JPS5913915B2 - How to treat organic wastewater - Google Patents

How to treat organic wastewater

Info

Publication number
JPS5913915B2
JPS5913915B2 JP6229280A JP6229280A JPS5913915B2 JP S5913915 B2 JPS5913915 B2 JP S5913915B2 JP 6229280 A JP6229280 A JP 6229280A JP 6229280 A JP6229280 A JP 6229280A JP S5913915 B2 JPS5913915 B2 JP S5913915B2
Authority
JP
Japan
Prior art keywords
wastewater
copper
catalyst
porous
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6229280A
Other languages
Japanese (ja)
Other versions
JPS56158185A (en
Inventor
千秋 下平
達雄 森本
嘉則 油科
政禎 井岡
保博 岩瀬
昭典 栗間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP6229280A priority Critical patent/JPS5913915B2/en
Publication of JPS56158185A publication Critical patent/JPS56158185A/en
Publication of JPS5913915B2 publication Critical patent/JPS5913915B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 本発明は有機物含有排水即ち有機排水の湿式酸化による
処理法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating organic matter-containing wastewater, that is, organic wastewater, by wet oxidation.

更に詳しくは有機排水を触媒の存在下に酸素含有ガスと
加圧下若しくは常圧下に接触させ、排水中の有機物を酸
化分解する接触湿式酸化する処理方法に係わるものであ
る。
More specifically, the present invention relates to a catalytic wet oxidation treatment method in which organic wastewater is brought into contact with an oxygen-containing gas in the presence of a catalyst under pressure or normal pressure to oxidize and decompose organic substances in the wastewater.

有機排水の処理方法には、活性汚泥法、散水p床法、廻
転円板法等により代表される微生物処理法と活性炭吸着
法、オゾン酸化法、限外濾過法等の物理化学的処理方法
があり、本発明はその内の物理化学的処理方法特に湿式
酸化法に関するものである。
Treatment methods for organic wastewater include microbial treatment methods such as activated sludge method, sprinkling p-bed method, and rotating disk method, as well as physicochemical treatment methods such as activated carbon adsorption method, ozone oxidation method, and ultrafiltration method. Among them, the present invention relates to a physicochemical treatment method, particularly a wet oxidation method.

有機排水の湿式酸化法は公知であり、特にチンノルマン
法として知られる200〜300℃、30〜100〜/
c4の高温高圧下に酸素又は酸素含有ガスによる有機排
水の酸化処理方法が知られているが、分解に長時間を有
し、又大きな反応器を必要とするので装置の設備費がか
さみ、且つ運転費も高い欠点を有していた。
Wet oxidation methods for organic wastewater are well known, particularly at 200-300°C and 30-100°C, known as the Chin-Normand method.
A method of oxidizing organic wastewater using oxygen or an oxygen-containing gas under high temperature and high pressure of C4 is known, but it takes a long time for decomposition and requires a large reactor, which increases equipment costs. It also had the disadvantage of high operating costs.

最近同法の改良として、各種触媒を使用して短い接触時
間で低温低圧下に有機排水を処理する方法が研究せられ
て居り、例えば特開昭49−34158号、同49−3
7469号、同49−48153号、同49−9415
7号、同49−95462号等には酸化鋼、二酸化マン
ガン、酸化コバルト等金属酸化物を触媒として用いる方
法、又特開昭49−44556等にはパラジウム、白金
等の貴金属を触媒として用いるものが知られている。
Recently, as an improvement to this method, research has been conducted on a method of treating organic wastewater at low temperature and low pressure using various catalysts in a short contact time.
No. 7469, No. 49-48153, No. 49-9415
No. 7, No. 49-95462, etc. disclose a method using metal oxides such as oxidized steel, manganese dioxide, and cobalt oxide as a catalyst, and JP-A No. 49-44556, etc. disclose a method using noble metals such as palladium and platinum as a catalyst. It has been known.

更に特公昭44−22275号、特開昭52−1492
61号及び特開昭53−60877号等には銅化合物を
触媒として用いる湿式酸化法が提案せられている。
Furthermore, Japanese Patent Publication No. 44-22275, Japanese Patent Publication No. 52-1492
A wet oxidation method using a copper compound as a catalyst has been proposed in No. 61 and Japanese Patent Application Laid-Open No. 53-60877.

然し乍ら、之等の金属酸化物及び銅又は銅化合物を触媒
とする有機排水の湿式酸化法においても温度170〜2
20℃、圧力14〜35に4/cdの高温高圧の処理条
件を要し、又処理水中への担持金属の溶出が起りその改
良が求められているのが現状である。
However, in wet oxidation methods of organic wastewater using metal oxides and copper or copper compounds as catalysts, temperatures of 170 to 2
At present, high temperature and high pressure treatment conditions of 20 DEG C. and a pressure of 14 to 35/4/cd are required, and the supported metals elute into the treatment water, so improvements are currently being sought.

本発明はかかる従来提案せられていた有機物の湿式酸化
法の改良に係わり、有機排水を銅金属を予め還元処理し
た銅(以下単に還元銅と称す)を触媒として有機排水を
酸素あるいは酸素含有ガスと接触せしめることにより有
機排水を効果的に処理出来るものである。
The present invention relates to an improvement of the conventionally proposed wet oxidation method for organic matter. Organic wastewater can be effectively treated by bringing it into contact with organic wastewater.

本発明方法によれば分解効率が高いので、小さい反応器
で処理出来、又従来法より低温低圧でも実施出来るので
設備費が低減させることが出来、運転費も低廉であり、
処理水中への担持金属の溶出がなく、低濃度より高濃度
迄の有機物の処理が可能であって、その適用範囲が拡大
出来る。
According to the method of the present invention, the decomposition efficiency is high, so the process can be carried out using a small reactor, and it can be carried out at a lower temperature and lower pressure than the conventional method, so the equipment cost can be reduced, and the operating cost is also low.
There is no elution of supported metals into the treated water, and it is possible to treat organic matter from low concentrations to high concentrations, and the range of application can be expanded.

本発明により処理される有機排水とは活性汚泥処理した
上澄み液、シアン含有排水、フェノール含有排水、高分
子含有排水9石油化学工場排水等の工場排水9食品工場
排水、し尿下水等の汚水排水を意味するものである。
The organic wastewater treated according to the present invention includes activated sludge-treated supernatant, cyanide-containing wastewater, phenol-containing wastewater, polymer-containing wastewater, 9 industrial wastewater such as petrochemical factory wastewater, 9 food factory wastewater, and sewage wastewater such as human waste sewage. It means something.

本発明に用いる触媒は、還元処理した還元銅それ自体、
成るいは担体に担持し還元処理したもの或いは銅合金を
還元したもの等が用いられる。
The catalyst used in the present invention is reduced copper itself which has been subjected to reduction treatment,
Alternatively, those supported on a carrier and subjected to a reduction treatment, or those obtained by reducing a copper alloy, etc. are used.

銅を担体に担持させるには通常の沈着法、共沈法。Copper is supported on a carrier using the usual deposition method or coprecipitation method.

浸漬法、含浸法、噴霧法等により担体に銅化合物を担持
させ、之を還元性雰囲気で還元して還元銅とすればよい
A copper compound may be supported on a carrier by a dipping method, an impregnating method, a spraying method, or the like, and then reduced in a reducing atmosphere to obtain reduced copper.

又還元銅は比表面積及び吸着サイトを増加させる為、多
孔質状で用いることにより更に反応性を向上させること
が出来る。
Further, since reduced copper increases the specific surface area and adsorption sites, the reactivity can be further improved by using it in a porous form.

本発明における還元銅による酸化機構の詳細は明らかで
はないが一種の逓伝体作用によるものと思われる。
Although the details of the oxidation mechanism by reduced copper in the present invention are not clear, it is thought to be due to a type of transmitter action.

発明者等によれば、還元処理を行なわずに銅金属を用い
た場合は、酸化銅と同じ活性しか示さす予じめ還元前処
理して還元銅とすることによりその活性を著しく高めら
れることによるものと思われる。
According to the inventors, when copper metal is used without reduction treatment, it exhibits only the same activity as copper oxide, but its activity can be significantly increased by pre-reduction treatment to form reduced copper. This seems to be due to

例えば前述の特公昭44−22275号公報においては
、金属銅または銅化合物の存在下の湿式酸化法を開示し
ているが、銅板と酸化銅の活性がほぼ同じとして提案さ
れている。
For example, the above-mentioned Japanese Patent Publication No. 44-22275 discloses a wet oxidation method in the presence of metallic copper or a copper compound, which is proposed on the basis that the copper plate and copper oxide have substantially the same activity.

この結果は、銅板表面が酸化銅に変化しているものと推
定でき、本発明の還元前処理については、上記公報で開
示されていないばかりか、反って、その有効性を裏付け
るものと見なし得る。
This result can be inferred that the surface of the copper plate has changed to copper oxide, and not only is the reduction pretreatment of the present invention not disclosed in the above publication, but it can also be considered to support its effectiveness. .

さらに、本発明において還元銅として多孔質還元銅を用
いることによって、通常の還元銅より活性がより向上す
るため、排水処理条件をさらに緩和することも出来る。
Furthermore, by using porous reduced copper as the reduced copper in the present invention, the activity is more improved than that of ordinary reduced copper, so that the wastewater treatment conditions can be further relaxed.

多孔質状態としては、通常、比表面積がo、lrr?/
グ以上、好ましくは1.0i/r以上あればよい。
The porous state usually has a specific surface area of o, lrr? /
It is sufficient if it is at least 1.0 i/r, preferably at least 1.0 i/r.

本発明の方法は、常温(20℃)以上で行うことが出来
、処理する排水の種類等によって適宜選択すればよい。
The method of the present invention can be carried out at room temperature (20° C.) or above, and may be appropriately selected depending on the type of wastewater to be treated.

例えば、流動接触分解装置の排水(以下、FCC排水と
いう)等の一般的な有機排水の場合は、100℃以上の
温度で処理するが、PVA (ポリビニルアルコール)
排水等の高分子含有排水は、100℃以下の比較的低温
で処理することが出来る。
For example, in the case of general organic wastewater such as wastewater from a fluid catalytic cracker (hereinafter referred to as FCC wastewater), it is treated at a temperature of 100°C or higher, but PVA (polyvinyl alcohol)
Polymer-containing waste water such as waste water can be treated at a relatively low temperature of 100°C or less.

また一方、本発明の方法においては、温度を150℃以
上に上げても処理効率に変化がなく、一般的には150
℃以下の温度で処理すればよいが、排水の種類及び処理
条件によっては要すれば150℃以上で処理することも
出来る。
On the other hand, in the method of the present invention, there is no change in processing efficiency even if the temperature is raised to 150°C or higher;
The treatment may be carried out at a temperature of 150° C. or lower, but depending on the type of wastewater and treatment conditions, the treatment can be carried out at a temperature of 150° C. or higher if necessary.

反応系の圧力は、通常は10に;t/c4以下で反応系
を液相に保つ自生圧または、それより幾分高い圧力であ
ればよく、特に大量の酸素含有ガスを用いて反応系を高
圧に保つ必要はない。
The pressure of the reaction system is usually 10; it may be the autogenous pressure that keeps the reaction system in the liquid phase at t/c4 or less, or a slightly higher pressure. There is no need to maintain high pressure.

送入空気量には特に制限はないが湿式酸化法における理
論空気量即ち重クロム酸カリウムによる酸素消費量又は
その20チ過剰以内でよい。
There is no particular limit to the amount of air fed, but it may be within the theoretical amount of air in the wet oxidation method, that is, the amount of oxygen consumed by potassium dichromate, or 20 units in excess thereof.

本発明方法は固定床、流動床のいづれでも行なうことが
出来るので触媒としては、固定床の場合には粒状、板状
等の形状の大なるものを用い、流動床においては粉状、
微粒状等のものを用いればよい。
The method of the present invention can be carried out in either a fixed bed or a fluidized bed, so in the case of a fixed bed, a catalyst with a large shape such as granules or plates is used, and in the case of a fluidized bed, a catalyst in the form of a powder, etc. is used.
Fine particles or the like may be used.

本発明で使用される酸素含有ガスとしては純酸素、空気
、酸素富化ガスの何れをも用いることが出来る。
The oxygen-containing gas used in the present invention may be pure oxygen, air, or oxygen-enriched gas.

反応系のPHは中性乃至アルカリ性がよく通常PH5〜
lO程度のものが用いられる。
The pH of the reaction system is neutral to alkaline, usually 5 to 5.
A liquid of about 1O is used.

排水のPHが酸性側にある場合には之を中和して用い、
酸化の進行により処理液のPHが幾分低下するのが通常
であるが原排水のPHが7.0前後にある場合には特に
支障を生じない。
If the pH of the wastewater is on the acidic side, use it after neutralizing it.
It is normal for the pH of the treatment liquid to decrease somewhat as oxidation progresses, but this does not cause any particular problem when the pH of the raw wastewater is around 7.0.

活性の低下した触媒は再還元して使用すればよく、触媒
として用いる還元銅を得る場合及び上記の再還元の場合
にも還元は水素ガス又は水素含有ガス、一酸化炭素、煙
道ガス、生成ガス等を用いて通常、温度約150〜40
0℃、空間速度2〜5、接触時間1〜4時間において乾
式又は湿式で接触還元し、又はメタノール、ホルマリン
、ギ酸。
Catalysts whose activity has decreased can be re-reduced and used, and in the case of obtaining reduced copper used as a catalyst and in the case of the above-mentioned re-reduction, reduction is performed using hydrogen gas or hydrogen-containing gas, carbon monoxide, flue gas, generated Usually using gas etc. at a temperature of about 150 to 40
Dry or wet catalytic reduction at 0° C., space velocity 2-5, contact time 1-4 hours, or methanol, formalin, formic acid.

ヒドラジン等の還元剤を用いて通常の方法により還元す
ればよい。
Reduction may be carried out by a conventional method using a reducing agent such as hydrazine.

還元状態は、通常、X線マイクロアナライザー(EPM
A)によって分析し、表面に酸素を殆んど検出しない状
態によるものな触媒として用いる。
The reduced state is usually measured using an X-ray microanalyzer (EPM).
It is analyzed by A) and used as a catalyst in a state where almost no oxygen is detected on the surface.

又、触媒の活性低下は、処理水のCOD除去率、TOC
除去率が急激に低下し始める時間を前もって確認して、
それによって再生処理を行うようにすればよい。
In addition, the decrease in catalyst activity will reduce the COD removal rate and TOC of the treated water.
Check in advance when the removal rate starts to drop sharply, and
The reproduction process may be performed accordingly.

再生の方式としては流動床の場合は還元雰囲気帯域を触
媒サイクル中に設ければよく、固定床の場合には複数本
の反応塔を切換えて用いて失活したものを順次再生して
用いればよい。
As for the regeneration method, in the case of a fluidized bed, a reducing atmosphere zone may be provided in the catalyst cycle, and in the case of a fixed bed, multiple reaction columns may be switched and used to sequentially regenerate the deactivated products. good.

上記の如く本願発明方法によれば、従来の湿式酸化法が
高温を要するに反し、還元銅を用いることにより酸化処
理条件を緩和出来るので、反応器の耐圧度を減じること
が出来、建設費を節約出来又反応圧力の低下により動力
費等を低減出来る等その効果は犬である。
As described above, according to the method of the present invention, unlike the conventional wet oxidation method which requires high temperatures, the oxidation treatment conditions can be relaxed by using reduced copper, so the pressure resistance of the reactor can be reduced and construction costs can be saved. Its effects, such as the ability to reduce power costs and the like due to the reduction in reaction pressure, are outstanding.

更に本発明の方法によれば、排水中に含有される有機物
の種類及び量によって多少異なるが、排水中のCODの
64〜94チが酸化分解される。
Furthermore, according to the method of the present invention, 64 to 94 inches of COD in the waste water is oxidized and decomposed, although it varies somewhat depending on the type and amount of organic matter contained in the waste water.

之に対して後に実施例で示す通り、酸化銅を触媒として
用いた場合には、同一排水を同一条件で処理した場合に
その15〜82%が分解されるに過ぎない。
On the other hand, as will be shown later in Examples, when copper oxide is used as a catalyst, only 15 to 82% of the waste water is decomposed when the same waste water is treated under the same conditions.

以下実施例により本発明を具体的に説明するが、本発明
は以下の実施例によって制約されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to the following Examples.

実施例 l 第1図に示す装置を用いてFCC排水について接触湿式
酸化を行った。
Example 1 Catalytic wet oxidation was carried out on FCC wastewater using the apparatus shown in FIG.

排水を原水槽1に入れた後原水ポンプ2によって一定量
宛反応器3に送り、空気は空気ボンベ4より減圧弁5を
経て原水ポンプ2の吐出ラインに注入し、原水と混合し
て反応器に送った。
After putting the waste water into the raw water tank 1, it is sent to the reactor 3 in a fixed amount by the raw water pump 2, and the air is injected from the air cylinder 4 through the pressure reducing valve 5 into the discharge line of the raw water pump 2, mixed with the raw water, and then sent to the reactor 3. Sent to.

反応塔内はニクロム線による反応管ヒーター6により所
定温度に加熱され、処理水、水蒸気及び排水ガスはコン
デンサー7に導かれ、水蒸気は凝縮され、処理水と共に
コンデンサー1に溜められ、之を一定時間毎に抜き取り
分析した。
The inside of the reaction tower is heated to a predetermined temperature by a reaction tube heater 6 using a nichrome wire, and the treated water, steam, and waste gas are led to a condenser 7, where the steam is condensed and stored together with the treated water in the condenser 1, where it is kept for a certain period of time. Each sample was sampled and analyzed.

排出ガスはコンデンサー7を出た後積算流量計8を経て
排出された。
After exiting the condenser 7, the exhaust gas was discharged via an integrating flow meter 8.

反応器は5US304製の外径40#φ、円経14mφ
、高さ720mのステンレス管を用い、反応器に触媒5
0ccを充填し、予じめ水素を反応器に流して温度30
0℃で2時間還元処理して、EPMAで確認し℃用いた
The reactor is made of 5US304 and has an outer diameter of 40#φ and a diameter of 14mφ.
, using a stainless steel tube with a height of 720 m, and a catalyst 5 in the reactor.
Fill the reactor with 0 cc of hydrogen, flow hydrogen into the reactor in advance, and set the temperature to 30 cc.
The mixture was reduced at 0°C for 2 hours, confirmed with EPMA, and used at 0°C.

触媒は表1に示す形状及び性状の銅粒子触媒と半片化学
薬品■社製の多孔質銅触媒夫々を用いた。
As catalysts, a copper particle catalyst having the shape and properties shown in Table 1 and a porous copper catalyst manufactured by Hanka Kagaku Yakuhin ■ were used.

また、比較例として多孔質銅触媒を還元処理せずに用い
た。
Further, as a comparative example, a porous copper catalyst was used without being subjected to reduction treatment.

結果を表1に示す。The results are shown in Table 1.

表1の結果より明らかな通り、還元処理した多孔質銅触
媒(以下多孔質還元銅触媒という。
As is clear from the results in Table 1, the porous copper catalyst subjected to reduction treatment (hereinafter referred to as porous reduced copper catalyst).

)が還元しない多孔質銅触媒(以下多孔質酸化銅触媒と
いう。
) is not reduced (hereinafter referred to as porous copper oxide catalyst).

)に比し、COD及びTOCの除去率において秀れてい
る。
), it has superior COD and TOC removal rates.

更に同じく還元処理した金属鋼触媒においても、比表面
積の大きい細孔を有する多孔質銅触媒の方がCOD及び
TOC除去率において7段と優れた結果が得られている
Furthermore, among the metal steel catalysts that were similarly subjected to reduction treatment, the porous copper catalyst having pores with a large specific surface area was 7 times more excellent in terms of COD and TOC removal rates.

実施例 2 実施例1と同じ方法により、実施例1に用いたのと同じ
多孔質還元銅触媒と多孔質酸化銅触媒を用いてFCC排
水、含フェノール排水、衛生排水及びPVA排水の4種
の排水につき接触湿式酸化を行った。
Example 2 By the same method as in Example 1, using the same porous reduced copper catalyst and porous copper oxide catalyst as used in Example 1, four types of FCC wastewater, phenol-containing wastewater, sanitary wastewater, and PVA wastewater were prepared. The waste water was subjected to catalytic wet oxidation.

結果を表2に示す。The results are shown in Table 2.

表2より明らかな通り、還元操作を施した多孔質還元銅
触媒の方が多孔質酸化銅触媒よりCOD及びTOCの除
去率が数段と向上する。
As is clear from Table 2, the COD and TOC removal rate of the porous reduced copper catalyst subjected to the reduction operation is much higher than that of the porous copper oxide catalyst.

又FCC排水を用いた実験において、コンデンサー7中
の処理水の銅イオンの濃度を分析したところ、多孔質還
元銅触媒の処理水には平均Q、03pPm多孔質酸化銅
触媒の処理水には平均13.3ppmの銅イオンが確認
せられた。
In addition, in an experiment using FCC wastewater, when the concentration of copper ions in the treated water in condenser 7 was analyzed, it was found that the average concentration of copper ions in the treated water of the porous reduced copper catalyst was 13.3 ppm of copper ions were confirmed.

従って多孔質酸化銅触媒を使用した場合には処理水は放
出前史に銅イオンの除去が必要である。
Therefore, when a porous copper oxide catalyst is used, it is necessary to remove copper ions from the treated water before release.

実施例 3 実施例2と同様にして同一の多孔質還元銅触媒と多孔質
酸化銅触媒を用いて反応温度1反応圧力を変えてFCC
排水に対し接触湿式酸化を行った。
Example 3 In the same manner as in Example 2, using the same porous reduced copper catalyst and porous copper oxide catalyst, the reaction temperature and reaction pressure were changed to perform FCC.
Catalytic wet oxidation was performed on wastewater.

結果を表3に示す。The results are shown in Table 3.

表3より明らかな通り反応温度2反応圧力を変えても同
一条件では多孔質還元銅触媒の方が、多孔質酸化銅触媒
よりCOD及びTOC除去率において優れている。
As is clear from Table 3, even if the reaction temperature and reaction pressure are changed, under the same conditions, the porous reduced copper catalyst is superior to the porous copper oxide catalyst in terms of COD and TOC removal rates.

猶多孔質酸化銅触媒の場合には150℃以下ではCOD
及びTOC除去率が極度に低いので表3には掲げるのを
省略した。
In the case of a still porous copper oxide catalyst, COD below 150℃
Since the TOC removal rate was extremely low, it was omitted from Table 3.

又表3より明らかな通り、処理温度を200℃。Also, as is clear from Table 3, the treatment temperature was 200°C.

反応圧力を30Ky/cr&に変えても150℃、10
Kg/caの場合とCOD、TOC除去率において変化
が認められなかった。
Even if the reaction pressure was changed to 30Ky/cr&, it still remained at 150℃ and 10
No change was observed in the COD and TOC removal rates compared to the case of Kg/ca.

実施例 4 実施例1と同様にして、同一の多孔質還元銅触媒を用い
て、PvA排水について、反応温度を変えて、接触湿式
酸化を行った。
Example 4 In the same manner as in Example 1, catalytic wet oxidation was performed on PvA wastewater using the same porous reduced copper catalyst and changing the reaction temperature.

結果を表4に示す。The results are shown in Table 4.

この結果から、PVA排水等の高分子含有排水に関して
は、本発明の方法によれば100℃以下で極めて高い処
理効率が得られ、さらに、常温(20℃)、常圧による
処理でも、十分な効果得られることが認められた。
These results show that for polymer-containing wastewater such as PVA wastewater, the method of the present invention provides extremely high treatment efficiency at temperatures below 100°C, and furthermore, treatment at room temperature (20°C) and normal pressure is sufficient. It was recognized that the effect was obtained.

実施例 5 第1図の装置を用い、実施例1と同一の多孔質還元銅触
媒を用いFCC排水を連続湿式酸化し、時間によるCO
D及びTOCの除去率の変化を見た。
Example 5 Using the apparatus shown in Figure 1, FCC wastewater was continuously wet oxidized using the same porous reduced copper catalyst as in Example 1, and CO
Changes in the removal rate of D and TOC were observed.

反応条件としては温度150℃、圧力10V4/Cm
g空気流量36 Nl/Ftj e原水流量100(1
17寺。
The reaction conditions were a temperature of 150°C and a pressure of 10V4/Cm.
g Air flow rate 36 Nl/Ftj e Raw water flow rate 100 (1
17 temples.

LH8v=2.0である。LH8v=2.0.

表5より明らかな通り、通水時間が9時間を赳えると、
この条件下では処理水質が急激に悪化した。
As is clear from Table 5, if the water flow time is 9 hours,
Under these conditions, the quality of treated water deteriorated rapidly.

之は金属銅触媒が酸化されて酸化銅になるために劣化し
たことによるものと考えられる。
This is thought to be due to deterioration of the metal copper catalyst as it is oxidized to copper oxide.

実施例 6 実施例2によりFCC排水の湿式酸化法により劣化した
多孔質還元銅触媒を水素ガスで温度300℃で空間速度
2で常圧下2時間再生した。
Example 6 The porous reduced copper catalyst degraded by the wet oxidation method of FCC wastewater in Example 2 was regenerated with hydrogen gas at a temperature of 300°C and a space velocity of 2 for 2 hours under normal pressure.

還元ガスは減圧弁の手前より流入し、ポンプ2は停止し
た。
The reducing gas flowed in from before the pressure reducing valve, and the pump 2 stopped.

再生後再びFCC排水と空気を実施例2の方法により再
生前後のCODMnとTOC除去率を測定した。
After the regeneration, the CODMn and TOC removal rates before and after the regeneration of the FCC wastewater and air were again measured by the method of Example 2.

得られた結果を表6に示す。The results obtained are shown in Table 6.

表6より触媒は相当に劣化しても再生により活性を再び
得充分に再生出来ることが確認された。
From Table 6, it was confirmed that even if the catalyst deteriorated considerably, it could be reactivated by regeneration and could be regenerated sufficiently.

実施例 7 実施例6と同じく劣化した多孔質還元銅触媒をホルマリ
ン水溶液(5係濃度)を用い、温度200℃でポンプ2
によりホルマリン溶液を空間速度2で反応塔に通L1チ
ッ素ボンベをボンベ4として用いて反応器にチッ素ガス
を流量36Nt1時で通し、3時間処理した。
Example 7 As in Example 6, a deteriorated porous reduced copper catalyst was pumped into pump 2 at a temperature of 200°C using an aqueous formalin solution (5 parts concentration).
A formalin solution was passed through the reaction tower at a space velocity of 2. An L1 nitrogen cylinder was used as the cylinder 4, and nitrogen gas was passed through the reactor at a flow rate of 36 Nt 1 hour for treatment for 3 hours.

再生後F’CC廃水と空気を反応器に通して湿式酸化を
行った。
After regeneration, the F'CC wastewater and air were passed through the reactor to perform wet oxidation.

結果を表7に示す。The results are shown in Table 7.

表7より、触媒の劣化が還元により充分再生され元の活
性を充分に回復出来ることが確認された。
From Table 7, it was confirmed that the deterioration of the catalyst was sufficiently regenerated by reduction and the original activity could be fully recovered.

【図面の簡単な説明】[Brief explanation of drawings]

図面は実施例に用いた装置の樹略説明70−シ−トであ
る。 1:原水水槽、2:ポンプ、3:反応塔、4:ボンベ、
5:減圧弁、6:ヒーター、1:コンデンサー、8:積
算流量計、X印:試料採取点。
The drawing is a 70-sheet schematic illustration of the apparatus used in the examples. 1: raw water tank, 2: pump, 3: reaction tower, 4: cylinder,
5: Pressure reducing valve, 6: Heater, 1: Condenser, 8: Integrating flow meter, X mark: Sampling point.

Claims (1)

【特許請求の範囲】 1 有機物を含有する排水を酸素含有ガスにより湿式酸
化する方法において、予じめ還元前処理を行った還元銅
あるいは還元銅担持触媒の存在下で処理することを特徴
とする有機排水の処理方法。 2 還元銅が多孔質である特許請求の範囲第1項記載の
方法。 3 処理圧力が10Kg/crA以下である特許請求の
範囲1あるいは2項記載の方法。
[Claims] 1. A method for wet oxidizing wastewater containing organic matter with an oxygen-containing gas, characterized in that the treatment is carried out in the presence of reduced copper or a reduced copper-supported catalyst that has been pre-reduced. How to treat organic wastewater. 2. The method according to claim 1, wherein the reduced copper is porous. 3. The method according to claim 1 or 2, wherein the processing pressure is 10 kg/crA or less.
JP6229280A 1980-05-13 1980-05-13 How to treat organic wastewater Expired JPS5913915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6229280A JPS5913915B2 (en) 1980-05-13 1980-05-13 How to treat organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6229280A JPS5913915B2 (en) 1980-05-13 1980-05-13 How to treat organic wastewater

Publications (2)

Publication Number Publication Date
JPS56158185A JPS56158185A (en) 1981-12-05
JPS5913915B2 true JPS5913915B2 (en) 1984-04-02

Family

ID=13195888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6229280A Expired JPS5913915B2 (en) 1980-05-13 1980-05-13 How to treat organic wastewater

Country Status (1)

Country Link
JP (1) JPS5913915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257828A (en) * 1988-08-22 1990-02-27 Matsushita Electric Works Ltd Electrical heating board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257828A (en) * 1988-08-22 1990-02-27 Matsushita Electric Works Ltd Electrical heating board

Also Published As

Publication number Publication date
JPS56158185A (en) 1981-12-05

Similar Documents

Publication Publication Date Title
AU749633B2 (en) Method for mineralization of organic pollutants in water by catalytic ozonization
JP4118328B2 (en) Process and equipment for wastewater treatment by oxidation and denitrification in the presence of heterogeneous catalysts
WO1997014657A1 (en) Advanced oxidation of water using catalytic ozonation
Lin et al. Effective catalysts for wet oxidation of formic acid by oxygen and ozone
JP4703227B2 (en) Wastewater treatment method
JP2004105831A (en) Method of treating waste water
JPS5913915B2 (en) How to treat organic wastewater
JP4759731B2 (en) Noble metal-containing catalyst having water repellency
JP4177521B2 (en) Method for treating wastewater containing metal and ammonia
JP3507553B2 (en) Treatment method for ammoniacal nitrogen-containing water
JP4013010B2 (en) Method for cleaning and regenerating catalyst
JP3226565B2 (en) Wastewater treatment method
JP4066527B2 (en) Treatment of wastewater containing hydrogen peroxide and ammonia
JPH0227035B2 (en)
JPH07185540A (en) Adsorbent for waste water treatment, treatment of waste water using the same and method of regenerating adsorbent
JP3855326B2 (en) Wastewater treatment method
JP4187845B2 (en) Method for treating ammonia-containing water
JP3272714B2 (en) Wastewater treatment method
JP2004230269A (en) Wastewater treatment method and apparatus therefor
JP3548493B2 (en) Wastewater treatment method
JP3639457B2 (en) Method for treating water containing bromate
JP2000167570A (en) Treatment of waste water
JPH0910602A (en) Method for regenerating catalyst for wet oxidation treatment
JP2547269B2 (en) Treatment of wastewater containing phosphorus compounds
JP3644050B2 (en) Method for treating water containing ammoniacal nitrogen and metal salts