JPS59137786A - Air extractor for condenser - Google Patents

Air extractor for condenser

Info

Publication number
JPS59137786A
JPS59137786A JP940883A JP940883A JPS59137786A JP S59137786 A JPS59137786 A JP S59137786A JP 940883 A JP940883 A JP 940883A JP 940883 A JP940883 A JP 940883A JP S59137786 A JPS59137786 A JP S59137786A
Authority
JP
Japan
Prior art keywords
condenser
stage
ejector
steam
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP940883A
Other languages
Japanese (ja)
Inventor
Masahisa Fujimoto
雅久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP940883A priority Critical patent/JPS59137786A/en
Publication of JPS59137786A publication Critical patent/JPS59137786A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable to optimally operate an air extractor, by a method wherein the pressure in the first-stage condenser is maintained to be constant by controlling the flow rate of cooling water, and the number of ejectors operated is controlled by detecting the temperature of a gas at inlets of the ejectors. CONSTITUTION:Bleed air [arrow (a)] from the condenser in a steam turbine system is raised in pressure by steam fed from a steam source [arrow (b)] at the first ejectors 1a, 1b, and is cooled by cooling water in the first-stage condenser 3. Cooling water in the condenser 3 is controlled by the first-stage flow control valve 14 so that the temperature of water discharged from the condenser 3 is maintained to be constant. Namely, by maintaining the pressure (saturated pressure) in the condenser 3 to be constant, the performance of the ejectors can be maintained in an optimum condition. In addition, since the ratio of air to steam can be easily calculated from the pressure in the condenser and the temperature of bleed air on the basis of the characteristics of air and steam, extracting capacity of the ejectors can be gradually controlled by selecting a combination of the first-stage ejectros 1a, 1b.

Description

【発明の詳細な説明】 ン復水器の空気抽出装置に関するものである。[Detailed description of the invention] This relates to an air extraction device for a condenser.

まず、従来例の概要について述べる。First, an overview of the conventional example will be described.

従来より復水器の空気抽出装置として第1図に示すサー
フェスコンデンサ付2段蒸気噴射式空気エゼクタおよび
第2図に示す水封回転式真空ポンプが採用されている。
Conventionally, a two-stage steam injection air ejector with a surface condenser shown in FIG. 1 and a water ring rotary vacuum pump shown in FIG. 2 have been employed as air extraction devices for condensers.

第1図において、符号01は第1段エゼクタ、02は第
2段エゼクタ、03は給1段復水器、04は第2段復水
器で、矢印aは復水器より、矢印bは蒸気源より、矢印
Cは復水ポノプよりの復水、矢印dは大気へ、矢印eは
低圧ヒータへの各々の流れを示す。
In FIG. 1, 01 is the first stage ejector, 02 is the second stage ejector, 03 is the first stage supply condenser, 04 is the second stage condenser, arrow a is from the condenser, arrow b is from the steam source, Arrow C shows the flow of condensate from the condensate pump, arrow d shows the flow to the atmosphere, and arrow e shows the flow to the low pressure heater.

第1図に示しだサーフェスコンデンサ付2段蒸気噴射式
空気エゼクタは、第1段復水器03に制御装置は何等設
けら扛ておらず、制御さ扛ていないかめ、エゼクタの設
計点での運転ができず、効率の低い運転となり、また条
件が悪い場合、エゼクタの運転不能域に入る欠点がある
The two-stage steam injection air ejector with surface condenser shown in Figure 1 does not have any control device installed in the first stage condenser 03, and the ejector can be operated at the design point without any control. If this is not possible, the operation will be low in efficiency, and if the conditions are bad, the ejector will become inoperable.

第2図において、符号05は空気駆動エゼクタ、06は
水封式真空ポンプで、矢印aは復水器より矢印dは大気
への流れを示している。
In FIG. 2, reference numeral 05 is an air-driven ejector, 06 is a water ring vacuum pump, arrow a indicates flow from the condenser, and arrow d indicates flow to the atmosphere.

第2図に示した水封回転式真空ポンプの場合、エセクタ
駆動媒体ヲ空気としているので上記のサーフェスコンデ
ンサ付空気エゼクタのごとく、エゼクタの運転不能域に
入ることはないが、駆動媒体が空気であるため効率が悪
く、さらに、第2段エゼクタに相当する水封式ポンプ0
6は、第1段エゼクタの駆動空気を抽出する必要があり
、効率をさらに悪化させている。
In the case of the water ring rotary vacuum pump shown in Figure 2, the ejector driving medium is air, so unlike the above-mentioned air ejector with a surface condenser, the ejector does not become inoperable, but if the driving medium is air. In addition, the water ring type pump corresponding to the second stage ejector is
No. 6 requires extracting the driving air of the first stage ejector, further deteriorating the efficiency.

復水器の空気抽出装置として上記2つの方式があり、各
々上記のような欠点があるが一部では蒸気噴射式エゼク
タの方が効率が高く、低コストであると言われているの
に、何故か水封式真空ポンプの方が採用される傾向にあ
り、その原因および対策を検討中に上記欠点を解消せん
として本発明が生扛だもので、新規とする点は次の通り
で、a)、エゼクタの特性(一点設計)を生かすため、
第1段復水器の器内圧を冷却水流量を制御することによ
り、一定に保持するようにしたこと。
There are two types of air extraction devices for condensers, each of which has the drawbacks mentioned above, but some say that the steam injection ejector is more efficient and lower in cost. For some reason, water ring type vacuum pumps tend to be adopted more often, and while we were investigating the causes and countermeasures for this, the present invention was developed in an attempt to eliminate the above drawbacks.The new features are as follows: a. ), to take advantage of the characteristics of the ejector (single point design),
The internal pressure of the first stage condenser is maintained constant by controlling the flow rate of cooling water.

b)、エゼクタ入口ガス温度を検出し、エゼクタ入口ガ
ス中の空気と蒸気の比率を最適とするよう各段のエゼク
タの運転台数を制御するようにしたことである。
b) The ejector inlet gas temperature is detected and the number of operating ejectors at each stage is controlled so as to optimize the ratio of air to steam in the ejector inlet gas.

以下、本発明の好適々一実施例につき添付図面を参照し
て詳述する。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

(3) 本発明の空気抽出装置の系統を示す第3図において、符
号1a、1bは第1段蒸気噴射式エゼクタ(以下、第1
段エゼクタと略称)、2a、2bは第2段蒸気噴射式エ
ゼクタ(以下、第2段エゼクタ)、3は第1段石鹸式復
水器(以下、第1段復水器)、4は第2段直軸式復水器
(以下、第2段復水器)、sa、sbは第1段エゼクタ
入口逆止弁(以下、第1段逆止弁)、6はエゼクタ駆動
蒸気圧力調節弁(以下、エゼクタ圧力調節弁)、7はエ
ゼクタ駆動蒸気圧力伝送器(以下、エゼクタ伝送器)、
8はエゼクタ駆動蒸気圧力調節器(以下、エゼクタ調節
器)、9は第1段エゼクタ入口空気温度スイッチ(以下
、第1段温度スイッチ)、10a 、 Jobは第1段
エゼクタ駆動蒸気開閉調節弁(以下、第1段調節弁)、
ha、 11bは第2段エゼクタ人口逆止弁(以下第2
段逆止弁)、12は第2段エゼクタ入口空気温度スイッ
チ(以下、第2段温度スイッチ、13a、1.3bは第
2段エゼクタ駆動蒸気開閉調節弁(以下、第2段逆止弁
節弁)、14は第1段復水器冷却水流量調節弁(以下、
第1段流量(4) 調節弁)、15は第1段伝送器出口復水温度伝送器(以
下、第1段伝送器)、16は第1段伝送器出口復水温度
調節器(以下、第1段温度調節器と略称)で、矢印aは
復水器より、矢印すは蒸気源より、矢印dは大気へ、矢
印eは排熱回収系統へ、矢印fは冷却水源よりの流れを
示している。
(3) In FIG. 3 showing the system of the air extractor of the present invention, reference numerals 1a and 1b refer to first stage steam injection ejectors (hereinafter referred to as first stage steam injection ejectors).
2a and 2b are second stage steam injection ejectors (hereinafter referred to as second stage ejectors), 3 is a first stage soap condenser (hereinafter referred to as first stage condenser), and 4 is a second stage Direct shaft condenser (hereinafter referred to as second stage condenser), sa and sb are first stage ejector inlet check valves (hereinafter referred to as first stage check valves), 6 is an ejector drive steam pressure control valve (hereinafter referred to as ejector 7 is an ejector-driven steam pressure transmitter (hereinafter referred to as ejector transmitter),
8 is an ejector drive steam pressure regulator (hereinafter referred to as an ejector regulator), 9 is a first stage ejector inlet air temperature switch (hereinafter referred to as a first stage temperature switch), 10a, and Job is a first stage ejector drive steam opening/closing control valve ( Hereinafter, 1st stage control valve),
ha, 11b is the second stage ejector artificial check valve (hereinafter referred to as the second stage
12 is the second stage ejector inlet air temperature switch (hereinafter referred to as the second stage temperature switch), 13a and 1.3b are the second stage ejector drive steam opening/closing control valves (hereinafter referred to as the second stage check valve section). 14 is a first stage condenser cooling water flow control valve (hereinafter referred to as
15 is a 1st stage transmitter outlet condensate temperature transmitter (hereinafter referred to as 1st stage transmitter); 16 is a 1st stage transmitter outlet condensate temperature regulator (hereinafter referred to as (abbreviated as 1st stage temperature controller), arrow a indicates the flow from the condenser, arrow s indicates the flow from the steam source, arrow d indicates the flow to the atmosphere, arrow e indicates the flow to the exhaust heat recovery system, and arrow f indicates the flow from the cooling water source. It shows.

蒸気タービン系統の復水器からの抽出空気は、第1段逆
止弁5a及び5bを通り、第1段エゼクタ1a又は1b
によシ昇圧されて第1段復水器3に送られる。
Extracted air from the condenser of the steam turbine system passes through the first stage check valves 5a and 5b, and then passes through the first stage ejector 1a or 1b.
The pressure is increased and sent to the first stage condenser 3.

第1段エゼクタ、ta、1bば、エゼクタ圧力調節弁6
により、一定の圧力に調節さ扛たボイラ等の蒸気源(矢
印b)からの蒸気によシ駆動される。
1st stage ejector, ta, 1b, ejector pressure control valve 6
It is driven by steam from a steam source (arrow b) such as a boiler whose pressure is adjusted to a constant level.

第1段エゼクタ1a、xbの運転、停止は第1段調節弁
10a、 10bにより駆動蒸気を供給又は遮断するこ
とによりて行う。エゼクタ停止の場合、第1段逆止弁5
aおよび5bが第1段復水器3よりの逆流を防止する。
The first stage ejectors 1a, xb are operated and stopped by supplying or cutting off driving steam using the first stage control valves 10a, 10b. When the ejector is stopped, the first stage check valve 5
a and 5b prevent backflow from the first stage condenser 3.

第1段エゼクタ1a又は1bによシ昇圧された抽出空気
及びエゼクタを駆動した蒸気は第1段復水器3の下部よ
り入り、復水器上部より落ちてくる冷却水により冷却さ
れ、大部分の蒸気は水となり、熱交換を終えた冷却水と
ともに第2段復水器4の冷却水となる。抽出空気と一部
の蒸気は第1段復水器3の上部より排出され、第2段エ
ゼクタ4に向う。
The extracted air pressurized by the first stage ejector 1a or 1b and the steam that drove the ejector enter from the lower part of the first stage condenser 3, and are cooled by cooling water falling from the upper part of the condenser, and most of the steam is becomes water and becomes the cooling water of the second stage condenser 4 together with the cooling water that has completed heat exchange. The extracted air and some steam are discharged from the top of the first stage condenser 3 and directed to the second stage ejector 4.

第1段復水器3の冷却水は蒸気タービン系統の復水器の
復水をポンプアップしたもので、第1段流量調節弁14
を通り、第1段復水器3の上部より供給される。第1段
流量調節弁14は、第1段復水器3の排水の温度を一定
に保持する様に制御される。すなわち、第1段復水器3
内の圧力(飽和圧力)を一定に保持する。
The cooling water in the first stage condenser 3 is pumped up condensate from the steam turbine system condenser, and the first stage flow control valve 14
, and is supplied from the upper part of the first stage condenser 3. The first stage flow rate control valve 14 is controlled to maintain the temperature of the waste water of the first stage condenser 3 constant. That is, the first stage condenser 3
Maintain the internal pressure (saturation pressure) constant.

第1段復水器3よシ排出された抽出空気は第1段同様第
2段エゼクタ2a、2bで大気圧まで昇圧され、第2段
復水器4に入る。
Extracted air discharged from the first stage condenser 3 is pressurized to atmospheric pressure by the second stage ejectors 2a, 2b as in the first stage, and enters the second stage condenser 4.

第1段復水器3jりの冷却水3よりの冷却水は、サイホ
ン(逆流を防ぐ)を通って第2段復水器4の上部より供
給され、第2段エゼクタ2a、2bの排気を冷却して、
第2段復水器4の下部より排出され、排熱回収装置へ供
給される。
Cooling water from the cooling water 3 of the first stage condenser 3j passes through a siphon (to prevent backflow) and is supplied from the upper part of the second stage condenser 4, cooling the exhaust gas of the second stage ejectors 2a and 2b.
It is discharged from the lower part of the second stage condenser 4 and supplied to the exhaust heat recovery device.

抽出空気は、第2段復水器4上部より大気へ(矢印d)
放出される。
The extracted air is sent to the atmosphere from the top of the second stage condenser 4 (arrow d)
released.

次に本発明による空気抽出装置の効果について述べる。Next, the effects of the air extraction device according to the present invention will be described.

エゼクタは典型的な1点設計機器である。すなわち、吸
入圧力、吐出圧力及び駆動蒸気圧の全ての条件が設計値
の場合にのみ設計どおりの吸入能力となるが、上記条件
を外れると性能は大幅に低下する。特に、吐出圧力の増
加、駆動蒸気圧力の低下は作動不良の原因となる。上記
エゼクタの特性を十分に配慮したのが本発明である。す
なわち、a)第1段復水器3の器内圧を冷却水排水の温
度を冷却水の流量を制御して一定に保持することにより
、エゼクタの性能を最適状態とするととができる。
The ejector is a typical single point design device. That is, the designed suction capacity is obtained only when all conditions of suction pressure, discharge pressure, and driving steam pressure are at the designed values, but when the above conditions are deviated from, the performance is significantly reduced. In particular, an increase in discharge pressure and a decrease in driving steam pressure cause malfunction. The present invention takes into full consideration the characteristics of the ejector described above. That is, a) the performance of the ejector can be optimized by keeping the internal pressure of the first stage condenser 3 constant, the temperature of the cooling water drainage, and the flow rate of the cooling water.

b)復水器の復水中の空気含有量を目的の値以下におさ
えるために通常、空気抽出装置は、抽出空気量の2倍か
ら7倍の蒸気を抽出空気と共に抽出しているが、空気と
蒸気の比率は空気及び蒸気の(7) 特性から復水器の器内圧と抽出ガスr空気と蒸気)の温
度より容易に算出できる。
b) In order to keep the air content in the condensate of the condenser below the target value, an air extraction device usually extracts steam from 2 to 7 times the amount of extracted air together with the extracted air. The ratio of air and steam can be easily calculated from the (7) characteristics of air and steam, the internal pressure of the condenser, and the temperature of the extracted gas (air and steam).

本発明では、この点に着目し、エゼクタ入口温度により
各段エゼクタの運転台数を制御して、最適な空気抽出装
置の運転が可能なように々っている。すなわち、第3図
に示した例では、第1段エゼクタ1a、1bfd計2台
あり、エゼクタ1aの容量を1とすると、エゼクタ1b
の容量は2となるよう設計されておシ、エゼクタの運転
台数i1a、1bおよび1a+lbと選定することによ
り、エゼクタの抽出容量は1.2および3と段階的に制
御できることとなる。
In the present invention, paying attention to this point, the number of operating ejectors at each stage is controlled depending on the ejector inlet temperature, so that the air extraction device can be operated optimally. That is, in the example shown in FIG. 3, there are two first-stage ejectors 1a and 1bfd, and if the capacity of ejector 1a is 1, then ejector 1b
The extraction capacity of the ejector is designed to be 2, and by selecting the number of operating ejectors i1a, 1b, and 1a+lb, the extraction capacity of the ejector can be controlled stepwise to 1.2 and 3.

本実施例の場合はエゼクタを2台としているが、3台と
すれば同様の方式により、1.2.3.4.56および
7ときめ細かい制御が可能と々る。
In the case of this embodiment, there are two ejectors, but if three ejectors are used, detailed control of 1, 2, 3, 4, 56 and 7 will be possible using the same method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来の空気抽出装置で、第1図はサー
フェスコンデンサ付2段蒸気噴射式空気エゼクタの系統
図、第2図は水封式回転真空ポンプの系統図、第3図は
本発明の空気抽出装置の系(8) 統図である。 1a11b・・第1段エゼクタ、2a12b・・第2段
エゼクタ、3・・第1段復水器、4・・第2段復水器、
5a、sb・・第1段逆止弁、6・・エゼクタ圧力調節
弁、7・・エゼクタ伝送器、8・・エゼクタ調節器、9
・・第1段温度スイッチ、10a・10b・・第1段調
節弁、il a、】1b −−第2段逆止弁、12・・
第2段温度スイッチ、13a、13b・・第2段逆止弁
節弁、14・・第1段逆止弁節弁、15・・第1段伝送
器、16・・第1段温度調節器。 第1図 第Z図 第3図 りm−(
Figures 1 and 2 are conventional air extraction equipment, Figure 1 is a system diagram of a two-stage steam injection air ejector with a surface condenser, Figure 2 is a system diagram of a water ring rotary vacuum pump, and Figure 3 is a system diagram of a water ring rotary vacuum pump. is a system diagram (8) of the air extraction device of the present invention. 1a11b... 1st stage ejector, 2a12b... 2nd stage ejector, 3... 1st stage condenser, 4... 2nd stage condenser,
5a, sb...1st stage check valve, 6...Ejector pressure control valve, 7...Ejector transmitter, 8...Ejector regulator, 9
...1st stage temperature switch, 10a, 10b...1st stage control valve, il a, ]1b --2nd stage check valve, 12...
2nd stage temperature switch, 13a, 13b...2nd stage check valve mode valve, 14...1st stage check valve mode valve, 15...1st stage transmitter, 16...1st stage temperature controller . Figure 1 Figure Z Figure 3 Figure m-(

Claims (1)

【特許請求の範囲】[Claims] 空気抽出装置において、復水器器内圧を一定に保持し、
装置の高効率を達成するため復水器冷却水流量全制御す
る復水器冷却水流量調節弁を復水器上流側に設けると共
に、エゼクタ上流側にエゼクタ入口ガスの空気と蒸気と
の比率を最適値に制御する温度スイッチと、駆動蒸気を
供給、遮断し各段のエゼクタ運転台数を制御する調節弁
とを設けたことを特徴とする復水器の空気抽出装置。
In the air extraction device, the internal pressure of the condenser is kept constant,
In order to achieve high efficiency of the device, a condenser cooling water flow control valve is installed on the upstream side of the condenser to fully control the condenser cooling water flow rate, and a condenser cooling water flow control valve is installed on the upstream side of the ejector to control the ratio of air to steam in the ejector inlet gas. An air extraction device for a condenser, characterized in that it is equipped with a temperature switch that controls the temperature to an optimum value, and a control valve that supplies and cuts off driving steam and controls the number of ejectors in operation at each stage.
JP940883A 1983-01-25 1983-01-25 Air extractor for condenser Pending JPS59137786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP940883A JPS59137786A (en) 1983-01-25 1983-01-25 Air extractor for condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP940883A JPS59137786A (en) 1983-01-25 1983-01-25 Air extractor for condenser

Publications (1)

Publication Number Publication Date
JPS59137786A true JPS59137786A (en) 1984-08-07

Family

ID=11719574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP940883A Pending JPS59137786A (en) 1983-01-25 1983-01-25 Air extractor for condenser

Country Status (1)

Country Link
JP (1) JPS59137786A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342843A (en) * 1976-09-29 1978-04-18 Ibm Laser modulator
JPS57202490A (en) * 1981-06-08 1982-12-11 Toshiba Corp Gas extracting equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342843A (en) * 1976-09-29 1978-04-18 Ibm Laser modulator
JPS57202490A (en) * 1981-06-08 1982-12-11 Toshiba Corp Gas extracting equipment

Similar Documents

Publication Publication Date Title
KR20200000247U (en) Multi-stage energy saving vacuum unit of based roots type main vacuum pump
JP4579479B2 (en) Gas extraction method and apparatus for turbine condenser
JPS59137786A (en) Air extractor for condenser
JP2511007B2 (en) Auxiliary steam device
JPH10299418A (en) Air discharging system
US6912853B2 (en) Method of and apparatus for increasing the output of a geothermal steam power plant
JPS61110877A (en) Vacuum pump for condenser
JP3777527B2 (en) Air extraction equipment
JP2677740B2 (en) Geothermal power plant gas extractor
JP2636989B2 (en) Pressure control method for steam supply device
JP3716062B2 (en) Surplus steam recovery device
US4867646A (en) Liquid evacuation system
JP3776803B2 (en) Condensate pump structure and steam turbine equipment
JPH0544563B2 (en)
JPS61130781A (en) Air vent unit within water chamber of condenser of steam turbine
JPH0354304A (en) Vacuum adjusting method of condenser
JPH0668362B2 (en) Condensate control method and condensate control device for power plant
JP2510981B2 (en) Drain system of moisture separation heater
JPH11344203A (en) Method for recovering steam air heater drain
JPS5853197B2 (en) geothermal turbine equipment
JP3272175B2 (en) Air extractor operating steam pressure controller
JPH0694993B2 (en) Condenser vacuum pump device
JPS58682A (en) Suction throttle valve of gas compressor
JPS60224980A (en) Geothermal engine
JPH09137799A (en) Ejector vacuum pump