JPS5913841A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPS5913841A
JPS5913841A JP57123295A JP12329582A JPS5913841A JP S5913841 A JPS5913841 A JP S5913841A JP 57123295 A JP57123295 A JP 57123295A JP 12329582 A JP12329582 A JP 12329582A JP S5913841 A JPS5913841 A JP S5913841A
Authority
JP
Japan
Prior art keywords
data
frequency
control
inverter
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57123295A
Other languages
Japanese (ja)
Inventor
Yuichi Ide
井出 祐一
Harunobu Nukushina
治信 温品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57123295A priority Critical patent/JPS5913841A/en
Publication of JPS5913841A publication Critical patent/JPS5913841A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To control the capacity of a compressor to be able to response to the fluctuation in load in wide range, by calculating the optimum frequency to dirve an inverter, to the driving commands from a plurality of room units. CONSTITUTION:The capacity of a compressor 6 necessary to each room unit, based on the load to condition the air, obtained from room units 1a-1c such as the difference between the set temperature value and the data from room temperature sensed by room-temperature sensors 3a-3c, and the data from heat exchanger sensors 4a-4c showing the state of heat exchanging, are put into a control unit 8 as driving commands in the state of control demanding frequency data to an inverter 7. The control unit 8 determines the driving frequency to a compressor 6 from the above-mentioned drive commanding signals and the detected signals from an outdoor heat exchanger sensor 11 and a current sensor 12, and gives commands to the inverter 7. In accordance with the data demanding the maximum value amoung the data of control demanding frequency from the room units 1a-1c, and the number of operated room units, the optimum frequency is calculated based on the predetermined data.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は室内ユニットからの運転指令に基づいて圧縮
機の回転速度を変える空気調和装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an air conditioner that changes the rotational speed of a compressor based on an operation command from an indoor unit.

〔従来技術とその問題点〕[Prior art and its problems]

室外に据え付けられた室外ユニット1台に対し室内ユニ
ットを複数台対応させて運転可能とした空気調和装置(
以下、「マルチエアコン」という)は、室外の据え付は
スペースを縮少することができる等の利点があるため、
都市においては着実にその需要が伸びている。しかし機
能的に見ると、室内ユニットの運転台数が1台の場合と
複数台の場合とでは空気調和負荷が大きく異るため、室
外ユニットを構成する圧縮機の能力制御が必要となる。
An air conditioner that can operate multiple indoor units in response to one outdoor unit installed outdoors (
(hereinafter referred to as "multi air conditioner") has the advantage of being able to reduce the space required when installed outdoors.
Demand is steadily increasing in cities. However, from a functional point of view, the air conditioning load differs greatly between when one indoor unit is in operation and when a plurality of indoor units are in operation, so it is necessary to control the capacity of the compressor that constitutes the outdoor unit.

ここで空気調和負荷とは、室内空気を必要な状態に保つ
ための暖房負荷、冷房負荷および調湿量等をいう。
Here, the air conditioning load refers to a heating load, a cooling load, an amount of humidity control, etc. for maintaining indoor air in a required state.

従来は圧縮機の制御をおこなうに際しては、極数の切り
換えが可能な圧縮機を使用し、この極数金切り換えるこ
とによっておこなっていた。ところが、このような従来
の能力制御では単に圧縮機の極数を切り換えるのみであ
るため、2極、4極の2段切り換えが限度であり、ある
程度の空気調和負荷の変動に対して対応できても、各室
内の温度変化に伴う負荷変動中室内ユニットの運転台数
の変化に伴う能力制御は十分にはおこない得ないという
欠点を有していた。
Conventionally, compressors have been controlled by using a compressor with a switchable number of poles and by switching the number of poles. However, such conventional capacity control simply switches the number of poles on the compressor, so it is limited to two-stage switching of 2-pole and 4-pole, and cannot respond to certain fluctuations in air conditioning load. However, this method also had the disadvantage that it was not possible to adequately control the capacity due to changes in the number of indoor units in operation during load fluctuations due to temperature changes in each room.

また圧縮機の制御にインバータを用い、インバータの出
力周波数を可変することによって圧縮1幾の能力制御を
おこなう方法も採用されているが、マルチエアコンのよ
うに複数の室内ユニットからの運転指令に対応して最適
の周波数に3=1.出してこのインバータの制御をおこ
なう空気調和装置としては適当なものが無かった。
Another method is to use an inverter to control the compressor and control the compression capacity by varying the output frequency of the inverter, but this method also supports operation commands from multiple indoor units like a multi-air conditioner. and set the optimum frequency as 3=1. There was no suitable air conditioner that could be used to control this inverter.

〔発明の目的〕[Purpose of the invention]

この発明の目的はインバータを用いたマルチエアコンに
おいて、複数の室内ユニットからの運転指令に対して最
適のインバータ駆動周波aを算出することにより、広範
囲な負荷変動に対しても有効な圧縮機能力制御が可能な
空気調和装置を提供するにある。
The purpose of the present invention is to calculate the optimal inverter drive frequency a in response to operation commands from multiple indoor units in a multi-air conditioner using an inverter, thereby achieving compression function force control that is effective even over a wide range of load fluctuations. It is possible to provide air conditioning equipment.

〔発明の概要〕[Summary of the invention]

この発明では上記目的を達成するために、周波数’kl
’l変して圧縮機の回転速度を制御するインバータに対
して複数の室内ユニットからの運転指令に基づく最適周
波数を算出して出力し前記インバータの制御をおこなう
空気調和装置において、空気調和負荷に基づく前記運転
指令を前記インバータに対する制御要求周波数データと
して入力し、このデータのうちの最大値を要求するデー
タと前記室内ユニットの運転台数に応じてあらかじめ定
めたデータとに基づいて前記最適周波数を算出する制御
ユニットを設けたことを%徴とする。
In this invention, in order to achieve the above object, the frequency 'kl
In an air conditioner that controls the inverter by calculating and outputting an optimal frequency based on operation commands from multiple indoor units to an inverter that controls the rotation speed of the compressor by changing the rotation speed of the compressor, input the operating command based on the control request frequency data for the inverter, and calculate the optimum frequency based on data requesting a maximum value of this data and data predetermined according to the number of operating indoor units. The percentage mark is that a control unit has been installed.

以下この発明の詳aを実施例に基づいて詳細にd発明す
る。
The details of this invention will be described below based on examples.

〔発明の実施例〕[Embodiments of the invention]

第1図は、この発明がコ箇用されるマルチエアコンのシ
ステム構成図の一例を示したものである。
FIG. 1 shows an example of a system configuration diagram of a multi-air conditioner to which the present invention is applied.

マルチエアコンは室内に取シ付けられる室内ユニットと
からなっており、本実施例の場合には室内ユニットla
、lb、lcの3台と室内ユニット2の1台とからなっ
ている0 各室内ユニツ)la、lb、lcにはそれぞれ室温セン
サ3a、3b、3cと熱交換器上ンサ4a、4b、4c
が取り付けられており、これらのセンサや図示しない操
作スイッチ等の指示に従って室内ユニットla、lb、
lcは運転される。なお、各室内ユニツ)la、lb、
lcは室内4掠5a、5b、5cが接続され、駆動用の
電源が供給てれている。
A multi-air conditioner consists of an indoor unit that is installed indoors, and in the case of this embodiment, the indoor unit la
, lb, lc and one indoor unit 2. Each indoor unit) la, lb, lc has room temperature sensors 3a, 3b, 3c and heat exchanger upper sensors 4a, 4b, 4c, respectively.
are installed, and the indoor units la, lb,
lc is operated. In addition, each indoor unit) la, lb,
LC is connected to four indoor units 5a, 5b, and 5c, and is supplied with driving power.

一方室外ユニット2内にはフレオンガス等の冷却媒体を
圧縮するための圧縮機6と、この圧縮機6に供給される
室外電源100周波数を可変して圧縮機60回転数を制
御し圧縮機の能力側nをおこfzウィンバータフと、こ
のインバータ7を制御する制御ユニット8等が収納され
ている。また室外ユニット2には室外熱交換器センサ1
1や電流センサ12が取り付けられておシ、これらの各
センサ11.12からの検出信号は制御ユニット8に人
力されるようになっている。
On the other hand, inside the outdoor unit 2, there is a compressor 6 for compressing a refrigerant such as Freon gas, and an outdoor power source 100 supplied to the compressor 6. The frequency of the compressor 60 is varied to control the rotation speed of the compressor. A control unit 8 for controlling the inverter 7 and the fz winverter on the side n are housed. In addition, the outdoor unit 2 has an outdoor heat exchanger sensor 1.
1 and a current sensor 12 are attached, and detection signals from these sensors 11 and 12 are manually inputted to the control unit 8.

室内ユニツ)la、lb、lcは温度設定置と室温↓ン
サ3ao、t 3 b 、 3 cからの、室温データ
との差や熱交換センサ4a、4b、4cからの熱交換機
の状態を示すデータ等の空気調和負荷に基づいてその室
内ユニットの動作に必要な圧縮機6の能力を運転指令の
形で制御ユニット8に要求する。
Indoor units) la, lb, and lc are data indicating the difference between the temperature setting and room temperature ↓ room temperature data from sensors 3ao, t3b, and 3c, and the status of the heat exchanger from heat exchange sensors 4a, 4b, and 4c. Based on the air conditioning load, etc., the capacity of the compressor 6 necessary for the operation of the indoor unit is requested to the control unit 8 in the form of an operation command.

この運転指令はインバータ7に対する制御要求周波数デ
ータの形で制+i!1ユニット8に入力される。
This operation command is controlled in the form of control request frequency data for the inverter 7! 1 unit 8.

各室内ユニツ)la、lb、lcからの運転指令はそれ
ぞれ3本ずつ3組の信号線によって制御ユニット8に伝
達される。
Operation commands from each of the indoor units (la, lb, and lc) are transmitted to the control unit 8 through three sets of signal lines, three each.

制御ユニット8はこれらの運転指令信号と室外熱交換セ
ンサ11および心流七ンサ12からの検出イぎ号とから
圧縮機6を運転するのに必要な運転周波数を決定し、こ
れをインバータ7に指令する。
The control unit 8 determines the operating frequency necessary to operate the compressor 6 from these operation command signals and the detection signal from the outdoor heat exchange sensor 11 and the cardiac flow sensor 12, and transmits this to the inverter 7. command.

なお本実施例では制爺叩ユニット8により制御される周
波数範囲は20〜90 I(zである。
In this embodiment, the frequency range controlled by the control unit 8 is from 20 to 90 I(z).

インバータ7は圧縮機6を20〜90 Hzの三相出力
で駆動する。
The inverter 7 drives the compressor 6 with a three-phase output of 20 to 90 Hz.

第2図は、室内ユニットla、lb、lcから制御ユニ
ット8へ送られる運転指令信号を示した図である。
FIG. 2 is a diagram showing operation command signals sent from the indoor units la, lb, and lc to the control unit 8.

運転指令信号はO〜10の11ビツトを1組のデータ分
として構成されており、電源周波数の正の半サイクルを
利用して転送される。
The operation command signal is composed of 11 bits from 0 to 10 as one set of data, and is transferred using the positive half cycle of the power supply frequency.

各ビットは正の半サイクルが0″か”1#かによって次
のような意味をもつ。0ビツトを示す区間Aはデータの
スタートを示すビットでスタートビットと称される。こ
の区間Aは常にスタート時には0#を示す。1ビツト目
を示す区間Bは冷暖房データを示し”0″の時には冷房
を、l″の時には暖房であることを示す。2〜504ビ
ツトを示す区間Cは0〜90 Hzまでの周波数を16
通υのデ・イジタル信号の組合せとして割り付ける周波
数データビットである。
Each bit has the following meaning depending on whether the positive half cycle is 0'' or 1#. Section A indicating 0 bit is a bit indicating the start of data and is called a start bit. This section A always shows 0# at the start. Section B indicating the 1st bit indicates air conditioning data, and when it is "0" it indicates cooling, and when it is l it indicates heating. In section C indicating 2 to 504 bits, the frequency from 0 to 90 Hz is 16
Frequency data bits assigned as a combination of digital signals in common.

周波数の割り付けは表1のようにおこなわれる。Frequency allocation is performed as shown in Table 1.

表1 6ビツト目を示す区間りはレリースビットといわれ、室
内熱交換機センサ4a、4b、4cの検出信号が所定の
値に達した時K”0″の信号を出力し、区間Cのデータ
に優先して運転周波数を下げる制御をおこなうためのビ
ットである。
Table 1 The section indicating the 6th bit is called a release bit, and when the detection signals of the indoor heat exchanger sensors 4a, 4b, and 4c reach a predetermined value, a signal of K"0" is output, and the data of section C is This bit is used to perform control to lower the operating frequency with priority.

また7〜1004ビツトを示す区間Eは常に1sとなっ
ており、スタートビットの区間への位置を制御ユニット
8が判別しやすいようにするだめのビットでストップビ
ットと称される。
Also, the interval E indicating 7 to 1004 bits is always 1 s, and is a bit used to make it easier for the control unit 8 to determine the position of the start bit in the interval, and is called a stop bit.

このように運転指令信号が制御要求周波数データ(区間
C)を含むシリアルデータで構成されたディジタル信号
であるため、室内ユニットと室外ユニットとの間の信号
線を多数必要としなくなるという利点がある。
Since the operation command signal is a digital signal composed of serial data including the control request frequency data (section C) in this way, there is an advantage that a large number of signal lines between the indoor unit and the outdoor unit are not required.

次にこのマルチエアコンの動作について説明する。Next, the operation of this multi air conditioner will be explained.

第2図に示した区間Bのデータは室内ユニットla、l
b、lcの図示しない操作スイッチが入力されることに
より決定される。
The data for section B shown in Fig. 2 is for indoor units la and l.
It is determined by inputting operation switches b and lc (not shown).

すなわち冷房スイッチ1では′0″に、暖房スイッチ1
では′1″にそれぞれ設定され、室外ユニット2の冷凍
サイクルを冷房または暖房サイクルに切り換える動作を
おこなわせる。
In other words, cooling switch 1 is set to '0'', heating switch 1 is set to '0''
, respectively, and the refrigeration cycle of the outdoor unit 2 is switched to the cooling or heating cycle.

区間Cのデータは全て運転中の学内温度および熱交換機
温度により決定される。
All data for section C is determined by the temperature inside the school and the temperature of the heat exchanger during operation.

第3図は冷凍サイクルを室温と温度設定値との差に応じ
て複数のゾーンに分割した状態を示す図である0室温お
よび温度設定値の差の変動範囲は第3図に示したように
室温が下がり勾配の場合と上り勾配の場合とでそれぞれ
複数のゾーンに分けられる。
Figure 3 is a diagram showing a state in which the refrigeration cycle is divided into multiple zones according to the difference between the room temperature and the temperature set value.The fluctuation range of the difference between 0 room temperature and the temperature set value is as shown in Figure 3. The room temperature is divided into multiple zones depending on whether the room temperature is on a downward slope or on an upward slope.

下がり勾配の場合の領域をX1上がり勾配の領域をYと
して図中に示しである。ここでは下がり勾配の場合の領
域Xにおいて室温と温度設定値との差を複数のゾーンに
分けてこのおのおののゾーンに対して制御要求周波数を
割り当てる場合について説明する。
The area in the case of a downward slope is shown as X1, and the area in the case of an upward slope is shown as Y. Here, a case will be described in which the difference between the room temperature and the temperature set value in region X in the case of a downward slope is divided into a plurality of zones and a control request frequency is assigned to each zone.

たとえば室温が温度設定値よりも2゜5で以上高いゾー
ンではその室内ユニットの制御要求周波数データは90
 Hzとなるように対応させ以下2.0t 〜2.5 
tの間では80 Hz 、 −−−−、−1,0t!以
下では0Hz(停止)となるように割り付ける。
For example, in a zone where the room temperature is 2°5 or more higher than the temperature set value, the control required frequency data for that indoor unit is 90.
Hz and below 2.0t ~ 2.5
80 Hz between t, ----, -1,0t! In the following, the frequency is assigned to 0Hz (stop).

これらの温度範囲と制御要求周波数との関係を表2に示
す。
Table 2 shows the relationship between these temperature ranges and control required frequencies.

表2 これは室温と温度設定値との差がたとえば1.0υ〜1
.5υの間にある場合には室内ユニットは制御ユニット
8に対して60Hzの周波数設定信号をインバータ7に
出力するよう運転指令を与えることを意味する。
Table 2 This shows that the difference between room temperature and temperature set value is, for example, 1.0υ~1
.. If it is between 5υ, it means that the indoor unit gives an operation command to the control unit 8 to output a 60Hz frequency setting signal to the inverter 7.

このような制御要求周波数データは3つの室内ユニツ)
la、lb、lcからそれぞれ送られてくるが、制御ユ
ニット8はこれらの3つのデータを入力して最適の周波
数を算出するに当っては次のような手順でおこなう。
Such control request frequency data is for three indoor units)
The control unit 8 inputs these three data and calculates the optimum frequency using the following procedure.

まず、室内ユニットla、Ib、lcから送られてくる
制御要求周波数データのうちもつとも大きい周波数を出
力することを要求しているデータを有効とし、このデー
タと室内ユニットの運転台数に応じてあらかじめ定めた
データとに基づいて最適周波数′ff:q、出するので
おる。
First, among the control request frequency data sent from the indoor units la, Ib, and lc, the data that requests the output of the highest frequency is validated, and the data is determined in advance according to this data and the number of operating indoor units. The optimal frequency 'ff:q is output based on the data obtained.

前述した最大運転周波数を髪求するデータを’MA! 
とし、室内ユニットの運転台数に応じてあらかじめ定め
られたデータとの関係を一例として表3に示した。
'MA!' data to determine the maximum operating frequency mentioned above.
Table 3 shows an example of the relationship with data predetermined according to the number of operating indoor units.

表3に示すように、室内ユニットの運転台数に応じて最
大用波数を3台では90Hz、2台では70Hz1台で
は50 Hzと定め、圧縮機6の必要な能力制御をおこ
なっている。
As shown in Table 3, depending on the number of operating indoor units, the maximum wave number is determined to be 90 Hz for three indoor units, 70 Hz for two indoor units, and 50 Hz for one indoor unit, and the required capacity of the compressor 6 is controlled.

たとえば室内ユニットからの最大制御要求周波数が80
Hzの場合について考えてみると、か°りに室内ユニッ
トの運転台数が1台の場合には表3から明らかなように
この80Hzの制御・要求周波数は採用されず50Hz
に従って圧縮機6は動作することになる。
For example, the maximum control request frequency from the indoor unit is 80.
Considering the case of Hz, if the number of indoor units in operation is one, as is clear from Table 3, the control/required frequency of 80Hz is not adopted and the frequency is 50Hz.
The compressor 6 will operate accordingly.

同様に室内ユニットの運転台数が2台の場合には70ル
に従って運転され、室内ユニットの運転台数が3台の場
合に限シこの最大制御要求周波数の80 Hl、が採用
されることになる。
Similarly, when the number of indoor units in operation is two, they are operated according to 70 Hl, and only when the number of indoor units in operation is three, the maximum control required frequency of 80 Hl is adopted.

このような制御をおこなうことにより冷凍サイクルの過
負荷制御をもおこなうようにしたのである。
By performing such control, overload control of the refrigeration cycle is also performed.

なお沿υ御ユニット8はマイクロコンピュータが主体と
なυその制御仕様もマイコンプログラムに対応させであ
るので、表3に示すような室内ユニットの運転台数に応
じてあらかじめ定めるデータの格納や変更も容易にでき
、しかもこれに基づく制御も簡単におこなうことができ
る〇 〔発明の効果〕 以上実施例に、基づいて詳細に説明したように、この発
明ではマイクロコンピュータを主体とした制御ユニット
を備えて室内ユニットから送られてくる制御寮求周波数
データのうちの最大1直全要求するデータと室内ユニッ
トの運転台数に応じてあらかじめ定めたデータとに基づ
いて圧匈礪の最適運転周波数を制御するように構成し几
ので、空気調料負荷の軽重に伴う不都合を容易に解消す
ることができるとともに、冷凍サイクルの過負荷制御を
もおこなうことができるという利点かめる。
The control unit 8 is mainly based on a microcomputer, and its control specifications are compatible with the microcomputer program, so it is easy to store and change data predetermined according to the number of operating indoor units as shown in Table 3. [Effects of the Invention] As explained in detail based on the embodiments above, the present invention is equipped with a control unit mainly based on a microcomputer. The optimum operating frequency of the compression rack is controlled based on the data requested for up to one shift out of the control dormitory frequency data sent from the unit and data predetermined according to the number of operating indoor units. Because of the structure, it is possible to easily eliminate inconveniences associated with light and heavy air conditioning loads, and also has the advantage that overload control of the refrigeration cycle can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明が適要される空気調和装置の一例を示
すシステム構成図、第2図は運転制御指令のデータ構成
を示す図、第3図は冷凍サイクルを複数のゾーンに分割
した図である。 la、lb、lc・・・室内ユニット、2・・・室外ユ
ニット、6・・・圧縮機、7・・・インバータ、8・・
・制御ユニット。 出願人代理人   猪 股    清 弗1 図 り一−−−−−−−−〜−J 第2図 輌3図 −x −m−−4−−Y −□
Fig. 1 is a system configuration diagram showing an example of an air conditioner to which the present invention is applied, Fig. 2 is a diagram showing the data structure of an operation control command, and Fig. 3 is a diagram showing a refrigeration cycle divided into multiple zones. It is. la, lb, lc...indoor unit, 2...outdoor unit, 6...compressor, 7...inverter, 8...
·Controller unit. Applicant's agent Kiyohisa Inomata 1 Utsuriichi ------------J Figure 2 Figure 3-x -m--4--Y -□

Claims (1)

【特許請求の範囲】 1、周波数を可変して圧縮機の回転速度を1制御するイ
ンバータに対して複数の室内ユニットからの運転指令に
基づく最適周波数を算出して出力し前記インバータの制
御を行う空気調和装置において、空気調和負荷に基づく
前記運転指令を前記インバータに対する制御要求周波数
データとして入力し、このデータのうちの最大値を要求
するデータと前記室内ユニットの運転台数に応じてあら
かじめ定めたデータとに基づいて前記最適周波数を算出
する制御ユニットを設けた事を特徴とする空気調和装置
。 2、前記運転指令が制御要求周波数データを含むシリア
ルデータで構成されるディジタル制御信号である事を特
徴とする特許請求の範囲第1項記載の空気調和装置。
[Claims] 1. Calculates and outputs an optimum frequency based on operation commands from a plurality of indoor units for an inverter that controls the rotational speed of a compressor by varying the frequency, and controls the inverter. In the air conditioner, the operation command based on the air conditioning load is input as control request frequency data for the inverter, data that requests the maximum value of this data, and data predetermined according to the number of operating indoor units. An air conditioner comprising: a control unit that calculates the optimum frequency based on the above. 2. The air conditioner according to claim 1, wherein the operation command is a digital control signal composed of serial data including control request frequency data.
JP57123295A 1982-07-15 1982-07-15 Air-conditioner Pending JPS5913841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57123295A JPS5913841A (en) 1982-07-15 1982-07-15 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123295A JPS5913841A (en) 1982-07-15 1982-07-15 Air-conditioner

Publications (1)

Publication Number Publication Date
JPS5913841A true JPS5913841A (en) 1984-01-24

Family

ID=14857003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123295A Pending JPS5913841A (en) 1982-07-15 1982-07-15 Air-conditioner

Country Status (1)

Country Link
JP (1) JPS5913841A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220846A (en) * 1997-02-07 1998-08-21 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioning apparatus
JP2012233689A (en) * 2012-08-03 2012-11-29 Mitsubishi Electric Corp Controller, control method and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743149A (en) * 1980-08-29 1982-03-11 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743149A (en) * 1980-08-29 1982-03-11 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220846A (en) * 1997-02-07 1998-08-21 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioning apparatus
JP2012233689A (en) * 2012-08-03 2012-11-29 Mitsubishi Electric Corp Controller, control method and program

Similar Documents

Publication Publication Date Title
JPH023893B2 (en)
US4766735A (en) Inverter-aided multisystem air conditioner with control functions of refrigerant distribution and superheating states
JP3163121B2 (en) Air conditioner
JPH01196445A (en) Air conditioner
JPH02223755A (en) Air conditioner
JPS5913841A (en) Air-conditioner
JPS6349640Y2 (en)
WO2020035942A1 (en) Free cooling system
JPH0799287B2 (en) Air conditioner
JPH02217738A (en) Air conditioner
JPS59131845A (en) Control method of compressor in air conditioner
JPS62134437A (en) Air conditioner
JPH06341723A (en) Air conditioner
US20230324070A1 (en) Systems and methods to operate hvac system in variable operating mode
JP2001108283A (en) Controller of air conditioner
JP2831706B2 (en) Air conditioner
JP3454697B2 (en) Air conditioner
JPH02217737A (en) Air conditioner
JPS61195230A (en) Air conditioner
JPS60111835A (en) Capacity control of compressor in plurality of air- conditioning systems
JPH06123474A (en) Plural room-type air conditioner
JPH10232041A (en) Multi-chamber air conditioner
JPH055548A (en) Air conditioner
JPH0221729Y2 (en)
JP2503701B2 (en) Air conditioner