JPS59137177A - Power source for welding - Google Patents

Power source for welding

Info

Publication number
JPS59137177A
JPS59137177A JP1231483A JP1231483A JPS59137177A JP S59137177 A JPS59137177 A JP S59137177A JP 1231483 A JP1231483 A JP 1231483A JP 1231483 A JP1231483 A JP 1231483A JP S59137177 A JPS59137177 A JP S59137177A
Authority
JP
Japan
Prior art keywords
welding
output
welding output
circuit
reference period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1231483A
Other languages
Japanese (ja)
Other versions
JPH0131991B2 (en
Inventor
Naoki Kawai
直樹 河合
Yoriaki Nishida
西田 順紀
Koji Fujii
孝治 藤井
Keiji Yasui
啓二 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1231483A priority Critical patent/JPS59137177A/en
Publication of JPS59137177A publication Critical patent/JPS59137177A/en
Publication of JPH0131991B2 publication Critical patent/JPH0131991B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To increase the max. rated output value in the stage of CO2 and MAG welding by increasing the one period time which is increased in the period of a reference period signal and is constituted of the on-off time of a power transistor for controlling welding output. CONSTITUTION:This power source for welding transforms the input with a voltage transformer 1 and conducts welding current between output terminals 6 and 6 via a rectifier 2, a smoothing capacitor 3, a transistor (TR) 4 for controlling welding output and a reactor 5. The TR4 is turned on and off at a prescribed period by the signal from a driving circuit 8. An instruction digital signal (n) is outputted from an arithmetic/storage circuit 11 by the set value of an output setter 12 and an output characteristic selector 13 to a frequency dividing counter circuit 9. The circuit 9 is inputted simultaneously with the reference clock signal from a reference frequency signal generating circuit 10, divides down the reference clock signal of frequency N by n and outputs the same to the circuit 8. As a result, the TR4 makes switching operation at the frequency N/n so that the increase in the one period time constituted by the on-off time is made possible together with an increase in the output set value.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は消耗電極である溶接用ワイヤを自動送給しな
がら溶接を行うトランジスタチョッパ式の溶接用電源に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a transistor chopper type welding power source that performs welding while automatically feeding a welding wire, which is a consumable electrode.

従来例の構成とその問題点 トランジスタチョッパ式溶接用電源のトランジスタオン
時間とオフ時間とで構成される一周期時間は、従来、ス
プレー移行アーク溶接のパルスマグ溶接ではワイヤ送給
量の増加に伴い減少させ、短絡移行、R滴移行アークの
マグ、CO2溶接ではワイヤ送給量にかかわらず一定値
とするのが通常であった。この−周期時間は、パルスマ
グ溶接では円滑なスプレー移行アークを実現するため3
0m5ec〜3XnSecの値に、マグ、C02溶接で
は出力リップルを低減し安定な短絡移行2球滴移行アー
クを実現するために0.5 m5ec前後の一定値に設
定されていた。第1図に従来のトランジスタチョッパ式
溶接用電iのワイヤ送給量に対するトランジスタのオン
オフで構成される一周期時間の特性例を示す。
Conventional configuration and its problems One cycle time, which consists of the transistor on time and off time of a transistor chopper type welding power source, traditionally decreases as the wire feed rate increases in pulsed MAG welding of spray transfer arc welding. In short-circuit transfer, R-drop transfer arc MAG, and CO2 welding, it was usual to keep the value constant regardless of the wire feed rate. This cycle time is set to 3 to achieve a smooth spray transition arc in pulsed MAG welding.
In mag and C02 welding, it was set to a constant value of around 0.5 m5ec to reduce the output ripple and realize a stable short-circuit transfer two-ball drop transfer arc. FIG. 1 shows an example of the characteristic of one cycle time, which is made up of transistor on/off, with respect to the wire feed amount of a conventional transistor chopper type welding electric current i.

同図において、aはパルスマグ溶接時の特性であシ、b
はC02,マグ溶接時の特性である。
In the same figure, a is the characteristic during pulsed mag welding, b
is the characteristic during C02, MAG welding.

第1図の従来例における問題点は、トランジスタの損失
による一機器最大定格である。トランジスタのim失p
は、トランジスタターンオン時の損失の和をPtトラン
ジスタター727時の損失N1 の和PtoFF1トランジスタオン時の損失の和をP。
The problem with the conventional example shown in FIG. 1 is the maximum rating of one device due to transistor loss. Transistor im loss p
is the sum of the losses when the transistors are turned on.Pt is the sum of the losses when the transistors are turned on. PtoFF1 is the sum of the losses when the transistors are turned on.

N1トランジスタベース電流による損失の和をPbとす
れば、これらの和となる。すなわち、 P=Ptol■+PtoFF+PoN+Pb11参〇(
1)となる。Pbの値は他に較べて小であシ、PoNの
値は出力平均値が同一であれば一同期時間によらずほぼ
一定値となる。しかしながら、PtoNとPtoFFと
は一周期時間が小であるほど大となる。しかも、特にP
toFFの値は、全損失Pに対し相当大なる比率を有す
る。したかって、第1図のCO2,マグ溶接時の特性は
、トランジスタの熱損失の面からは不利な特性といえる
。これゆえに従来の両特性を有する溶接用電源は、C0
2,マグ溶接時の最大定格出力値をパルスマグ溶接時の
最大定格出力値よりも小なる値に規定して対処し、でき
た。
If the sum of losses due to the base current of the N1 transistor is Pb, then the sum of these losses becomes Pb. That is, P=Ptol■+PtoFF+PoN+Pb11 (
1). The value of Pb is small compared to the others, and the value of PoN is a substantially constant value regardless of the synchronization time if the average output value is the same. However, PtoN and PtoFF become larger as one cycle time becomes smaller. Moreover, especially P
The value of toFF has a fairly large ratio to the total loss P. Therefore, the characteristics during CO2 and MAG welding shown in FIG. 1 can be said to be disadvantageous in terms of heat loss of the transistor. Therefore, the conventional welding power source having both characteristics is C0
2. A workaround was achieved by specifying the maximum rated output value for MAG welding to a value smaller than the maximum rated output value for pulsed MAG welding.

発明の目的 この発明は、CO2,マグ溶接時の機器最大定格出力値
をトランジスタの容量を大にすることなく増加させるこ
とができる溶接用電源を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a welding power source that can increase the maximum rated output value of equipment during CO2 and MAG welding without increasing the capacity of the transistor.

発明の構成 この発明は、CO2,マグ溶接の溶接出力リップルが溶
接性能にさほど影響しない高出力域(ワイヤ送給量が大
なる範囲)において前記−周期時間を増加させて低周波
数トランジスタスイッチングとし、前記第(1)式のP
toHとPtoFFとを減少させて損失Pを減少させる
ことを特徴とするものである。
Composition of the Invention This invention increases the above-mentioned period time and uses low-frequency transistor switching in a high output range (a range where the wire feed rate is large) where CO2 and welding output ripple of MAG welding do not significantly affect welding performance, P in the above formula (1)
It is characterized by reducing loss P by reducing toH and PtoFF.

実施例の説明 第2図はこの発明の一実施例のトランジスタチョッパ式
溶接用電源の回路図を示している。第2図において、1
は溶接用変圧器、2は整流器、3は平滑用コンデンサ、
4は溶接出力制御用トランジスタ、5はリアクタ、6は
溶接機出力端子、7は溶接機入力端子、8はトランジス
タ駆動回路、9は分周カクンタ回路、10は基準周波数
信号発生回路、11はマイクロコンピュータをはじめと
する論理演算素子および記憶素子から構成される演算・
記憶回路、12は溶接出力設定器、13はパルスマグ溶
接とCO2,マグ溶接との出力特性を切換える出力特性
切換器、14は抵抗1..15はサイリスタである。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows a circuit diagram of a transistor chopper type welding power source according to an embodiment of the present invention. In Figure 2, 1
is a welding transformer, 2 is a rectifier, 3 is a smoothing capacitor,
4 is a welding output control transistor, 5 is a reactor, 6 is a welding machine output terminal, 7 is a welding machine input terminal, 8 is a transistor drive circuit, 9 is a frequency division circuit, 10 is a reference frequency signal generation circuit, and 11 is a micro Computing and
12 is a welding output setting device; 13 is an output characteristic switcher for switching output characteristics between pulsed MAG welding, CO2, and MAG welding; and 14 is a resistor 1. .. 15 is a thyristor.

このトランジスタチョッパ式溶接用電源は、溶接機入力
端子7よシ三(自交流電源が入力されると、それが溶接
用変圧器1で変圧されたのち整流器2および平滑用コン
デンサ3で整流および平滑され、溶接出力制御用トラン
ジスタ4およびリアクタ5を介して溶接機出力端子6.
6間に溶接電流を流す。溶接出力制御用トランジスタ4
はトランジスタ駆動回路8からの駆動信号により所定の
周期でオンオフする。
This transistor chopper type welding power supply has a welding machine input terminal 7 to is connected to the welding machine output terminal 6 through the welding output control transistor 4 and the reactor 5.
Welding current is applied between 6 and 6. Welding output control transistor 4
is turned on and off at a predetermined period by a drive signal from the transistor drive circuit 8.

また、出力設定器12の設定値Iおよび出力特性切換器
13とにより、演算・記憶回路11で命令デジタル信号
nを分周カクンタ回路9に出力する。この場合、命令デ
ジタル信Jijnは、演算−記憶回路11によシ出力投
定器12の設定値lの増加に鉦じて増加する。
Further, by using the set value I of the output setter 12 and the output characteristic switch 13, the arithmetic/storage circuit 11 outputs the command digital signal n to the frequency divider circuit 9. In this case, the command digital signal Jijn increases as the set value l of the output projector 12 increases by the arithmetic/memory circuit 11.

分局カクンタ回路は、基準周波数信号発生回路10の基
準クロック信号を同時に入力し、周波数Nの基準タロツ
ク信号をn分周してトランジスタ駆動回路8に出力する
。この結果、溶接出力制御用トランジスタ4は−N−な
る周illでスイッチング動作を行なう。なお、第2図
の実施例においては、−周期時間内におけるトランジス
タのオン時間およびオフ時間の制御に関する説明は省略
している。
The branch divider circuit simultaneously inputs the reference clock signal of the reference frequency signal generation circuit 10, divides the reference tally signal of frequency N by n, and outputs the divided signal to the transistor drive circuit 8. As a result, the welding output control transistor 4 performs a switching operation with a circuit of -N-. In the embodiment shown in FIG. 2, the explanation regarding the control of the on-time and off-time of the transistor within the - period time is omitted.

以上の構成によりトランジスタのオン時間とオフ時間と
で構成された一周期時間を出力設定値の増加(ワイヤ送
給量の増加)とともに大なる値とすることができる。な
お、従来例の項で述べたようにCO2,マグ溶接で前記
−同期時間を増加させると溶接出力のリップルが増加す
る。しかしながら、溶接出力の大なる範囲ではこのリッ
プルは溶接性能にほとんど影響を与えない。
With the above configuration, one cycle time made up of the on time and off time of the transistor can be increased as the output setting value increases (wire feeding amount increases). Incidentally, as described in the conventional example section, when the -synchronization time is increased in CO2 and MAG welding, the ripple in the welding output increases. However, over a large range of welding power this ripple has little effect on welding performance.

具体的には、基準タロツク信号として8192Hzを用
いた。また、溶接出力設定値1 (A)に対し、演算・
記憶回路11から分周カクンタ回路9に出力するデータ
nは次式によって算出した。
Specifically, 8192 Hz was used as the reference tarok signal. Also, for the welding output setting value 1 (A), calculation and
Data n to be output from the storage circuit 11 to the frequency divider circuit 9 was calculated using the following equation.

n  =  4    (1< 256A  )   
        ”(2)n=二Ll−3(1≧256
A)−−−(3)2 第(2)式および第(3)式の計算は、第2図の演算・
記憶回W!r11のYイクロコンピュータおよび記憶素
子に記憶されたプログラムにより実行される。もちろん
、第(2)式および第(3)式の特性はプログラムによ
り容易に変化させることができる。
n=4 (1<256A)
”(2) n=2Ll−3(1≧256
A)---(3)2 The calculations of equations (2) and (3) are performed using the calculations and calculations in Figure 2.
Memory episode W! It is executed by the program stored in the Y microcomputer of r11 and the storage element. Of course, the characteristics of equations (2) and (3) can be easily changed by a program.

第(2)式詔よび第(3)式によるC02.マグ溶接時
の特性を第3図に示す。第3図において、a′は従来例
と同様のパルスマグ溶接時の特性を示し、b′はC02
,マグ溶接時の特性を示している。なお、第3図に詔い
て、第(3)式の実行を整数計算するため、−T−T−
1の計算結果における小数点以下の数は切捨でるように
プログラムされている。
C02 according to formula (2) and formula (3). Figure 3 shows the characteristics during MAG welding. In Fig. 3, a' shows the characteristics during pulsed MAG welding similar to the conventional example, and b' shows the C02
, shows the characteristics during MAG welding. In addition, referring to FIG. 3, in order to calculate the execution of equation (3) by integer, -T-T-
The number after the decimal point in the calculation result of 1 is programmed to be rounded down.

このように構成した結果、CO2,マグ溶接の同一出力
時に溶接性能を損うことなく溶接出力制御用トランジス
タ4の損失を減少させることができる。したがって、溶
接出力制御用トランジスタ4の容量を大にすることなく
002.マグ溶接時に最大定格出力値の大なるトランジ
スタチロ72式溶接用電源を提供することができ、産業
界への貢献は多大である。
As a result of this configuration, it is possible to reduce the loss of the welding output control transistor 4 without impairing the welding performance at the same output for CO2 and MAG welding. Therefore, without increasing the capacity of the welding output control transistor 4, 002. It is possible to provide a transistor Chiro 72 type welding power source with a large maximum rated output value during MAG welding, and the contribution to the industry is significant.

なお、パルスマグ溶接時の出力特性についても、演算・
記憶回路11からの命令デジタル信号nをプログラムに
従って出−力設定器12の設定値Iに心じ減少させるこ
とにより実現できる。また、実施例では、溶接出力制御
用トランジスタ4が溶接用変圧器の二次側に設けた場合
について説明したが、−次側に設けたものでも同様に適
用できる。
In addition, the output characteristics during pulsed mag welding are calculated and
This can be realized by gradually decreasing the command digital signal n from the memory circuit 11 to the set value I of the output setter 12 according to a program. Further, in the embodiment, a case has been described in which the welding output control transistor 4 is provided on the secondary side of the welding transformer, but it can be similarly applied even if it is provided on the negative side.

発明の効果 この発明の溶接用電源によれば、CO2,マグ溶接時の
機器最大定格出力値をトランジスタの容量を大にするこ
となく増加させることができる。
Effects of the Invention According to the welding power source of the present invention, the maximum rated output value of the equipment during CO2 and MAG welding can be increased without increasing the capacity of the transistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例におけるパルスマグ溶接時およびCO2
,マグ溶接時の一周期時間のワイヤ送M!量に対する特
性図、第2図はこの発明の一実施例の回路図、第3図は
実施例におけるパルスマグ溶接時およびCO2,マグ溶
接時の一同期時間の溶接出力に対する特性図である。 1・・・溶接用変圧器、2・・・整流器、3・・・平滑
用コンデンサ、4・・・溶接出力制御用トランジスタ、
5・・・リアクタ、6・・・溶接機出力端子、7・・・
溶接機入力端子、8・・・トランジスタ駆動回路、9・
・・分周カクンタ回路、10・・・基$1!¥+i数信
号発生回路、エト・・演算・記憶回路、12・・・溶接
出力設定器、13・・・出力特性切換器 第1図 第2図
Figure 1 shows the conventional example of pulsed mag welding and CO2
, Wire feed M in one cycle time during MAG welding! FIG. 2 is a circuit diagram of an embodiment of the present invention, and FIG. 3 is a characteristic diagram of welding output at one synchronous time during pulsed mag welding and CO2, MAG welding in the embodiment. 1... Welding transformer, 2... Rectifier, 3... Smoothing capacitor, 4... Welding output control transistor,
5...Reactor, 6...Welding machine output terminal, 7...
Welding machine input terminal, 8...transistor drive circuit, 9.
...Frequency division kakunta circuit, 10 units...$1! ¥+i number signal generation circuit, et... calculation/memory circuit, 12... welding output setting device, 13... output characteristic switcher Fig. 1 Fig. 2

Claims (4)

【特許請求の範囲】[Claims] (1)  消耗電極である溶接用ワイヤを自動送給し、
溶接用変圧器の一次側または二次側に溶接出力を制御す
る溶接出力制御用パワートランジスタを具備した溶接用
電源であって、溶接出力を設定する溶接出力設定器と、
前記溶接出力設定器の設定値を演算して基準周期信号を
発生する基準周期発生回路と、前記基準周期発生回路の
出力する基準周期信号によシ前記溶接用変圧器の一次側
または二次側に設けられた前記溶接出力制御用パワート
ランジスタのオン−オフを制御する駆動回路とで構成さ
れ、前記溶接出力設定器の設定値の増加に伴って前記基
準周期信号の周期を増加させることによシ前記溶接出力
制御用パワートランジスタのオン時間とオフ時間とで構
成される一周期時間を増加させることを特徴とする溶接
用電源。
(1) Automatically feeds the welding wire, which is a consumable electrode,
A welding power source comprising a welding output control power transistor for controlling welding output on the primary side or secondary side of a welding transformer, the welding output setting device for setting the welding output;
A reference period generation circuit that calculates a setting value of the welding output setting device to generate a reference period signal, and a reference period signal outputted from the reference period generation circuit on the primary or secondary side of the welding transformer. and a drive circuit that controls on/off of the power transistor for controlling the welding output provided in the welding output setting device, and increases the period of the reference period signal as the set value of the welding output setting device increases. A welding power source, characterized in that one cycle time consisting of an on time and an off time of the power transistor for controlling welding output is increased.
(2)前記基準周期発生回路は、論理演算素子。 記憶素子、タロツク信号発生器および前記論理演算素子
のデジタル出力により前記クロック信号を分周して出力
する分局素子を有している特許請求の範囲第(1)項記
載の溶接用電源。
(2) The reference period generating circuit is a logical operation element. The welding power source according to claim 1, further comprising a storage element, a tarlock signal generator, and a division element that divides and outputs the frequency of the clock signal based on the digital output of the logic operation element.
(3)  消耗電極である溶接用ワイヤを自動送給し、
溶接用変圧器の一次側または二次側に溶接出力を制御す
る溶接出力制御用パワートランジスタを具備した溶接用
電源であって、溶接出力を設定する溶接出力設定器と、
前記溶接出力設定器の設定値と溶接出力特性を切換える
切換器の出力とを入力として演算して基準周期信号を発
生する基準周期発生回路と、前記基準周期信号により前
記溶接用変圧器の一次側または二次側に設けられた前記
溶! 出力制御用パワートランジスタのオン−オフを制
御する駆動回路とで構成され、前記醇接出力設定器の設
定値の増加に伴って前記基準周期信号の周期を増加させ
ることにより前記溶接出力制御用パワートランジスタの
オン時間とオフ時間とで構成される一周期時間を増加さ
せる特性と前記溶接出力設定器の設定値の増加に伴って
前記基IP周期信号の周期を減少させることによ)前記
−周期時間を減少させる特性とを前記切換器で選択でき
ることを特徴とする溶接用電源。
(3) Automatically feeds the welding wire, which is a consumable electrode,
A welding power source comprising a welding output control power transistor for controlling welding output on the primary side or secondary side of a welding transformer, the welding output setting device for setting the welding output;
a reference period generation circuit that generates a reference period signal by calculating the set value of the welding output setting device and the output of a switching device that switches the welding output characteristics; Or the said melt provided on the secondary side! and a drive circuit that controls on/off of a power transistor for output control, and the power for controlling welding output is increased by increasing the period of the reference period signal as the set value of the output setting device increases. (by decreasing the period of the basic IP period signal as the setting value of the welding output setting device increases) A welding power source characterized in that a characteristic that reduces the time can be selected using the switch.
(4)  前記基準周期発生回路は、論理演算素子。 記憶素子、タロツク信号発生器および前記論理演算素子
のデジタル出力によ#)前記クロック信号を分周して出
力する分局素子を有している特#!F@求の範囲第(3
)項記載の溶接用電源。
(4) The reference period generating circuit is a logic operation element. This feature includes a dividing element that divides and outputs the frequency of the clock signal based on the digital output of the storage element, the tarlock signal generator, and the logic operation element! F @ desired range (3)
) Welding power source listed in item 2.
JP1231483A 1983-01-27 1983-01-27 Power source for welding Granted JPS59137177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1231483A JPS59137177A (en) 1983-01-27 1983-01-27 Power source for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1231483A JPS59137177A (en) 1983-01-27 1983-01-27 Power source for welding

Publications (2)

Publication Number Publication Date
JPS59137177A true JPS59137177A (en) 1984-08-07
JPH0131991B2 JPH0131991B2 (en) 1989-06-28

Family

ID=11801851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1231483A Granted JPS59137177A (en) 1983-01-27 1983-01-27 Power source for welding

Country Status (1)

Country Link
JP (1) JPS59137177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114088A (en) * 2002-09-26 2004-04-15 Daihen Corp Power supply device for short circuit arc welding, and robot welding equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004114088A (en) * 2002-09-26 2004-04-15 Daihen Corp Power supply device for short circuit arc welding, and robot welding equipment

Also Published As

Publication number Publication date
JPH0131991B2 (en) 1989-06-28

Similar Documents

Publication Publication Date Title
US11097368B2 (en) Welding or cutting power supply using phase shift double forward converter circuit (PSDF)
TWI274623B (en) Power source for electric arc welding
CA2518125C (en) Improved three stage power source for electric arc welding
RU2507043C2 (en) Method and device for power conversion, and welding set
JP5595502B2 (en) Energy conversion method and apparatus, and welding apparatus
JPH05276750A (en) Power supply circuit
JPS59137177A (en) Power source for welding
JP2770337B2 (en) Lighting device
JP3277637B2 (en) Inverter controlled welding power supply
JPS638872B2 (en)
JP7142313B2 (en) welding power supply
JPH08300163A (en) Capacitor boost type spot welding machine
JPH02104473A (en) Inverter arc stud welding equipment
JPS58103965A (en) Multiple-electrode pulsed arc welding machine
JPH0329014Y2 (en)
JPH0386377A (en) Wire energizing type tig welding equipment
KR200212794Y1 (en) An apparatus for controlling of asymetric bipolar output using a single power source
JPS5974691A (en) Cross flow type gas laser device
JP3480249B2 (en) Power supply
JPH0160352B2 (en)
JPS63154274A (en) Inverter type resistance welding machine
JPH02100294A (en) Controlling method and unit for power source for x-ray
JPH03285565A (en) Chopper circuit
JPS59193763A (en) Dc arc welding power supply device
JPS59173808A (en) Power supply device