an internal temperature of 6 to 10 ° C. for 5 hours, and the crystals were filtered and washed with 15 ml of methanol. The obtained crystals were dried to obtain 11.7 g (yield: 57.1%) of the target product of slightly yellow scale crystals. The purity by GC was 97.8%.

なお、前記の無機ヨウ化物回収の実施例は工業的規模に拡大することができる。例えばグラスライニングやステンレスに代表される耐溶剤性を有する一般的な材質の反応容器で、且つ攪拌装置、凝縮器、濃縮受器等を有する設備であれば、プラント規模の大小を問わず本発明を実施することが可能である。   It should be noted that the examples of inorganic iodide recovery described above can be expanded on an industrial scale. For example, if the reaction vessel is made of a general material having solvent resistance typified by glass lining or stainless steel and has a stirrer, a condenser, a concentration receiver, etc., the present invention can be used regardless of the scale of the plant. Can be implemented.

本発明の回収方法により回収された無機ヨウ化物の工業的なリサイクル方法を説明するための図である。It is a figure for demonstrating the industrial recycling method of the inorganic iodide collect | recovered by the collection method of this invention.

Claims (6)

ヨウ化アンモニウム、ヨウ化鉄(II)、ヨウ化ニッケル、ヨウ化リチウム、ヨウ化カリウム、ヨウ化カルシウム、ヨウ化ナトリウム、ヨウ化バリウム、ヨウ化マグネシウム、ヨウ化セシウムからなる群より選択される少なくとも1つの無機ヨウ化物を含む、脱ヨウ素イオン反応の結果生じた混合無機塩水溶液に、ケトン類、アルコール類、多価アルコール類とその誘導体類、エ−テル類、エステル類、及び含窒素化合物からなる群より選択される少なくとも1種の、25℃の水に対する溶解度が5質量%以上である有機溶媒を加え、前記無機ヨウ化物を分離することを特徴とする無機ヨウ化物の回収方法。 At least selected from the group consisting of ammonium iodide, iron (II) iodide, nickel iodide, lithium iodide, potassium iodide, calcium iodide, sodium iodide, barium iodide, magnesium iodide, cesium iodide To a mixed inorganic salt aqueous solution containing one inorganic iodide as a result of deiodination ion reaction , from ketones, alcohols, polyhydric alcohols and derivatives thereof, ethers, esters, and nitrogen-containing compounds A method for recovering inorganic iodide, comprising adding at least one organic solvent selected from the group consisting of an organic solvent having a solubility in water at 25 ° C. of 5% by mass or more to separate the inorganic iodide. 前記有機溶媒が、下記有機溶媒群より選択される少なくとも1種であることを特徴とする請求項1に記載の無機ヨウ化物の回収方法。  The method for recovering inorganic iodide according to claim 1, wherein the organic solvent is at least one selected from the following organic solvent group.
有機溶媒群:アセチルアセトン、アセトン、メチルエチルケトン、ジアセトンアルコ−ル、アセトアルデヒド、シクロヘキサノン、メタノ−ル、エタノ−ル、アリルアルコ−ル、イソプロピルアルコ−ル、テトラヒドロフルフリルアルコ−ル、n−ブタノール、sec−ブタノール、tert−ブタノ−ル、フルフリルアルコ−ル、プロパルギルアルコ−ル、1−プロパノ−ル、3−メチル−2−ブタノール、3−メチル−1−ペンチン−3−オール、エチレングリコ−ル、エチレンカルボナ−ト、エチレングリコールジアセタート、エチレングリコ−ルジグリシジルエ−テル、エチレングリコ−ルジメチルエ−テル、エチレングリコ−ルモノアセタ−ト、エチレングリコ−ルモノエチルエ−テル、エチレングリコ−ルモノエチルエ−テルアセタ−ト、エチレングリコ−ルモノブチルエ−テル、エチレングリコ−ルモノメチルエ−テル、エチレングリコ−ルモノメチルエ−テルアセタ−ト、エチレングリコ−ルモノメトキシメチルエ−テル、グリセリン、グリセリンジグリシジルエ−テル、グリセリントリジグリシジルエ−テル、グリセリン1,3−ジアセタ−ト、グリセリン1,2−ジメチルエ−テル、グリセリン1,3−ジメチルエ−テル、グリセリントリアセタ−ト、グリセリン1−モノアセタ−ト、2−クロロ−1,3−プロパンジオ−ル、3−クロロ−1,2−プロパンジオ−ル、ジエチレングリコ−ル、ジエチレングリコ−ルエチルメチルエ−テル、ジエチレングリコ−ルジアセタ−ト、ジエチレングリコ−ルジエチルエ−テル、ジエチレングリコ−ルジメチルエ−テル、ジエチレングリコ−ルモノエチルエ−テル、ジエチレングリコ−ルモノエチルエ−テルアセタ−ト、ジエチレングリコ−ルモノブチルエ−テル、ジエチレングリコ−ルモノメチルエ−テル、ジプロピレングリコ−ル、ジプロピレングリコ−ルモノエチルエ−テル、ジプロピレングリコ−ルモノメチルエ−テル、テトラエチレングリコ−ル、トリエチレングリコ−ル、トリエチレングリコ−ルジメチルエ−テル、トリエチレングリコ−ルモノエチルエ−テル、トリエチレングリコ−ルモノメチルエ−テル、トリプロピレングリコ−ル、トリメチレングリコ−ル、トリメチロ−ルエタン、トリメチロ−ルプロパン、1,2−ブタンジオ−ル、1,3−ブタンジオ−ル、プロピレングリコ−ル、プロピレングリコ−ルモノエチルエ−テル、プロピレングリコールモノブチルエーテル、プロピレングリコ−ルモノメチルエ−テル、ヘキシレングリコ−ル、1,5−ペンタンジオ−ル、ポリエチレングリコ−ル、ポリプロピレングリコ−ル、1,4−ジオキサン、ジプロピルエーテル、ジメチルエーテル、テトヒドロフラン、テトラヒドロピラン、トリオキサン、フルフラール、メチラール、メチル−t−ブチルエーテル、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、乳酸メチル、乳酸エチル、γ−ブチロラクトン、アセトニトリル、N−エチルモルホリン、ジイソプロピルエチルアミン、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N,N,N',N’−テトラメチルエチレンジアミン、テトラメチル尿素、トリエタノ−ルアミン、トリエチルアミン。  Organic solvent group: acetylacetone, acetone, methyl ethyl ketone, diacetone alcohol, acetaldehyde, cyclohexanone, methanol, ethanol, allyl alcohol, isopropyl alcohol, tetrahydrofurfuryl alcohol, n-butanol, sec- Butanol, tert-butanol, furfuryl alcohol, propargyl alcohol, 1-propanol, 3-methyl-2-butanol, 3-methyl-1-pentyn-3-ol, ethylene glycol, Ethylene carbonate, ethylene glycol diacetate, ethylene glycol diglycidyl ether, ethylene glycol dimethyl ether, ethylene glycol monoacetate, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether Tar, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethoxymethyl ether, glycerin, glycerin diglycidyl ether, glycerin tridiglycidyl ether -Tell, glycerin 1,3-diacetate, glycerin 1,2-dimethyl ether, glycerin 1,3-dimethyl ether, glycerin triacetate, glycerin 1-monoacetate, 2-chloro-1,3 -Propanediol, 3-chloro-1,2-propanediol, diethylene glycol, diethylene glycol ethyl methyl ether, diethylene glycol diacetate, diethylene glycol diethyl ether, diethylene glycol dimethyl ether Diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monomethyl ether, dipropylene glycol, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether, tetra Ethylene glycol, triethylene glycol, triethylene glycol dimethyl ether, triethylene glycol monoethyl ether, triethylene glycol monomethyl ether, tripropylene glycol, trimethylene glycol, trimethylol ethane , Trimethylolpropane, 1,2-butanediol, 1,3-butanediol, propylene glycol, propylene glycol monoethyl ether, propylene Lene glycol monobutyl ether, propylene glycol monomethyl ether, hexylene glycol, 1,5-pentanediol, polyethylene glycol, polypropylene glycol, 1,4-dioxane, dipropyl ether, dimethyl ether, tetohydro Furan, tetrahydropyran, trioxane, furfural, methylal, methyl-t-butyl ether, methyl formate, ethyl formate, methyl acetate, ethyl acetate, methyl lactate, ethyl lactate, γ-butyrolactone, acetonitrile, N-ethylmorpholine, diisopropylethylamine, 1 , 3-Dimethyl-2-imidazolidinone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N, N ′, N′-tetramethylethylenediamine, tetramethylurea, trieta Noramine, triethylamine.
前記無機ヨウ化物が溶解した前記有機溶媒を回収することを特徴とする請求項1又は2に記載の無機ヨウ化物の回収方法。 The method for recovering an inorganic iodide according to claim 1 or 2, wherein the organic solvent in which the inorganic iodide is dissolved is recovered. 前記脱ヨウ素イオン反応が、芳香族アミン化合物とヨウ素化芳香族化合物の縮合反応であることを特徴とする請求項1〜3のいずれか1項に記載の無機ヨウ化物の回収方法。 The method for recovering an inorganic iodide according to any one of claims 1 to 3, wherein the deiodination ion reaction is a condensation reaction of an aromatic amine compound and an iodinated aromatic compound. 前記無機ヨウ化物を含む混合無機塩水溶液が、前記脱ヨウ素イオン反応を行った反応液に対して、25℃の水に対する溶解度が1.5重量%以下である有機溶剤を加え、濾別して得られた濾過残渣に対して水を加えて調製されたもの、又は、前記脱ヨウ素イオン反応を行った反応液に対して、25℃の水に対する溶解度が1.5重量%以下である有機溶剤と水とを加え、層分離させ、水溶液として分離回収されたものであることを特徴とする、請求項1〜4のいずれか1項に記載の無機ヨウ化物の回収方法。 A mixed inorganic salt aqueous solution containing the inorganic iodide is obtained by adding an organic solvent having a solubility in water at 25 ° C. of 1.5% by weight or less to the reaction solution obtained by the deiodination ion reaction, and separating the solution. An organic solvent and water having a solubility in water at 25 ° C. of 1.5% by weight or less with respect to a solution prepared by adding water to the filtered residue or a reaction solution obtained by performing the deiodination ion reaction The inorganic iodide recovery method according to claim 1, wherein the inorganic iodide is separated and recovered as an aqueous solution . 請求項1〜5のいずれか1項に記載の無機ヨウ化物の回収方法により回収された無機ヨウ化物をそのまま、または酸化剤と反応させてヨウ素に変換した後、ヨウ素化反応に用いることを特徴とするヨウ素化化合物の製造方法。   The inorganic iodide recovered by the inorganic iodide recovery method according to any one of claims 1 to 5 is used as it is or after being converted to iodine by reacting with an oxidizing agent, and then used for an iodination reaction. A method for producing an iodinated compound.
JP2004133544A 2004-04-28 2004-04-28 Inorganic iodide recovery method Expired - Fee Related JP4653968B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004133544A JP4653968B2 (en) 2004-04-28 2004-04-28 Inorganic iodide recovery method
CNB2005100670752A CN100509616C (en) 2004-04-28 2005-04-27 Reclaiming method of inorganic iodide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133544A JP4653968B2 (en) 2004-04-28 2004-04-28 Inorganic iodide recovery method

Publications (2)

Publication Number Publication Date
JP2005314158A JP2005314158A (en) 2005-11-10
JP4653968B2 true JP4653968B2 (en) 2011-03-16

Family

ID=35345778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133544A Expired - Fee Related JP4653968B2 (en) 2004-04-28 2004-04-28 Inorganic iodide recovery method

Country Status (2)

Country Link
JP (1) JP4653968B2 (en)
CN (1) CN100509616C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281754B2 (en) * 2007-03-13 2013-09-04 日宝化学株式会社 Method for producing alkali metal iodide salt solution
CN102351268A (en) * 2011-06-28 2012-02-15 东华大学 Method of recycling inorganic salt in dyeing wastewater
CN104671211B (en) * 2014-01-23 2018-08-17 日宝化学株式会社 The production method and lithium iodide isopropanol complex of alkaline metal iodide or alkaline earth metal iodide
JP6861060B2 (en) * 2017-03-17 2021-04-21 東レ・ファインケミカル株式会社 Method for Producing 4,4'-Diiodot-3,3'-Dimethylbiphenyl
CN112030179B (en) * 2019-06-04 2022-06-17 泰安汉威集团有限公司 Environment-friendly production process of iodate
CN110950360B (en) * 2019-12-09 2022-09-30 广东飞南资源利用股份有限公司 Separation method of sodium bromide and sodium chloride and recovery method of sodium bromide in solid bromine roasting slag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130803A (en) * 1979-03-30 1980-10-11 Ugine Kuhlmann Method of selectively extracting iodine from water solution
JPH01108101A (en) * 1987-10-22 1989-04-25 Nippo Kagaku Kk Separation and recovery of iodine
JPH01261224A (en) * 1988-04-13 1989-10-18 Ise Kagaku Kogyo Kk Production of alkali iodide
WO2003014028A1 (en) * 2001-08-02 2003-02-20 Kabushiki Kaisha Toho Earthtech Method for selective separation of iodine ion, and method for producing alkali salt of iodine ion
JP2005511268A (en) * 2001-12-05 2005-04-28 コミツサリア タ レネルジー アトミーク Process for extraction of iodine
JP2005289736A (en) * 2004-03-31 2005-10-20 Toshiba Corp Method and apparatus for removing iodine in polyhydriodic acid in thermochemical-method hydrogen manufacturing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130803A (en) * 1979-03-30 1980-10-11 Ugine Kuhlmann Method of selectively extracting iodine from water solution
JPH01108101A (en) * 1987-10-22 1989-04-25 Nippo Kagaku Kk Separation and recovery of iodine
JPH01261224A (en) * 1988-04-13 1989-10-18 Ise Kagaku Kogyo Kk Production of alkali iodide
WO2003014028A1 (en) * 2001-08-02 2003-02-20 Kabushiki Kaisha Toho Earthtech Method for selective separation of iodine ion, and method for producing alkali salt of iodine ion
JP2005511268A (en) * 2001-12-05 2005-04-28 コミツサリア タ レネルジー アトミーク Process for extraction of iodine
JP2005289736A (en) * 2004-03-31 2005-10-20 Toshiba Corp Method and apparatus for removing iodine in polyhydriodic acid in thermochemical-method hydrogen manufacturing

Also Published As

Publication number Publication date
CN100509616C (en) 2009-07-08
CN1689966A (en) 2005-11-02
JP2005314158A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
US7378546B2 (en) Method for producing 2-amino-5-iodobenzoic acid
CN110878084A (en) Preparation method of nicosulfuron original drug
JP6987930B2 (en) Method for producing 1- (3,5-dichlorophenyl) -2,2,2-trifluoro-etanone and its derivative
JP4653968B2 (en) Inorganic iodide recovery method
JPH0967366A (en) Production of 2,2-difluorobenzo(1.3)dioxolecarbaldehydes
JP4367996B2 (en) Process for producing iodinated aromatic compounds
EP3941902B1 (en) A process for preparation of trifluoromethanesulfinyl chloride
JP6585044B2 (en) A new method for the preparation of febuxostat
US9440936B1 (en) Synthesis of 3,4-Bis(4-nitro-1,2,5-oxadizaol-3-yl)-1,2,5-oxadizaole-N-oxide (DNTF) using 3-chlorocarbohydroxymoyl-4-nitro-1,2,5-oxadizaole
EP1468983B1 (en) Process for producing 2,5-bis(trifluoromethyl)nitrobenzene
CN1198433A (en) Process to chloroketoamines using carbamates
JP2017530997A (en) Process for preparing halo-substituted trifluoroacetophenones
KR101703008B1 (en) - method for environmentally-friendly -bromination of phenyl alkyl ketone derevatives
JP4803911B2 (en) Method for producing 4,4'-dibromobiphenyl
FR2554812A1 (en) PROCESS FOR THE PREPARATION OF 1,3-BIS (3-AMINOPHENOXY) BENZENE
JP4318755B2 (en) Purification method of substituted p-nitrodiphenyl ethers
JP4478437B2 (en) Method for producing methylene norcamphor
EP0870755A1 (en) Process for the preparation of 4-substituted nitroanilines
CN118159518A (en) Method and intermediates for preparing ipratropium
JP2008247746A (en) Method for producing haloiodoaniline compounds
JP2004182663A (en) Method for manufacturing 4-(trifluoromethoxy)benzyl cyanide
JP5940418B2 (en) Method for producing 3-halogenated aniline
JP2006248963A (en) Method for producing 2,2-bis(3,4-dimethylphenyl)-1,1,1,3,3,3-hexafluoropropane
JP2009137953A (en) Method for producing 3,3',4,4'-tetraaminobiphenyl
JPS59139345A (en) Preparation of diphenyl ether derivative

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4653968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees