JPS5913924A - Method and apparatus for measuring surface temperature of steel material in horizontally moving type continuous heating furnace - Google Patents

Method and apparatus for measuring surface temperature of steel material in horizontally moving type continuous heating furnace

Info

Publication number
JPS5913924A
JPS5913924A JP57123617A JP12361782A JPS5913924A JP S5913924 A JPS5913924 A JP S5913924A JP 57123617 A JP57123617 A JP 57123617A JP 12361782 A JP12361782 A JP 12361782A JP S5913924 A JPS5913924 A JP S5913924A
Authority
JP
Japan
Prior art keywords
limit position
steel material
cylindrical shield
heating furnace
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57123617A
Other languages
Japanese (ja)
Inventor
Yoshii Fukutaka
福高 善已
Katsumi Nishizaki
西崎 克已
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57123617A priority Critical patent/JPS5913924A/en
Publication of JPS5913924A publication Critical patent/JPS5913924A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies

Abstract

PURPOSE:To measure accurately a surface temperature by eliminating an error of backward noise, by moving a cylindrical sheltering body up and down for steel materials and using skillfully the difference in the measured value of radiation energy and the sheltering rate between the position of an ascending limit and that of a descending limit. CONSTITUTION:Outputs of a thermometer 4 at the time when a sheltering body 2 is placed at the position of an ascending limit and that of a descending limit, are denoted by Eu, Ed, the sheltering rates at this time are denoted by Ku, Kd and the calculated sheltering rates are denoted by Kou, Kod. The outputs Eu, Ed are read in an arithmetic device 20 by a detection signal from an ascending limit position detector 12 and a desending limit position detector 13. The thickness (t) of a steel material S placed just under the thermometer 4 from a computer 21 tracking the materials is read by the arithmetic device 20 and the rates Kou, Kod are calculated from the space H between the lower end face of the body 2 and the upper face of the material S and then, the surface temperature Ts of the material S is outputted by calculating on equation from the calculated rates Kou, Kod and an emissivity epsilons of the preliminary set up material S. E(Ts) is the output of the thermometer 4 at the time when the temperature of the body having 1.0 emissivity is Ts.

Description

【発明の詳細な説明】 材の表面温度を測定する技術に関するものである。[Detailed description of the invention] This relates to technology for measuring the surface temperature of materials.

例えば、プツシャ一式加熱炉、回転炉等、鋼材が水平に
移動される加熱炉内における鋼材の表面温度を放射温度
計により非接触にて測定する場合の問題は、炉壁からの
放射エネルギーが、加熱されている鋼材の表面によって
反射され、その輻射エネルギー(以下背向雑音と云う)
が放射温度計に入射することによる誤差である。
For example, the problem with non-contact measurement of the surface temperature of steel using a radiation thermometer in a heating furnace where the steel is moved horizontally, such as a pushchair heating furnace or a rotary furnace, is that the radiant energy from the furnace wall is Radiant energy reflected by the surface of the heated steel material (hereinafter referred to as back noise)
This is the error caused by the radiation entering the radiation thermometer.

この背向雑音による誤差を除去する手段として、従来、
大別して遮蔽法と補正法とがある。
Conventionally, as a means to remove errors caused by this backward noise,
Broadly speaking, there are shielding methods and correction methods.

遮蔽法とは、第1図に示す如く、加熱炉1の天井1aか
ら筒状遮蔽体2を垂設し、天井1aと筒状遮蔽体2どの
貫通孔3の上端に放射温度計4を設け、炉壁1bからの
放射エネルギーが、加熱されている鋼材Sの表面により
反射して生じる背向雑音を、上記筒状遮蔽体2によって
遮蔽し、測定誤差を減少させようとするものである。
In the shielding method, as shown in FIG. 1, a cylindrical shield 2 is hung vertically from the ceiling 1a of the heating furnace 1, and a radiation thermometer 4 is installed at the upper end of the through hole 3 of the ceiling 1a and the cylindrical shield 2. , the cylindrical shielding body 2 shields the backward noise caused by the radiant energy from the furnace wall 1b being reflected by the surface of the heated steel material S, thereby reducing measurement errors.

しかしながら、加熱されている鋼材Sと炉壁1bの温度
差が500℃以上もある連続加熱炉の加熱帯入側での測
温条件下においては、背向雑音による誤差を解消するに
は、1000闘φ以上の筒状遮蔽体2が必要な場合があ
り、これは実用上に困娃性がある。
However, under temperature measurement conditions on the heating zone entrance side of a continuous heating furnace where the temperature difference between the heated steel material S and the furnace wall 1b is 500°C or more, it is necessary to There are cases where a cylindrical shielding body 2 with a diameter larger than φ is required, which is difficult in practice.

一方、補正法とは、例えば第2図に示す如く、加熱炉1
内に、鋼材Sとほぼ同じ反射率を有する比較体5を設置
し、加熱炉1の天井1aに、鋼材Sの位置に対向した貫
通孔3と、比較体5の位置に対向した貫通孔6とを設け
、かつ貫通孔3の上端に放射温度計4を設け、壕だ貫通
孔6の上端に放射温度計7を設け、比較体5の表面から
放射される放射エネルギーが、鋼材Sの表面から放射さ
れる放射エネルギーに比べ無視できるほど少なく々るよ
う比較体5を冷却して、放射温度計7に入射する放射エ
ネルギーを背向雑音のみとなし、かつ放射温度計4によ
る鋼材Sの表面温度の計測値を、放射温度計7による背
向雑音の計測値で補正し、正確な鋼材Sの表面温度を測
定しようとするものである。
On the other hand, the correction method is, for example, as shown in FIG.
A comparison body 5 having almost the same reflectance as the steel material S is installed inside the heating furnace 1, and a through hole 3 facing the position of the steel material S and a through hole 6 facing the position of the comparison body 5 are installed in the ceiling 1a of the heating furnace 1. and a radiation thermometer 4 is provided at the upper end of the through hole 3, and a radiation thermometer 7 is provided at the upper end of the trench through hole 6, so that the radiant energy radiated from the surface of the comparison body 5 is transmitted to the surface of the steel material S. The comparison body 5 is cooled so that it is negligibly small compared to the radiant energy radiated from the surface of the steel material S, and the radiant energy incident on the radiation thermometer 7 is reduced to only backward noise, and the surface of the steel material S measured by the radiation thermometer 4 is The temperature measurement value is corrected by the back noise measurement value obtained by the radiation thermometer 7 to accurately measure the surface temperature of the steel material S.

しかし寿から、鋼材Sと比較体5の反射率の差’t 0
.01以内に納めなければ測定精度が悪く、実施が甚だ
困難である。
However, from Kotobuki, the difference in reflectance between steel material S and comparative material 5't 0
.. If the value is not within 0.01, the measurement accuracy will be poor and implementation will be extremely difficult.

本発明は、かくの如き各従来方法の問題点を解決し、比
較的容易かつ正確に、水平移動式連続加熱炉内における
鋼材の表面温度を測定できるようにしたのである。
The present invention solves the problems of the conventional methods and makes it possible to relatively easily and accurately measure the surface temperature of steel in a horizontally movable continuous heating furnace.

以下に本発明の実施の一例を第3図、第4図に基づき説
明する。
An example of the implementation of the present invention will be explained below based on FIGS. 3 and 4.

第3図において、]は水平移動式連続加熱炉、2は、加
熱炉1内の所定位置における鋼材Sの上面に下端面が対
向するよう、加熱炉10天井1aの貫通孔1Cから上下
動可能に垂設された筒状遮数体であって、この筒状遮蔽
体20貫通孔3の上端には放射温度計4が設けられてい
る。
In FIG. 3, ] is a horizontally movable continuous heating furnace, and 2 is movable up and down from the through hole 1C in the ceiling 1a of the heating furnace 10 so that the lower end face faces the upper surface of the steel material S at a predetermined position in the heating furnace 1. A radiation thermometer 4 is provided at the upper end of the through hole 3 of the cylindrical shield 20 .

上記筒状遮蔽体2の上端部には、連結杆8が設けられて
おり、この連結杆8の上端には、吊り具9が設けられて
いて、加熱炉1の上方なる任意の構造物10に設けられ
ている駆動手段、例えばエアーシリンダー11のピスト
ンロッドllaに吊り具9が連結されている。
A connecting rod 8 is provided at the upper end of the cylindrical shielding body 2, and a hanging tool 9 is provided at the upper end of the connecting rod 8. A hanging tool 9 is connected to a driving means provided in, for example, a piston rod lla of an air cylinder 11.

すなわち、筒状遮蔽体2は、加熱炉1の上方なる任意の
構造物】0からエアーシリンダー11、吊り具9、連結
杆8を介し、加熱炉1の天井1aの貫通孔ICを経て炉
内に垂設されていると共に、エアーシリンダー11によ
って上下動される。
That is, the cylindrical shield 2 is connected to an arbitrary structure above the heating furnace 1 through an air cylinder 11, a hanger 9, a connecting rod 8, and a through hole IC in the ceiling 1a of the heating furnace 1. It is vertically installed in the air cylinder 11 and is moved up and down by an air cylinder 11.

上記エアーシリンダー11には、そのピストンロッドl
laの上昇限位置と下降限位置をそれぞれ検出する検出
手段、例えば検出器12.13が設けられており、前記
筒状遮蔽体2の上昇限位置と下降限位置とを検出する。
The air cylinder 11 has its piston rod l.
Detecting means, such as detectors 12 and 13, are provided to detect the upper limit position and lower limit position of la, respectively, and detect the upper limit position and lower limit position of the cylindrical shield 2.

なお、筒状遮蔽体2の上昇限位置と下降限位置の検出手
段としては、例えば筒状遮蔽体2の連結杆8からタッチ
レバーを突出しておき、かつ構造物10から垂設したア
ームに検出器12.13を上下に設け、筒状遮蔽体2の
上昇限位置においてタッチレバーを介し検出器12を閉
路し、筒状遮蔽体2の下降限位置においてタッチレバー
を介し検出器13を閉路するようにしてもよい。
Note that as a means for detecting the upper limit position and lower limit position of the cylindrical shield 2, for example, a touch lever is protruded from the connecting rod 8 of the cylindrical shield 2, and detection is carried out on an arm hanging vertically from the structure 10. Detectors 12 and 13 are provided above and below, and the detector 12 is closed via the touch lever at the upper limit position of the cylindrical shield 2, and the detector 13 is closed via the touch lever at the lower limit position of the cylindrical shield 2. You can do it like this.

また前記エアーシリンダー11のピストンロッドiia
 i上下動させるタイミング、すなわち筒状遮蔽体2を
上下動させるタイミングは、鋼材Sを移動させる例えば
プッシャーの前進完了信号に同期させればよい。
Also, the piston rod iia of the air cylinder 11
The timing of vertical movement, that is, the timing of vertical movement of the cylindrical shield 2 may be synchronized with, for example, a forward movement completion signal of a pusher for moving the steel material S.

前記筒状遮蔽体2の上端部には横方向に突出したアーム
14が設けられており、このアーム14の内側には筒状
遮蔽体2の外周を囲繞するシール用スカート15が設け
られている。
An arm 14 projecting laterally is provided at the upper end of the cylindrical shield 2, and a sealing skirt 15 surrounding the outer periphery of the cylindrical shield 2 is provided inside this arm 14. .

このシール用スカート15は、加熱炉1の天井1aの貫
通孔IC位置なる天井1aの上面に設けられているシー
ル用水槽Id内に挿入されており、炉内ガスが外部に漏
洩しないようになっている。
This sealing skirt 15 is inserted into a sealing water tank Id provided on the upper surface of the ceiling 1a, which is located at the through hole IC of the ceiling 1a of the heating furnace 1, to prevent the gas inside the furnace from leaking to the outside. ing.

なお、シール用水槽1d内には、水位調整式バルブ利き
給水管によって適量の水が供給され、またシール用水槽
ld内の水は、オーバーフロー管により外部へ排出され
るようになっている。
An appropriate amount of water is supplied into the sealing tank 1d by a water supply pipe with a water level adjustable valve, and the water in the sealing tank 1d is discharged to the outside by an overflow pipe.

前記シール用水槽1dの外周には、アーム14の外側に
設けられている案内ローラー16が接しており、筒状遮
蔽体2が横振れし々いよう垂直に上下動できるようにな
っている。
A guide roller 16 provided on the outside of the arm 14 is in contact with the outer periphery of the sealing water tank 1d, so that the cylindrical shield 2 can vertically move up and down to minimize lateral vibration.

前記筒状遮蔽体2は、内側が二重水冷循環壁2a、力\
゛ 外−面熱壁2bになっており、二重水冷循環壁2aの各
上端部には給水管17、排水管18が設けられている。
The cylindrical shield 2 has a double water cooling circulation wall 2a on the inside, and a
The outer surface is a heated wall 2b, and a water supply pipe 17 and a drain pipe 18 are provided at each upper end of the double water cooling circulation wall 2a.

このようにして、加熱炉1内のml ?!位置における
スキッド】9上の鋼材Sの上面との距離が可変される筒
状遮蔽体2を設置しだのである。
In this way, ml ? ! [Skid in position] A cylindrical shield 2 whose distance from the upper surface of the steel material S on 9 can be varied is installed.

さて、鋼材Sに対し、筒状遮蔽体2の上昇限位置と下降
限位置とでは、筒状遮蔽体2によ・る炉壁からの背向雑
音の遮蔽率がそれぞれ異々るため、放射温度計4の出力
も変化する。
Now, with respect to the steel material S, the shielding rate of backward noise from the reactor wall by the cylindrical shield 2 is different between the upper limit position and the lower limit position of the cylindrical shield 2, so the radiation The output of the thermometer 4 also changes.

そこで、遮蔽体2が上昇限位置にあるときの温度計4の
出力をEll %このときの遮蔽率をKl 、また遮蔽
体2が下降限位置にあるときの温度計4の出力をEd、
このときの遮蔽率をKdとし、鋼材Sの表面温度をTS
 、鋼材Sの放射率をεS、背向雑音をGとすれば、E
ll 、Edは次式で表わされる。
Therefore, the output of the thermometer 4 when the shield 2 is at the upper limit position is Ell %, the shielding rate at this time is Kl, and the output of the thermometer 4 when the shield 2 is at the lower limit position is Ed.
The shielding rate at this time is Kd, and the surface temperature of the steel material S is TS
, if the emissivity of the steel material S is εS, and the backward noise is G, then E
ll and Ed are expressed by the following formula.

E u−ε5E(Ts)十KuG     −・−・・
−(])Ed−ε5E(Ts)+KdG     ・・
・・・・・・・(2)ただし、E(TS)は、放射率が
10の物体の温度がTSのときの温度計4の出力である
E u−ε5E(Ts) 10 KuG −・−・・
-(])Ed-ε5E(Ts)+KdG...
(2) However, E(TS) is the output of the thermometer 4 when the temperature of an object with an emissivity of 10 is TS.

遮蔽体2の計算遮蔽率は、鋼材Sの表面が完全拡散面で
あり、かつ遮蔽体2が完全吸収体で遮蔽体2からの放射
がないという条件が成立するならば、放射伝熱理論から
(3)式のように表わされる。
The calculated shielding rate of the shielding body 2 can be calculated from the radiative heat transfer theory if the conditions that the surface of the steel material S is a perfect diffusive surface and that the shielding body 2 is a perfect absorber and there is no radiation from the shielding body 2 are established. It is expressed as in equation (3).

Ko =m”/ (1+rr? )         
−−・” (3)ただし、m−1ル虫であり、■は、遮
蔽体2の下端面と鋼材Sの」二面との距離、Rは、遮蔽
体2の半径である。
Ko = m”/ (1+rr?)
--.'' (3) However, it is m-1 insects, ■ is the distance between the lower end surface of the shielding body 2 and the second surface of the steel material S, and R is the radius of the shielding body 2.

しかし、現実には上記の条件が完全には満足されないの
で、真の遮蔽率にはK。を用いて次のように表わされる
However, in reality, the above conditions are not completely satisfied, so the true shielding rate is K. It is expressed as follows using .

K−αK O・・・・・・・・・・・・・・・(4)た
だし、αは、上記条件からのズレ具合によって決まる定
数である。
K-αK O (4) However, α is a constant determined by the degree of deviation from the above conditions.

(4)式の関係から、遮蔽体2の上昇限位置における遮
蔽体Kuと、下降限位置における遮蔽率Kdは次のよう
になる。
From the relationship in equation (4), the shielding body Ku at the upper limit position of the shielding body 2 and the shielding rate Kd at the lowering limit position are as follows.

Ku−α・K、u          ・・・・・・・
・・・・・・・・(5)Kd−α・KOd      
    ・・・・・・・・・・・・・・・(6)(5)
式を(1)式に、(6)式を(2)式にそれぞれ代入す
ると次のようになる。
Ku-α・K, u・・・・・・
・・・・・・・・・(5) Kd−α・KOd
・・・・・・・・・・・・・・・(6)(5)
Substituting equation (1) into equation (1) and equation (6) into equation (2) yields the following.

Eu−ε5E(Ts)+α・KOu −G   ・・・
・・・・・・・・・・・・(7)Ed−εBE(T8)
+α・Kod−G    ・・・・・・・・・・・・・
・・(8)そして(力式x抱d−(8)式XKouから
Gを消去すると、E(Ts)は次のようになる。
Eu-ε5E(Ts)+α・Kou-G...
・・・・・・・・・・・・(7) Ed−εBE(T8)
+α・Kod−G ・・・・・・・・・・・・・・・
...(8) And (force formula x d - (8) If G is deleted from the formula XKou, E(Ts) becomes as follows.

E(TS )=(Ko d−Eト抱u ・Ed )/ 
(εS (Ko d−Ko u ) ) ・”(9)従
って鋼材Sの放射率εS1遮蔽体2の上昇限位置におけ
る計算遮蔽率K。U、下降限位置における計算遮蔽率■
6dが求められれば、遮蔽体2の上昇限位置における温
度計4の出力Euと、下降限位置における温度計4の出
力Edとから、鋼材Sの表面温度Tsを求めることがで
きる。
E(TS) = (Ko d-E to hold u ・Ed)/
(εS (Kod−Kou) ) ・”(9) Therefore, the emissivity of the steel material S εS1 Calculated shielding rate K at the upper limit position of the shielding body 2 U, Calculated shielding rate at the lower limit position ■
6d, the surface temperature Ts of the steel material S can be determined from the output Eu of the thermometer 4 at the upper limit position of the shield 2 and the output Ed of the thermometer 4 at the lower limit position.

なお、鋼材Sの放射率εSは、オフラインにて予め求め
ておく。
Note that the emissivity εS of the steel material S is determined in advance off-line.

また測定に当っては、遮蔽体2を水冷によって50〜8
0℃まで冷却する。
In addition, during the measurement, the shielding body 2 was cooled with water to
Cool to 0°C.

しかして、鋼材Sの表面温度の測定手段の一例は、第4
図に示す如く、遮蔽体2が上昇限位置になったときの前
記検出器12からの検出信号により、温度計4の出力E
uを演算器20へ読込ませ、また遮蔽体2が下降限位置
になったときの前記検出器13からの検出信号により、
温度計4の出力Edを演算器20へ読込ませる。
Therefore, an example of the means for measuring the surface temperature of the steel material S is the fourth
As shown in the figure, the output E of the thermometer 4 is determined by the detection signal from the detector 12 when the shield 2 reaches the upper limit position.
u is read into the arithmetic unit 20, and the detection signal from the detector 13 when the shielding body 2 reaches the lowering limit position,
The output Ed of the thermometer 4 is read into the computing unit 20.

また演算器20は、鋼材Sをトラッキングしている計算
機21から、温度計4の直下に位置している鋼材Sの厚
さを読込む。
The calculator 20 also reads the thickness of the steel material S located directly below the thermometer 4 from the computer 21 that tracks the steel material S.

さらに演算器側は、スキッド19の上面1.9aと遮蔽
体2の下端面との距離りから鋼材Sの厚さLを減算して
、遮蔽体2の下端面と鋼材Sの上面との間隔Hから計算
遮蔽率KOu、Kodを算出すると共に、との計算遮蔽
率に、u 、 Kndと、高度計4の出力値1(:l]
 、Edおよび演算器側に予め設定された鋼材Sの放射
率εSとから、(9)式の演算を行って、鋼材Sの表面
温度TSを出力する。
Furthermore, the calculator side subtracts the thickness L of the steel material S from the distance between the upper surface 1.9a of the skid 19 and the lower end surface of the shield 2, and calculates the distance between the lower end surface of the shield 2 and the upper surface of the steel material S. Calculate the calculated shielding rates Kou and Kod from H, and add u, Knd, and the output value of the altimeter 4 1 (:l) to the calculated shielding rate of
, Ed and the emissivity εS of the steel material S preset on the computer side, the calculation of equation (9) is performed to output the surface temperature TS of the steel material S.

以上述べた如く、本発明は、加熱炉内の測温すべき鋼材
に対して筒状遮蔽体を上下動させ、この筒状遮蔽体の上
列限位置と下降限位置とにおける放射エネルギー測定値
および遮蔽率の相違を巧みに用いた新規の補正法であっ
て、例えば加熱帯入側においては、直径350mm程度
の筒状遮蔽体を、その下降限位置における下端面と鋼材
上面との間隔が330 ynm程度になるよう設置して
も、背向雑音の誤差を解消でき、従って正確に、水平移
動式連続加熱炉内における鋼材の表面温度を測定できる
As described above, the present invention moves a cylindrical shield up and down relative to the steel material whose temperature is to be measured in a heating furnace, and measures radiant energy at the upper limit position and lower limit position of the cylindrical shield. This is a new correction method that skillfully uses the difference in the shielding rate and the shielding rate. Even if it is installed so that it is about 330 ynm, it is possible to eliminate the error due to backward noise, and therefore it is possible to accurately measure the surface temperature of the steel material in the horizontally movable continuous heating furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の遮蔽法の概略図、第2図は従来の補正法
の一例を示す概略図、第3図は本発明の実施の一例を示
す概略図、第4図は演算のブロック図である。 (11) 第1図 第2図 (12)
Fig. 1 is a schematic diagram of a conventional shielding method, Fig. 2 is a schematic diagram showing an example of a conventional correction method, Fig. 3 is a schematic diagram showing an example of implementation of the present invention, and Fig. 4 is a block diagram of calculation. It is. (11) Figure 1 Figure 2 (12)

Claims (2)

【特許請求の範囲】[Claims] (1)加熱炉内のスギラド上を水平移動される鋼材の所
定位置において、」二端に放射温度計を有する筒状遮蔽
体を上下動操作し、との筒状遮蔽体の上昇限位置と下降
限位置とにおける筒状遮蔽体を介する鋼材からの放射エ
ネルギーをそれぞれ測定すると共に、筒状遮蔽体の上昇
限位置と下降限位置とにおける筒状遮蔽体による炉壁か
らの輻射エネルギーの遮蔽率をそれぞれ計算し、この各
遮蔽率計算値と前記各放射エネルギー測定値とから鋼材
の表面温度を求めることを特徴とする水平移動式連続加
熱炉内における鋼材の表面温度測定方法。
(1) At a predetermined position of the steel material being moved horizontally on the Sugirad in the heating furnace, move the cylindrical shield having a radiation thermometer at both ends up and down, and set the upper limit position of the cylindrical shield. In addition to measuring the radiant energy from the steel material through the cylindrical shield at the lower limit position and the lower limit position, the shielding rate of the radiant energy from the furnace wall by the cylindrical shield at the upper limit position and lower limit position of the cylindrical shield is measured. A method for measuring the surface temperature of a steel material in a horizontally movable continuous heating furnace, characterized in that the surface temperature of the steel material is determined from each of the calculated shielding ratio values and each of the measured radiant energy values.
(2)加熱炉内の所定位置の鋼材上面に下端面が対向す
るよう加熱炉天井の貫通孔から上下動可能に垂設された
、上端に放射温度計を有する筒状遮蔽体と、この筒状遮
蔽体を上下動させる駆動手段と、筒状遮蔽体の上昇限位
置を検出する上昇限位置検出手段と、筒状遮蔽体の下降
限位置を検出する下降限位置検出手段と、筒状遮蔽体の
上昇限位置検出信号および下降限位置検出信号によって
、筒状遮蔽体を介し放射温度計により測定された鋼材か
らの放射エネルギーの各測定値を読込むと共に、筒状遮
蔽体による炉壁からの輻射エネルギーの各遮蔽率を計算
し、かつこの各遮蔽率計算値および各放射エネルギー測
定値により鋼材の表面温度を演算する演算手段とから成
る水平移動式連続加熱炉内における鋼材の表面温度測定
装置。
(2) A cylindrical shield having a radiation thermometer at its upper end, which is vertically movable from a through hole in the ceiling of the heating furnace so that its lower end faces the upper surface of the steel material at a predetermined position in the heating furnace; a driving means for vertically moving the cylindrical shield; a rising limit position detecting means for detecting a rising limit position of the cylindrical shield; a lowering limit position detecting means for detecting a lowering limit position of the cylindrical shield; According to the ascent limit position detection signal and the descending limit position detection signal of the body, each measurement value of the radiant energy from the steel material measured by the radiation thermometer through the cylindrical shield is read, and the radiant energy from the furnace wall by the cylindrical shield is read. Measuring the surface temperature of steel in a horizontally movable continuous heating furnace, comprising calculation means for calculating each shielding rate of radiant energy and calculating the surface temperature of the steel based on each calculated shielding rate and each measured value of radiant energy. Device.
JP57123617A 1982-07-14 1982-07-14 Method and apparatus for measuring surface temperature of steel material in horizontally moving type continuous heating furnace Pending JPS5913924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57123617A JPS5913924A (en) 1982-07-14 1982-07-14 Method and apparatus for measuring surface temperature of steel material in horizontally moving type continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123617A JPS5913924A (en) 1982-07-14 1982-07-14 Method and apparatus for measuring surface temperature of steel material in horizontally moving type continuous heating furnace

Publications (1)

Publication Number Publication Date
JPS5913924A true JPS5913924A (en) 1984-01-24

Family

ID=14865021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123617A Pending JPS5913924A (en) 1982-07-14 1982-07-14 Method and apparatus for measuring surface temperature of steel material in horizontally moving type continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS5913924A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244505A (en) * 1986-04-17 1987-10-24 Nippon Kokan Kk <Nkk> Plug for producing seamless pipe
WO2009057471A1 (en) 2007-11-01 2009-05-07 Sumitomo Metal Industries, Ltd. Piercing plug, method for regenerating piercing plug, and regeneration facility line for piercing plug
US8544306B2 (en) 2009-03-03 2013-10-01 Nippon Steel & Sumitomo Metal Corporation Plug, piercing-rolling mill, and method of producing seamless tube by using the same
US10150147B2 (en) 2012-07-20 2018-12-11 Nippon Steel & Sumitomo Metal Corporation Piercing plug

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244505A (en) * 1986-04-17 1987-10-24 Nippon Kokan Kk <Nkk> Plug for producing seamless pipe
WO2009057471A1 (en) 2007-11-01 2009-05-07 Sumitomo Metal Industries, Ltd. Piercing plug, method for regenerating piercing plug, and regeneration facility line for piercing plug
US8082768B2 (en) 2007-11-01 2011-12-27 Sumitomo Metal Industries, Ltd. Piercing and rolling plug, method of regenerating such piercing and rolling plug, and equipment line for regenerating such piercing and rolling plug
US8544306B2 (en) 2009-03-03 2013-10-01 Nippon Steel & Sumitomo Metal Corporation Plug, piercing-rolling mill, and method of producing seamless tube by using the same
US10150147B2 (en) 2012-07-20 2018-12-11 Nippon Steel & Sumitomo Metal Corporation Piercing plug

Similar Documents

Publication Publication Date Title
KR101205594B1 (en) Refractory thickness measuring method, and apparatus therefor
NO944658L (en) Procedure for the maintenance of railway tracks
JPS5913924A (en) Method and apparatus for measuring surface temperature of steel material in horizontally moving type continuous heating furnace
JPS6038655Y2 (en) Surface temperature measuring device for steel materials in a horizontally moving continuous heating furnace
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
JPH03145121A (en) Temperature controller for heat treatment of semiconductor
JPS63157047A (en) Instrument for measuring thermal deformation
JPH02168127A (en) Measuring method of surface temperature of substance
RU2378630C2 (en) Method of gas pressure control in fuel element of nuclear reactor
JPS61270840A (en) Temperature measurement of semiconductor wafer
JP2005233790A (en) Method and apparatus for measuring temperature of sheet steel
JPS6314786B2 (en)
CN106289093A (en) Metallurgical equipment lining cutting depth of erosion device for fast detecting and method
SU1234661A1 (en) Method of detecting the heart of self-igntion of coal in coal body
JPH0676924B2 (en) Temperature measuring device
EP0083100A2 (en) Method of measuring pipe temperature
JPS6225973B2 (en)
JPH0341778B2 (en)
JPS5887434A (en) Temperature measuring method for object to be heated in heating furnace
Weigel et al. The vapor pressure of americium (III) chloride: an ultramicro apparatus for the determination of saturation vapor pressures of actinide halides
JPS5956507A (en) Method for estimating position of measuring sonde in blast furnace
JPS6026127Y2 (en) Cooling nozzle position detection device
CN113030420A (en) Device and method for measuring saturated vapor pressure of metal
SU78625A1 (en) Gas Temperature Gauge
JPS6146361A (en) Device for measuring thickness of molten layer of cc powder