JPS59138049A - High pressure metal vapor electric-discharge lamp - Google Patents

High pressure metal vapor electric-discharge lamp

Info

Publication number
JPS59138049A
JPS59138049A JP932583A JP932583A JPS59138049A JP S59138049 A JPS59138049 A JP S59138049A JP 932583 A JP932583 A JP 932583A JP 932583 A JP932583 A JP 932583A JP S59138049 A JPS59138049 A JP S59138049A
Authority
JP
Japan
Prior art keywords
starting
arc tube
discharge lamp
metal vapor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP932583A
Other languages
Japanese (ja)
Inventor
Takenobu Iida
飯田 武伸
Jiyoujirou Shiina
椎名 城治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP932583A priority Critical patent/JPS59138049A/en
Priority to NL8302923A priority patent/NL8302923A/en
Priority to GB08322506A priority patent/GB2127633B/en
Priority to DE19833330266 priority patent/DE3330266C2/en
Priority to FR8313546A priority patent/FR2532113B1/en
Publication of JPS59138049A publication Critical patent/JPS59138049A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/56One or more circuit elements structurally associated with the lamp

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To stabilize the starting characteristic of a high pressure metal vapor electric-discharge lamp by preventing the operation of a starting circuit until an electric potential is applied to the wall of an emission tube by using the heat- responsive switch of the starting circuit also as a heat-responsive mechanisn for a proximity conductor. CONSTITUTION:A proximity conductor 9 for the assistance of starting is made in contact with the wall of an emission tube 1. At least one end of the proximity condutor 9 is fixed to an emission tube strut through a heat-responsive mechanism. When the breakover voltage of a semiconductor switching element 5 is preset for around 480V, the semiconductor switching element 5 turns on when power source voltage becomes over this level causing the electric charges of a capacitor 7 to be discharged thereby causing an abrupt current to flow in this circuit. As a result relaxation oscillation develops due to the inductance of a stabilizer 12 installed outside the electric discharge tube to produce high voltage pulses. Thus produced voltage is simultaneously applied across the main electrode 2b of the emission tube 1 and the proximity conductor 9 as well as across the main electrodes 2a and 2b thereby starting the electric discharge lamp.

Description

【発明の詳細な説明】 本発明は、高圧ナトリウムランプ等の高圧金属蒸気放電
灯の改良に関し、特に始動を容易にするための始動回路
を内蔵した高圧金属蒸気数゛電灯の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in high-pressure metal vapor discharge lamps such as high-pressure sodium lamps, and more particularly to improvements in high-pressure metal vapor discharge lamps having a built-in starting circuit to facilitate starting.

高圧ナトリウムランプ等の高圧金属蒸気放電灯は一般的
に始動電圧が高く、通常の商用電源電圧にて始動させる
ことは困難である。そこで、最近はランプに組み込んだ
始動回路によって高電圧パルスを発生させ、それを電源
電圧とともに発光管に印加して始動を容易にする手段が
屡々採用さね、ている。かかる放電灯は外部に別置型の
始動装置を接続(7て使用しなくて済むため極めて便利
であることから需要が急速に増大している。
High-pressure metal vapor discharge lamps such as high-pressure sodium lamps generally have a high starting voltage and are difficult to start using normal commercial power supply voltage. Therefore, in recent years, a method has been frequently adopted in which a high-voltage pulse is generated by a starting circuit built into the lamp and applied to the arc tube along with the power supply voltage to facilitate starting. Demand for such discharge lamps is rapidly increasing because they are extremely convenient because they do not require a separate external starter device.

上記のような始り1回路内蔵型の放電灯として現在のと
ころ最も普及しているものは、第1図に示すように発光
管1と並列に、常閉型の熱応動開閉器2と抵抗体3とを
直列に接続してなる始動回路を接続し、これらを外球4
に収納しかつ誘導性の安定器5を介して交流電源6に接
続するように構成り、 fvものである。この構成にお
いて交流電源6を投入すると始動回路に電流が流れ抵抗
体3の発熱により熱応動開閉器2が開閉動作し、それに
伴う始動回路電流の断続により安定器5に高電圧パルス
が発生する。この高電圧パルスは電源電圧とともに発光
管1に印加されるため放電灯は直ちに始動する。
Currently, the most popular type of discharge lamp with a built-in single circuit as described above has a normally closed type thermally responsive switch 2 and a resistor in parallel with the arc tube 1, as shown in Figure 1. A starting circuit formed by connecting the body 3 in series is connected, and these are connected to the outer sphere 4.
It is constructed so as to be housed in an AC power source 6 via an inductive ballast 5, and is an FV type. In this configuration, when the AC power source 6 is turned on, a current flows through the starting circuit and the thermally responsive switch 2 opens and closes due to the heat generated by the resistor 3, and a high voltage pulse is generated in the ballast 5 due to the interruption of the starting circuit current. Since this high voltage pulse is applied to the arc tube 1 along with the power supply voltage, the discharge lamp starts immediately.

放電灯が始動した後は発光管1の発熱で熱応動開閉器2
が開′放状態に保たれるので高電圧パルスの発生が停止
する。ところが、かかる構成には次のよら々欠点がある
。第一に熱応動開閉器2には通常バイメタルスイッチが
用いらねるので、ある程度の開閉動作のムラやバラツキ
を避は得す、その結果始動特性が不安定になる。、第二
に始動特性が不安定であることに起因して異常に高い電
圧)くルスが発生することがあるため、その吸収装置等
を設ける必要がある。第三に始動回路を構成する抵抗体
には通常タングステンフィラメントが用いら力、るので
放電灯への組み込みに工夫を要する、等の諸欠点である
After the discharge lamp starts, the heat response of the arc tube 1 causes the thermal switch 2 to be activated.
is held open, thus stopping the generation of high voltage pulses. However, such a configuration has the following drawbacks. First, since a bimetallic switch is not normally used in the thermally responsive switch 2, some degree of unevenness and variation in opening/closing operation is unavoidable, resulting in unstable starting characteristics. Second, abnormally high voltage (curses) may occur due to unstable starting characteristics, so it is necessary to provide a device to absorb them. Thirdly, since a tungsten filament is usually used as the resistor constituting the starting circuit, there are various drawbacks such as the need for ingenuity when incorporating it into the discharge lamp.

これらの欠点を除去するために、始動回路の構  ゛酸
素子をできるだけ半導体化あるいは電子部品化する試み
がかされているが、これらを放電灯に組み込もうとする
と、耐熱性および寸法の面において極めて厳しい条件を
満足1.々けれげ々らないため、現在オでのところ実用
化されていない。
In order to eliminate these drawbacks, attempts have been made to make the oxygen elements in the starting circuit as semiconductors or electronic components as possible, but when trying to incorporate them into discharge lamps, there are problems in terms of heat resistance and size. Satisfies extremely strict conditions in 1. Due to its limited availability, it has not been put into practical use at present.

本発明は、上記のような点に鑑みてかされたもので、始
動特性が安定[7ており、異常パルス吸収装置等も必要
とせず、小形コンパクトで耐熱性も高い等の長所を有す
る始動回路を内蔵した高圧金属蒸気放電灯を提供せんと
するものである。
The present invention has been devised in view of the above-mentioned points, and has advantages such as stable starting characteristics, no need for an abnormal pulse absorber, etc., small size, compact size, and high heat resistance. The present invention aims to provide a high-pressure metal vapor discharge lamp with a built-in circuit.

第2図は本発明を実施した高圧金属蒸気放電灯の基本的
回路構成を示す。同図において1は少なくとも一対の主
電極2a・2bを有する透光性セラミックから々る発光
管であって、この発光管1の内部には、ナトリウム、水
銀及び始動ガスが封入し、である。
FIG. 2 shows the basic circuit configuration of a high-pressure metal vapor discharge lamp embodying the present invention. In the figure, reference numeral 1 denotes an arc tube made of translucent ceramic having at least a pair of main electrodes 2a and 2b, and the interior of the arc tube 1 is filled with sodium, mercury, and starting gas.

この発光管1と並列に常閉型バイメタルスイッチのごと
き熱応動開閉器3と要すれば抵抗体4を介シて、シリコ
ン・シンメトリカル・スイッチ(SSS)  のごとき
半導体スイッチング素子5とダイオード6の並列回路と
強誘電性セラミックコンデンサー7とを直列に接続して
なる始動回路8が接続しである。寸だ前記発光管1の管
壁には始動補助用の近接導体9が接触させてあり、該近
接i休9の少なくとも一端は熱応動機構を介して発光管
支柱に固定されている。これにより、放電灯が始動した
後は、発光管1からの熱を受けて熱応動機構が働き、近
接導体9を発光管1の管壁から離隔させで、発光管内の
ナトリウムイオンが近接導体9に引かれて外部に漏出す
るのを防ぐ。そしてこれらは前記発光管1とともに外球
10の内部に収納さね、ている。々お、始動回路8はそ
の一部又は全部を外球10の一端に固定された口金11
に収納してもよい。口金11は安定器12を介して交流
電源13に接続される。始動回路8を構成する半導体ス
イッチング素子5はシリコン系のPNPNジャンクショ
ンをもち、そのエレメント部をガラスパッシベーション
をしたうえ外装もガラスモールドで仕上げたものを用い
る。かかるシリコンのジャンクション部は酸化さえし々
ければ400℃〜500℃の温度に耐え得ることが確認
されており、放電灯に組み込んで使用しても何ら問題1
はない。捷たダイオード6も前記半導体装置ッチング素
子5と同様の仕上げのものが既にV O’ 6 Gとい
う型式で市販されているから、それを使用すればよい。
A thermally responsive switch 3 such as a normally closed bimetal switch is connected in parallel to the arc tube 1, and a semiconductor switching element 5 such as a silicon symmetrical switch (SSS) and a diode 6 are connected in parallel via a resistor 4 if necessary. A starting circuit 8 formed by connecting the circuit and a ferroelectric ceramic capacitor 7 in series is connected. A proximate conductor 9 for starting assistance is brought into contact with the wall of the arc tube 1, and at least one end of the proximal conductor 9 is fixed to the arc tube support via a thermally responsive mechanism. As a result, after the discharge lamp is started, the thermal response mechanism works in response to the heat from the arc tube 1, separating the proximal conductor 9 from the tube wall of the arc tube 1, and sodium ions in the arc tube are transferred to the proximal conductor 9. Prevent it from leaking outside due to being attracted to the water. These are housed inside the outer bulb 10 together with the arc tube 1. The starting circuit 8 has a base 11 which is partially or entirely fixed to one end of the outer bulb 10.
It may be stored in The base 11 is connected to an AC power source 13 via a ballast 12. The semiconductor switching element 5 constituting the starting circuit 8 has a silicon-based PNPN junction, the element part is glass passivated, and the exterior is finished with a glass mold. It has been confirmed that such a silicon junction can withstand temperatures of 400°C to 500°C as long as it is not oxidized, and there is no problem with using it in a discharge lamp.
There isn't. The cut diode 6 having the same finish as the semiconductor device switching element 5 is already commercially available in the type V O' 6 G, so it is sufficient to use that diode.

ただこの場合注意すべきは、リード線として銅に半田メ
ッキをしたものが使用されているが、半田メッキは高温
で蒸発するので予め取り除いて陸か々ければならない。
However, in this case, it should be noted that copper plated with solder is used as the lead wire, but since the solder plating evaporates at high temperatures, it must be removed and removed beforehand.

これらの半導体スイッチング素子5及びダイオード6は
外球10および/または同外球10に固定された口金1
1に収納されるが、外球10の内部は通常、真空にされ
ているので、この中に収納しておけば、万一、半導体素
子のガラスパッシベーションが動作中にリークしてもシ
リコン部は酸化されないという利点がある。才た、強誘
電性セラミックコンデンサー7は、チタン酸バリウム(
BaTi03)を主体としたもので、放電灯が通常始動
するような雰囲気温度−30℃〜+60℃において第二
変態点及びギューリ一点を移動させ、圧電性を高めるた
めにシフターとしてチタン酸ストロンチウム(SrTi
O8)および/またはジルコニウム酸バリウム(BaZ
rOs )等を5〜15モル係添加する。咬た、基材の
焼結密度、圧電性及び耐圧性を高めるために、0.2重
量%の二酸化マンガン(M n O□)を添加する。 
そ(7てこれらの混合体を基材とし一般的な粉末プレス
成形法により薄板状に成形したうえ、空気中で1300
℃〜1400℃の最高温度で2時間程度焼成する。次に
焼成した薄板に700℃〜800℃で銀膜電極を焼付け
、これに銀ロウ等でリード線を取り付ける。ぞして最後
に全体を低融点ガラスでオーバーコートする。このオー
バーコートは外球10の内部が真空であるため、チタン
酸バリウム中の酸素が動作中の温度で解離してチタン酸
バリウムが半導体化して耐電圧特性が悪くなるのを防止
し、かつ銀膜電極の昇華を防止するのに役立つ。なお、
熱応動開閉器3及び抵抗体41d耐熱性だけを考慮すれ
ば通常のものを使用することができる。
These semiconductor switching elements 5 and diodes 6 are connected to an outer bulb 10 and/or a base 1 fixed to the outer bulb 10.
However, the inside of the outer bulb 10 is normally kept in a vacuum, so if it is housed inside the outer bulb 10, even if the glass passivation of the semiconductor element leaks during operation, the silicon part will not be damaged. It has the advantage of not being oxidized. The excellent ferroelectric ceramic capacitor 7 is made of barium titanate (
Strontium titanate (SrTi03) is used as a shifter to shift the second transformation point and Gyuri point at the ambient temperature of -30°C to +60°C at which discharge lamps are normally started, and to improve piezoelectricity.
O8) and/or barium zirconate (BaZ
rOs) etc. is added in a proportion of 5 to 15 molar. In order to increase the sintered density, piezoelectricity and pressure resistance of the substrate, 0.2% by weight of manganese dioxide (M n O□) is added.
(7) Using the mixture as a base material, it was formed into a thin plate using a general powder press molding method, and then heated in air for 1300 min.
Baking is performed at a maximum temperature of 1400°C to 1400°C for about 2 hours. Next, a silver film electrode is baked on the fired thin plate at 700°C to 800°C, and a lead wire is attached to this using silver solder or the like. Finally, the whole is overcoated with low melting point glass. Since the inside of the outer sphere 10 is a vacuum, this overcoat prevents the oxygen in the barium titanate from dissociating at operating temperatures and converting the barium titanate into a semiconductor, which deteriorates the withstand voltage characteristics. Helps prevent sublimation of membrane electrodes. In addition,
As long as only the heat resistance of the thermally responsive switch 3 and the resistor 41d is taken into account, ordinary ones can be used.

次に上記放電灯の動作について説明する。先ず、商用の
交流電源13として200V〜240V。
Next, the operation of the discharge lamp will be explained. First, the commercial AC power supply 13 is 200V to 240V.

50 Hz / 60 t(zを安定器12を介して印
加する。
50 Hz/60 t (z applied via ballast 12.

この電圧は常温でオンの状態にある、近接導体9の駆動
片を兼ねt熱応動開閉器3と抵抗体4を介して半導体ス
イッチング素子5とダイオード6の並列回路に印加され
る。この電圧により交流電源電圧の片側サイクルにおい
て強誘電性セラミックコンデンサー7が充電さワル。
This voltage is applied to a parallel circuit of a semiconductor switching element 5 and a diode 6 via a thermally responsive switch 3 and a resistor 4, which also serves as a driving piece for a nearby conductor 9, which is in an on state at room temperature. This voltage charges the ferroelectric ceramic capacitor 7 during one cycle of the AC power supply voltage.

そして次の逆側のサイクルでは前記コンデンサー7の充
電電荷が電源電圧に重畳貞れるため半導体スイッチング
素子5にダイメート6の並列回路の両端a−b間には第
3図に示すような電圧が発生する。この電圧のピーク値
は電源電圧Emが200Vのと六はa点を基準にすると
電源電圧の2d倍の564Vとなる。そこで、予め半導
体スイッチング素子5のブレークオーバー電圧を480
V程変に設定(4,でおけば、電源電圧がとの値以十に
なった時点で半導体スイッチング素子5がオン°になり
、コンデンサ−7の′は1苛が放′痘し、この回路に急
激な電流が流れるために放市灯外一部の安定器]のイン
ダクタンスにより弛張発振が起こり、第4図のような高
電圧パルスが発生する。
In the next reverse cycle, the charge in the capacitor 7 is superimposed on the power supply voltage, so that a voltage as shown in FIG. 3 is generated in the semiconductor switching element 5 between both ends a and b of the parallel circuit of the dimate 6. do. When the power supply voltage Em is 200V, the peak value of this voltage is 564V, which is 2d times the power supply voltage, based on point a. Therefore, the breakover voltage of the semiconductor switching element 5 is set to 480 in advance.
If the voltage is set to 4, the semiconductor switching element 5 will be turned on when the power supply voltage reaches the value 10, and the capacitor 7' will be blown out. As a sudden current flows through the circuit, relaxation oscillation occurs due to the inductance of the ballast outside the market light, and a high voltage pulse as shown in Figure 4 is generated.

この電圧は発光管1の主電極2bと近接導体9の間、及
び両主電極2a・2 b To’Jに同時に印加され、
これにより放電灯は始動する。この場合、抵抗体4は数
サイクルに一度半導体スイツチング素子5がオンするよ
うな時定数が得らゎ、るような値にしておけば、1サイ
クルに1回のパルスを発生させるときよりも高い電圧パ
ルスが得られる。このような点から抵抗体4の抵抗値1
−t5〜60(KΩ〕に選定するのが適当である。
This voltage is simultaneously applied between the main electrode 2b of the arc tube 1 and the adjacent conductor 9, and to both the main electrodes 2a and 2b To'J,
This starts the discharge lamp. In this case, if the value of the resistor 4 is set to such a value that the semiconductor switching element 5 turns on once every few cycles, the time constant will be higher than when generating a pulse once every cycle. A voltage pulse is obtained. From this point, the resistance value 1 of the resistor 4 is
-t5 to 60 (KΩ) is appropriate.

かくして、放電灯が始動すると、発光管1からの熱放射
が増大するため熱応動開閉器3がオフの状態となり、始
動回路8を電源13から切り離す。
Thus, when the discharge lamp starts, heat radiation from the arc tube 1 increases, so the thermally responsive switch 3 turns off, disconnecting the starting circuit 8 from the power source 13.

オた、近接導体9は’ National Techn
ical Report。
Oh, the nearby conductor 9 is 'National Techn.
ical Report.

Vol、27.No、3 、 June 1981” 
「キセノン封入圧力と放電開始電圧の関係」にも記載さ
れているように、発光管1の始動電圧を近接導体のない
ものに比べて100OV位まで低下させる効果がある。
Vol, 27. No. 3, June 1981”
As described in "Relationship between xenon sealing pressure and discharge starting voltage", this has the effect of lowering the starting voltage of the arc tube 1 to about 100 OV compared to one without a nearby conductor.

したがって、これを設けることにより、始動回路8にお
けるパルス発生電圧に余裕をもたせることができ、かつ
安定器12の耐圧にも余裕をもたせることができるため
、きわめて有用である。
Therefore, by providing this, it is possible to provide a margin for the pulse generation voltage in the starting circuit 8, and it is also possible to provide a margin for the withstand voltage of the ballast 12, which is extremely useful.

しかしながら、発光管1の点灯後も近接導体9に電位を
与えておくと、発光管中のナトリウムイオンが電位に引
かれて発光管外に漏出するため、発から遠ざけることが
必要である。また、始動回路8を構成する半導体スイッ
チング素子5とダイオード6も高温雰囲気中では電源か
ら切り離しておく必要がある。そこで、本発明では、前
記近接導体9の熱応動機構と始動回路の熱応動開閉器3
とを兼用するように構成しである。このような構成にす
ると次のような利点がある。
However, if a potential is applied to the adjacent conductor 9 even after the arc tube 1 is lit, the sodium ions in the arc tube will be attracted to the potential and leak out of the arc tube, so it is necessary to keep it away from the source. Further, the semiconductor switching element 5 and diode 6 that constitute the starting circuit 8 must also be separated from the power supply in a high temperature atmosphere. Therefore, in the present invention, the thermally responsive mechanism of the proximity conductor 9 and the thermally responsive switch 3 of the starting circuit are provided.
It is configured so that it can be used for both. Such a configuration has the following advantages.

■ 近接導体9の熱応動機構と始動回路8の熱応動開閉
器を別々に設けたものでは、ラングの再始動時、つまり
、点灯していたランプの電源を切り直ちに投入した場合
、近接導体9が発光管1の管壁に戻る以前に熱応動開閉
器3が閉成することがある。すると始動回路8が動作し
て高電圧パルスが発生するが、発光管内の蒸気圧が高い
ためランプは始動するに至らないことがある。このよう
な状態で高電圧パルスの発生が続くと、安定器の耐圧性
能の劣化、高周波雑音の発生に伴う電波障害、あるいは
始動回路の強誘電性セラミックコンデンサーの振動によ
る早期劣化等の諸現象を捷ね〈。
■ In the case where the thermal response mechanism of the adjacent conductor 9 and the thermal response switch of the starting circuit 8 are provided separately, when restarting the rung, that is, when the lamp that was lit is turned off and then turned on immediately, the adjacent conductor 9 The thermally responsive switch 3 may close before the light returns to the wall of the arc tube 1. The starting circuit 8 then operates and generates a high voltage pulse, but the lamp may not start because of the high vapor pressure within the arc tube. If high voltage pulses continue to occur under these conditions, various phenomena may occur, such as deterioration of the ballast's withstand voltage performance, radio interference due to high frequency noise, or early deterioration due to vibration of the ferroelectric ceramic capacitor in the starting circuit. Take a break〈.

しかし、本発明のように両者を兼用させれば、近接導体
9が完全Vこ発光管壁に接触した後に始動回路8に電源
が印加され−るように構成できるから、前記のごとき欠
点を除去できる。
However, if both are used together as in the present invention, the power is applied to the starting circuit 8 after the proximal conductor 9 comes into contact with the wall of the arc tube with a complete V voltage, so the above-mentioned drawbacks can be eliminated. can.

(2)熱応動機構が一つになるので、組立及び調整が容
易に々す、動作の信頼性が向上するだけで彦く、生産コ
ストも安くなる。
(2) Since there is only one thermally responsive mechanism, assembly and adjustment are easy, operational reliability is improved, and production costs are reduced.

第5図は抵抗体4をダイオード6と直列に接続したうえ
これらを半導体スイッチング素子5と並列に接続また、
本発明の他の実施例を示(7、第7図はその具体的発光
管マウント構造を示す。これらは、発光管1の点灯中に
近接導体9が発光管壁から離隔する構造のものである。
In FIG. 5, a resistor 4 is connected in series with a diode 6, and these are connected in parallel with a semiconductor switching element 5.
Another embodiment of the present invention is shown in FIG. be.

第7図のように二つのバイメタル片を発光管1の土部と
下部の二個所で発光管支持柱に溶接し、そバーらバイメ
タル片の聞にモリブデン又はタンタル等の高融点金属線
をわたし、これを近接導体9とし、かつ下部のバイメタ
ル片をもって熱応動開閉器3を構成したものである。両
図において同じ部品は同一番号をもって示しである。
As shown in Fig. 7, two bimetal pieces are welded to the arc tube support column at two places, one at the base and the other at the bottom of the arc tube 1, and a high melting point metal wire such as molybdenum or tantalum is wired between the two bimetal pieces. This is used as the proximity conductor 9, and the lower bimetal piece constitutes the thermally responsive switch 3. Identical parts are designated by the same numbers in both figures.

また第6図は、近接導体9を発光管壁に巻きつけた実施
例を示1−1第8図はその具体的発光管マウント構造を
示す。これらにおいても同じ部品は同一番号をもって示
しである。
Further, FIG. 6 shows an embodiment in which the proximal conductor 9 is wound around the wall of the arc tube, and FIG. 1-1 shows a specific arc tube mounting structure thereof. In these figures, the same parts are designated by the same numbers.

最後に本発明の具体的設計例について説明する。Finally, a specific design example of the present invention will be explained.

第2図に示すような回路構成のものを定格電力360W
の高圧ナトリウムランプにおいて実施した例である。発
光管1は内部にす) IJウム、水銀とともにキセノン
ガスを封入[7たものを使用1〜た。
The circuit configuration shown in Figure 2 has a rated power of 360W.
This is an example carried out in a high-pressure sodium lamp. The interior of the arc tube 1 was filled with xenon gas along with IJ and mercury.

また半導体スイッチング素子5にIdPNPN ジャン
クションをガラスパッシベーションし外装モカラスモー
ルドしたシリコン・シンメトリカル・スインf(SSS
) を使用した。このブレークオーバー電圧は480V
、動作時電流は実効値でIAである。さらに、ダイオー
ド6には、シリコンPNジャンクションをガラスパッシ
ベーションし外装もガラスモールドしたものを使用した
。この逆耐電圧は600V、順方向電流は1.IAであ
る。
In addition, the semiconductor switching element 5 has a silicon symmetrical swing f (SSS) with an IdPNPN junction glass passivated and an exterior mokara molded.
) It was used. This breakover voltage is 480V
, the operating current is IA in effective value. Further, as the diode 6, a silicon PN junction with glass passivation and an exterior molded with glass was used. The reverse withstand voltage is 600V, and the forward current is 1. It is IA.

抵抗体4には30にΩのカーボン皮膜抵抗を使用した。As the resistor 4, a 30Ω carbon film resistor was used.

また、強誘電性セラミックコンデンサー7は茨のものを
使用した。すなわち、チタン酸バリウム(BaTiOs
)とチタン酸ストロンチウA (SrTiOs )とジ
ルコニウム酸バリウム(B a Z r Os )  
(’) 各粉末の混合体0径36 mm +厚み0.5
 mnの円板状にプレス成形し、1400℃で2時間焼
成した。焼成後の直径Fi31間となり、これに直径3
0mxの銀膜電極を750℃で焼き付けたうえ、該電極
にリード線をロウ付けした。そのうえで全体を熱膨張係
数90 X 10−’/℃のガラス粉末でオーバーコー
トし焼成をした。使用したコンデンサーの静電容量は0
.05 μFである。上記のような回路構成素子を第2
図に示すように結線1−たう−え外球1゜の内部に収納
し、同外球】0の内部は高真空としである。かかる放電
灯を400W用のチョークコイルと力率改善用のコンデ
ンサとを備えた高力率型安定器にて点灯したところ、電
源電圧180Vで直ちに始動し、始動後3分以内で熱応
動開閉器が動作12て始動回路が切り離され通常点灯状
態に移った。再始動時間は12分位で、無駄な高圧パル
スも発生せず瞬時に再始動した。そして、寿命試験とし
て、放電灯を投光器に装着し、11時間点灯、1時間消
灯のサイクルで10,000時間経過したが全く異常1
l−j認められなかった。
Further, as the ferroelectric ceramic capacitor 7, Ibara's was used. That is, barium titanate (BaTiOs
), strontium A titanate (SrTiOs), and barium zirconate (B a Z r Os )
(') Mixture of each powder 0 diameter 36 mm + thickness 0.5
It was press-molded into a disk shape of 1,400 mn and baked at 1400° C. for 2 hours. After firing, the diameter will be between Fi31, and this will have a diameter of 3.
A 0 mx silver film electrode was baked at 750° C., and a lead wire was brazed to the electrode. Then, the whole was overcoated with glass powder having a thermal expansion coefficient of 90 x 10-'/°C and fired. The capacitance of the capacitor used is 0
.. 05 μF. The circuit components as described above are
As shown in the figure, the wire connection 1 is housed inside an outer sphere of 1°, and the inside of the outer sphere is kept under high vacuum. When such a discharge lamp was turned on using a high power factor type ballast equipped with a 400W choke coil and a capacitor for improving the power factor, it started immediately at a power supply voltage of 180V, and the thermal switch was activated within 3 minutes after starting. In operation 12, the starting circuit was disconnected and the lamp returned to the normal lighting state. The restart time was about 12 minutes, and the restart was instantaneous without any unnecessary high-pressure pulses. As a life test, a discharge lamp was attached to the floodlight, and after 10,000 hours of 11 hours on and 1 hour off, no abnormalities were found.
l-j was not recognized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の高圧金属蒸気放電灯の回路図、@2図
、第5図及び第6図は本発明に係る高圧金属蒸気放電灯
の回路図、第3図および第4図は同放電灯の回路の一部
の電圧波形図、第7図及び第8図は実際の組立図である
。 第2図、第5図乃至第8図において、1・・・発光管、
2g・2b・・主電極、3・・・熱応動開閉器、4・・
・抵抗体、5・・・半導体スイッチング素子、6・・・
ダイオード、7・・・強誘電性セラミックコンデンサー
、8・・・始動回路、9・・・近接導体、10・・・外
球、11・・・口金、12・・安定器、13・・・交流
電源。 第1図 第2図 10 第3図 第4図
Figure 1 is a circuit diagram of a conventional high pressure metal vapor discharge lamp, Figure 2, Figures 5 and 6 are circuit diagrams of a high pressure metal vapor discharge lamp according to the present invention, and Figures 3 and 4 are the same. Voltage waveform diagrams of part of the discharge lamp circuit, FIGS. 7 and 8, are actual assembly diagrams. In FIG. 2, FIG. 5 to FIG. 8, 1... arc tube;
2g/2b...Main electrode, 3...Thermal response switch, 4...
・Resistor, 5... Semiconductor switching element, 6...
Diode, 7... Ferroelectric ceramic capacitor, 8... Starting circuit, 9... Proximity conductor, 10... Outer bulb, 11... Cap, 12... Ballast, 13... Alternating current power supply. Figure 1 Figure 2 10 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 少なくとも一対の主電極(2a)・(2b)を有す
る発光管(1)と、該発光管(11の管壁に熱応動機構
を介して電位を付加せしめる始動補助用の近接導体(9
)と、半導体スイッチング素子(5)とダイオード(6
)の並列回路に強誘電性セラミックコンデンサ(7)と
熱応動開閉器(3)を直列に接続しかつこれらを発光管
t11に対して並列に接続[、でなる始動回路(8)と
を備えてなり、該始動回路(8)の熱応動開閉器(3)
を前記近接導体(9)用の熱応動機構と兼用させること
により、発光管(1)の管壁に電位が付加される状態に
なるまでは、始動回路18)が動作しないように構成し
たことを特徴とする高圧金属蒸気放電灯。 2、始動補助用の近接導体(9)は、熱応動機構によっ
て発光管(1)の管壁に接触および離隔するように構成
されていることを特徴とする特許請求の範囲第1項記載
の高圧金属蒸気放電灯。 3、 始動補助用の近接導体(9)は、熱応動機構によ
り発光管(1)の少なくとも一方の電極から電気的に遮
断されるように構成されていることを特徴とする特許請
求の範囲第1項記載の高圧金属蒸気放電灯。 4 発光管(1)は、透光性セラミックをもって構成さ
れており、該発光管(1)の内部にはアルカリ金属のご
とき発光金属と始動ガスと緩衝ガス源とが封入されてい
ることを特徴とする特許請求の範囲第1項記載の高圧金
属蒸気放電灯。 5、 始動回路(8)を構成する半導体スイッチング素
子(5)とターイオード(6)の並列回路の前記ダイオ
ードf61と直列に、5[KΩ]〜60〔KO3の抵抗
体(4)を接続したことを特徴とする特許請求の範囲第
1項記載の高圧金属蒸気放電灯。
[Claims] 1. An arc tube (1) having at least one pair of main electrodes (2a) and (2b), and a starting aid for applying a potential to the tube wall of the arc tube (11) via a thermal response mechanism. adjacent conductor (9
), semiconductor switching element (5) and diode (6
), a ferroelectric ceramic capacitor (7) and a thermally responsive switch (3) are connected in series to the parallel circuit, and these are connected in parallel to the arc tube t11. Thermal response switch (3) of the starting circuit (8)
is also used as a thermal response mechanism for the adjacent conductor (9), so that the starting circuit (18) does not operate until a potential is applied to the wall of the arc tube (1). A high-pressure metal vapor discharge lamp featuring: 2. The starting aid proximity conductor (9) is configured to contact and separate from the wall of the arc tube (1) by a thermally responsive mechanism. High pressure metal vapor discharge lamp. 3. The starting assisting proximity conductor (9) is configured to be electrically isolated from at least one electrode of the arc tube (1) by a thermal response mechanism. The high-pressure metal vapor discharge lamp according to item 1. 4. The arc tube (1) is made of translucent ceramic, and the interior of the arc tube (1) is filled with a luminescent metal such as an alkali metal, a starting gas, and a buffer gas source. A high-pressure metal vapor discharge lamp according to claim 1. 5. A resistor (4) of 5 [KΩ] to 60 [KO3] is connected in series with the diode f61 of the parallel circuit of the semiconductor switching element (5) and the diode (6) constituting the starting circuit (8). A high-pressure metal vapor discharge lamp according to claim 1, characterized in that:
JP932583A 1982-08-23 1983-01-25 High pressure metal vapor electric-discharge lamp Pending JPS59138049A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP932583A JPS59138049A (en) 1983-01-25 1983-01-25 High pressure metal vapor electric-discharge lamp
NL8302923A NL8302923A (en) 1982-08-23 1983-08-19 HIGH-PRESSURE METAL VAPOR DISCHARGE LAMP.
GB08322506A GB2127633B (en) 1982-08-23 1983-08-22 High pressure discharge lamp
DE19833330266 DE3330266C2 (en) 1982-08-23 1983-08-22 Starter circuit for a high pressure metal vapor discharge lamp
FR8313546A FR2532113B1 (en) 1982-08-23 1983-08-22 HIGH PRESSURE METAL STEAM LAMP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP932583A JPS59138049A (en) 1983-01-25 1983-01-25 High pressure metal vapor electric-discharge lamp

Publications (1)

Publication Number Publication Date
JPS59138049A true JPS59138049A (en) 1984-08-08

Family

ID=11717318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP932583A Pending JPS59138049A (en) 1982-08-23 1983-01-25 High pressure metal vapor electric-discharge lamp

Country Status (1)

Country Link
JP (1) JPS59138049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164061A (en) * 1984-08-24 1986-04-02 ジー・テイー・イー・プロダクツ・コーポレイシヨン Low starting voltage metal vapor lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164061A (en) * 1984-08-24 1986-04-02 ジー・テイー・イー・プロダクツ・コーポレイシヨン Low starting voltage metal vapor lamp

Similar Documents

Publication Publication Date Title
JPS5935354A (en) High pressure metal vapor discharge lamp
US4223247A (en) Metal vapor discharge lamp
US4322658A (en) High intensity discharge lamp containing electronic starting aid
US4447759A (en) Starter for igniting an electric discharge tube
US4170744A (en) Combination discharge-incandescent lamp with thermal switch control
US5420479A (en) High pressure vapor discharge lamp with a built-in igniter
JPS59138049A (en) High pressure metal vapor electric-discharge lamp
US2740861A (en) Glow type thermal switch
JPH0570903B2 (en)
GB2127633A (en) High pressure discharge lamp
JPS60136152A (en) High pressure electric-discharge lamp
JP3799461B2 (en) Metal halide lamp with built-in starter with pulse stop function
JPH0629006A (en) High-pressure discharge lamp
JP2973217B2 (en) Metal vapor discharge lamp
JPH03116687A (en) High-pressure metallic vapour discharge lamp
JPH09232087A (en) High-pressure discharge lamp, lighting device of which, and luminaire
JPH0696740A (en) Metal vapor discharge lamp
JPH0113321Y2 (en)
JPS593493Y2 (en) metal vapor discharge lamp
JPH10334856A (en) High-pressure vapor with built-in starter discharge lamp
JPH0696738A (en) Metallic vapor electric discharge lamp
JPH10302728A (en) High pressure metal vapor discharge lamp
JPH10162785A (en) Starter built-in metal halide lamp
JPH10302726A (en) Starter-built-in metal halide lamp
JPH07105913A (en) High pressure discharge lamp with built-in starter