JPS5913701B2 - Sensor block for scanning the outer surface of inspected materials with a circular cross-sectional shape - Google Patents

Sensor block for scanning the outer surface of inspected materials with a circular cross-sectional shape

Info

Publication number
JPS5913701B2
JPS5913701B2 JP11320277A JP11320277A JPS5913701B2 JP S5913701 B2 JPS5913701 B2 JP S5913701B2 JP 11320277 A JP11320277 A JP 11320277A JP 11320277 A JP11320277 A JP 11320277A JP S5913701 B2 JPS5913701 B2 JP S5913701B2
Authority
JP
Japan
Prior art keywords
inspected
sensor
wheel
round billet
support base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11320277A
Other languages
Japanese (ja)
Other versions
JPS5447695A (en
Inventor
勝彦 島田
勇 小峰
英也 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP11320277A priority Critical patent/JPS5913701B2/en
Priority to GB7837395A priority patent/GB2007366B/en
Priority to IT27836/78A priority patent/IT1099116B/en
Priority to US05/943,865 priority patent/US4247819A/en
Priority to DE2841165A priority patent/DE2841165C3/en
Publication of JPS5447695A publication Critical patent/JPS5447695A/en
Publication of JPS5913701B2 publication Critical patent/JPS5913701B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 この発明は例えば丸ビレツト、丸棒、円管、或いは炭素
電極棒などの断面外形が円形状の被検査25材の外表面
を探傷等の目的で走査するためのセンサブロックに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a sensor for scanning the outer surface of a material to be inspected having a circular cross-sectional shape, such as a round billet, a round bar, a circular tube, or a carbon electrode rod, for the purpose of flaw detection, etc. Regarding blocks.

従来より、例えが鋼製丸ビレツトの表面疵探傷において
は、軸回りに回転される丸ビレツトの長さ方向にセンサ
を移動させて丸ビレツト表面を螺30旋状に走査するた
めに、該センサ例えば磁気探傷プローブや渦流探傷コイ
ルなどは丸ビレツト外表面に接して長さ方向に移動する
センサブロックに取付けられ、このセンサブロックによ
つて丸ビレツトの曲りに対して做い動作されるようにな
つて35いる。
Conventionally, when detecting surface flaws on a round billet made of steel, for example, the sensor is moved in the length direction of the round billet that is rotated around its axis to scan the round billet surface in a spiral pattern. For example, magnetic flaw detection probes and eddy current flaw detection coils are attached to sensor blocks that touch the outer surface of the round billet and move in the length direction, and are controlled by this sensor block to respond to bends in the round billet. There are 35 people.

この種の機構として、例えば特公昭51−19799号
公報には、被検査材の端末部分においてセンサと被検査
材外表面間の間隙寸法を一定にするために、センサの前
後に間隔をあけて設けられた做いロールのうち先行側ロ
ールが被検査材端部から外れた際に、固定部材に支持さ
れた受け部材によつてセンサプロツクの先端側を下方か
ら支えるようにし、後行側ロールと受け部材とによつて
センサを所定位置に保持するようなものが知られている
。しかしながら丸ビレツトや鋼管などにおいて良く経験
されるように圧延異常材の特に端部曲クのある被検査材
においては、後行側ロールより端部寄りの部分の曲bが
あるとその回転によつて曲り部分が偏心回転し、センサ
に対して回転に応じて近接離反することになり、センサ
下面と被検査材表面との間の間隙寸法が周期的コ変化し
て測定結果に悪影響を与えるばかりでなく曲りの程度に
よつてはセンサを被検査材端部によつて破壊することも
ある。上記のような端部曲り以外にも一般の丸ビレツト
や鋼管等にはその製造過程で発生する不均一な曲りやう
ねりが必ずあわ、そのため被検査材の回転条件は一本毎
に異なることが多く、従つて上記間隙寸法の変化のパタ
ーンや周速等に対して所定の検査精度を得るように上記
受け部材の位置調節を行なうことは極めて至難な作業で
ある。さらに被検査材が例えば圧延丸ビレツト材である
場合、その端部近くにヒレ状のオーバルが突出している
とこのオーバルによつてセンサを破壊することもある。
周また特開昭49−111689号公報のように渦巻バ
ネ式バランサによつてセンサプロツクを被検査材の軸方
向に做わせるようにしたものも知られているが、この方
式では被検査材の端部で做い機能が確保できなくなるの
で端部近くに大きな非検査部分が生じるほか、被検査材
の曲りがあまり大きくなると軸方向に直角な方向での追
従ができなくなる欠点がある。
As this type of mechanism, for example, Japanese Patent Publication No. 19799/1979 discloses that in order to maintain a constant gap size between the sensor and the outer surface of the material to be inspected at the end portion of the material to be inspected, a space is provided before and after the sensor. When the leading roll of the short rolls installed comes off the end of the material to be inspected, the receiving member supported by the fixing member supports the leading end of the sensor block from below, and the trailing roll is separated from the trailing roll. Sensors are known in which the sensor is held in place by a receiving member. However, as is often experienced with round billets and steel pipes, in the case of abnormally rolled materials, especially those with curved ends, if there is a curve b in the portion closer to the end than the trailing roll, it will be affected by the rotation. The bent part rotates eccentrically and approaches and moves away from the sensor as it rotates, causing periodic changes in the gap between the bottom surface of the sensor and the surface of the material to be inspected, which adversely affects the measurement results. However, depending on the degree of bending, the sensor may be destroyed by the edge of the material to be inspected. In addition to the bends at the ends mentioned above, ordinary round billets and steel pipes always have uneven bends and waviness that occur during the manufacturing process, so the rotation conditions of the inspected material may vary from one piece to another. Therefore, it is an extremely difficult task to adjust the position of the receiving member so as to obtain a predetermined inspection accuracy with respect to the pattern of change in gap size, circumferential speed, etc. Further, when the material to be inspected is, for example, a rolled round billet material, if a fin-like oval protrudes near the end of the material, the sensor may be destroyed by this oval.
There is also a known device, as disclosed in Japanese Patent Application Laid-Open No. 49-111689, in which a spiral spring type balancer is used to make the sensor block stand in the axial direction of the material to be inspected. Since a strong function cannot be ensured at the end, a large non-inspection area is created near the end, and if the curvature of the material to be inspected becomes too large, it becomes impossible to follow the test material in the direction perpendicular to the axial direction.

この発明は上述の状況に鑑みてなされたもので、特に被
検査材の曲りに効果的に追従し、センサ下面と被検査材
表面との間隙を常に一定に保ち、被検査材の表面の異常
形状や端縁でのセンサの破壊を防止し、端部非検査部分
を極少としてさらに被検査材の外径が変つた場合にもサ
イズ変更に伴う調整作業を簡便にすることのできるセン
サプロツクを提供することを目的とするものである。
This invention was made in view of the above-mentioned situation, and is particularly effective in following the bending of the inspected material, keeping the gap between the lower surface of the sensor and the surface of the inspected material constant, and preventing abnormalities on the surface of the inspected material. We provide a sensor block that prevents the sensor from being destroyed due to its shape or edges, minimizes the non-inspected portion at the edges, and simplifies adjustment work when changing the size even when the outer diameter of the material to be inspected changes. The purpose is to

この発明を丸ビレツトの渦流式表面疵探傷装置に適用し
た実施例につき図面と共に詳述すれば以下の通りである
。第1図はこの発明の一実施例にかかる丸ビレツトの表
面疵探傷装置の全体構成を示す斜視図、第2図は同じく
探傷ラインだけの正面図である。
An embodiment in which the present invention is applied to a round billet eddy current type surface flaw detection device will be described in detail with reference to the drawings as follows. FIG. 1 is a perspective view showing the overall structure of a round billet surface flaw detection apparatus according to an embodiment of the present invention, and FIG. 2 is a front view of only the flaw detection line.

第1図および第2図において、4は前段設備としてのシ
ヨツトプラスト後面テーブルであつてロープトランスフ
ア5およびチエーントランスフア6によつて探傷設備に
連続している。探傷設備には端面合せテーブル設備7と
ターニングローラテーブル設備8とが平行に設けられて
訃り、さらに後段設備、例えばグラインダー設備へ至る
探傷後面テーブル9が平行に設けられている。
In FIGS. 1 and 2, reference numeral 4 denotes a rear table of Shotplast as preliminary equipment, which is connected to the flaw detection equipment via a rope transfer 5 and a chain transfer 6. The flaw detection equipment includes an end face matching table equipment 7 and a turning roller table equipment 8 that are installed in parallel, and a flaw detection rear table 9 that connects to downstream equipment, such as a grinder equipment, is also installed in parallel.

チエーントランスフア6によつて横行移送された丸ビレ
ツトを一本ずつ端面合せテーブル設備7に移し、またそ
こからターニングローラテーブル設備8に移し、さらに
後面テーブル9に移すために、探傷設備にはこれらテー
ブル設備に直交して移動する工キズトラクタ10が設け
られている。端面合せテーブル設備7には搬入されたビ
レツトの一端面を押して所定位置に該端面を位置合せす
るための流体圧シリンダピストン装置11が設けられて
いる。ターニングローラテーブル設備8の上方には固定
架台としての支持ガーダ12が架設され、このガーダ1
2上に二台の台車13a,13bが移動可能に懸架され
ている。台車13a,13bは各々この発明に係るセン
サプロツク14a,14bを加圧装置としての流体圧シ
リンダピストン装置3を介してターニングローラテーブ
ル設備8の直上にて昇降可能に吊持している。ターニン
グローラテーブル設備8の延長線上には、ガーダ12の
範囲内で較正用のターニングローラ装置15が設けられ
、ここにおいてセンサの特性の較正が行なわれる。図示
の実施例では支持ガーダ上に二台の台車13a,13b
が懸架され、各台車のセンサプロツク14a,14bに
て一本の丸ビレツトをその長さの半分ずつ少量のオーバ
ーラツプを含んで探傷し、全長に亘る探傷の所要時間を
半分にしている。
In order to transfer the round billets traversely transferred by the chain transfer 6 one by one to the end face matching table equipment 7, from there to the turning roller table equipment 8, and then to the rear table 9, the flaw detection equipment is equipped with these devices. A scratch tractor 10 that moves orthogonally to the table equipment is provided. The end face alignment table equipment 7 is provided with a fluid pressure cylinder piston device 11 for pushing one end face of a billet carried in and aligning the end face at a predetermined position. A support girder 12 as a fixed frame is installed above the turning roller table equipment 8, and this girder 1
Two carts 13a and 13b are movably suspended on the top of the vehicle. The trolleys 13a and 13b respectively suspend sensor blocks 14a and 14b according to the present invention so as to be movable up and down directly above the turning roller table equipment 8 via a fluid pressure cylinder piston device 3 as a pressurizing device. As an extension of the turning roller table installation 8, a calibrating turning roller arrangement 15 is provided in the area of the girder 12, in which the characteristics of the sensor are calibrated. In the illustrated embodiment, two carts 13a, 13b are mounted on the support girder.
is suspended, and the sensor blocks 14a and 14b of each truck inspect half of one round billet for flaws, including a small amount of overlap, thereby halving the time required for flaw detection over the entire length.

丸ビレツト1は端面合せテーブル設備7で図中の左端を
所定位置に位置合せされ、同時に測長される。次いで工
キズトラクタ10によつて平行にターニングローラテー
ブル設備に移され所定の一定周速で回転される。支持ガ
ーダ12には上記所定位置に対応する位置および中間の
複数個所に位置検出器(図示せず)が設けられ、一方の
台車13aは位置検出器によつて検知される上記左端の
所定位置に、また他方の台車13bは上記測長結果に基
づいて選ばれた中間の複数個所のどれかの位置検出器に
よつて検知される中央部位置より所定のオーバーラツプ
分だけ左方の位置に停止され、探傷開始待機状態となる
。台車13a,13bに昇降可能に吊持されたセンサプ
ロツクは、上記待機状態にて丸ビレツト表面へ押圧接触
され、丸ビレツトの回転により端部を一周分以上探傷し
て端部不探傷部を少なくし、次いで台車の右方への移動
によつて丸ビレツトの外表面を螺旋状に全表面につき走
査する。センサブロツクの基本構造は、第3図および第
4図に示すように、台車に取付けられた流体圧シリンダ
ピストン装置3のピストンロツドに結合する昇降押圧軸
16と、台車に対して昇降案内をするためのガイド軸1
7とによつて台車から吊られた支持基盤18を備え、該
基盤18には丸ビレツトの曲りに追従させるためにスラ
イドベアリングからなるスライダ19によつて台車移動
方向と直角な水平方向にスライド可能にスライド基板2
0が取付けられ、該スライド基板20には第1の弾圧部
材としてのコイルばね21によつて做い基板22が吊ら
れ、基板22からは第2の弾圧部材としての別のばね2
3(竹の子ばね)によりヒンジ部24を介しセンサ保持
体25が吊持されている。
The left end of the round billet 1 in the figure is aligned at a predetermined position using the end face alignment table equipment 7, and the length is measured at the same time. Then, it is transferred in parallel to a turning roller table facility by a scratch tractor 10 and rotated at a predetermined constant circumferential speed. The support girder 12 is provided with position detectors (not shown) at multiple locations corresponding to the predetermined position and in the middle, and one of the carts 13a is located at the predetermined position on the left end detected by the position detector. , and the other trolley 13b is stopped at a position to the left of the central position detected by a position detector at one of a plurality of intermediate positions selected based on the length measurement result by a predetermined overlap. , it enters a standby state for flaw detection to start. The sensor block, which is suspended by the carts 13a and 13b so as to be able to rise and fall, is pressed into contact with the surface of the round billet in the above-mentioned standby state, and as the round billet rotates, the end portion is inspected for more than one revolution to reduce the number of undetected portions at the end. Then, by moving the cart to the right, the entire outer surface of the round billet is scanned in a spiral manner. As shown in FIGS. 3 and 4, the basic structure of the sensor block consists of an elevator shaft 16 connected to a piston rod of a hydraulic cylinder piston device 3 attached to a truck, and a lift shaft 16 for guiding the truck up and down. guide shaft 1
A support base 18 is provided which is suspended from the trolley by means 7, and the base 18 is capable of sliding in a horizontal direction perpendicular to the direction of travel of the trolley by means of a slider 19 consisting of a slide bearing in order to follow the bending of the round billet. slide board 2
0 is attached to the slide board 20, a stiff board 22 is suspended from the slide board 20 by a coil spring 21 as a first elastic member, and another spring 2 as a second elastic member is suspended from the board 22.
The sensor holder 25 is suspended by a bamboo spring 3 (bamboo spring) via a hinge portion 24.

すなわちセンサ保持体25は基盤18に対して台車移動
方向に沿つた鉛直面内でヒンジ部24にて回動可能であ
る。しかも昇降押圧軸16からの押付力をばね21,2
3を介して受けて丸ビレツト1に押付可能である。軸2
6は案内軸であつて下端にてヒンジ部24に固着され、
基板20および22に摺動可能に挿通されている。
That is, the sensor holder 25 is rotatable at the hinge portion 24 in a vertical plane along the direction of carriage movement with respect to the base 18. Moreover, the pressing force from the lifting and lowering pressing shaft 16 is reduced by the springs 21 and 2.
3 and can be pressed against the round billet 1. Axis 2
6 is a guide shaft fixed to the hinge part 24 at the lower end;
It is slidably inserted into the substrates 20 and 22.

基板22の前後部には、各々移動方向の両側方へ間隔を
あけた做い用の案内輪27,27および27′,27′
の一対からなる做い輪装置2,2′/)―取付けられ、
各案内輪の対は第4図に示すように丸ビレツト外周面の
頂部を間にして両脇に上記シリンダピストン装置3の押
圧力により押付けられるようになつている。
At the front and rear of the base plate 22, there are guide wheels 27, 27 and 27', 27' spaced apart from each other on both sides in the direction of movement.
A pair of broken wheel devices 2, 2'/) - installed,
As shown in FIG. 4, each pair of guide wheels is pressed against both sides by the pressing force of the cylinder piston device 3, with the top of the outer circumferential surface of the round billet in between.

4つの案内輪27,27,27′,27′(:囲まれる
領域の内部に位置するセン′サ保持体25には、その前
後部に転動輪28,28が設けられ、間に挾んだ渦流探
傷コイル29a,29b〜29hおよび30と距離検出
コイル31の下面と丸ビレツト表面との間隙寸法を例え
ば5簡に一定に保つように上記シリンダピストン装置3
の押圧力により丸ビレツト表面に押付けられるようにな
されている。
Four guide wheels 27, 27, 27', 27' (: The sensor holder 25 located inside the enclosed area is provided with rolling wheels 28, 28 at its front and rear, and The cylinder piston device 3 is arranged so that the gap size between the eddy current flaw detection coils 29a, 29b to 29h and 30, the lower surface of the distance detection coil 31, and the surface of the round billet is kept constant at, for example, 5 cm.
It is pressed against the surface of the round billet by the pressing force of .

各コイルは非磁性材製のホルダ32によつてセンサ保持
体25に固定され、またセンサ保持体25の前部には別
の近接スイツチ33,34が所定寸法間隔で取付けられ
、丸ビレツトの端部位置を検出するようになされている
。上述のセンサプロツクの構成において、例えば曲りの
ある丸ビレツト1を回転させた場合その中心0は第5図
に示す如く破線の軌跡を描いて公転すると考え得る。流
体圧シリンダピストン装置3によつて与える押圧力をF
とし、做い輪装置、センサ保持体、支持基盤、スライド
基板、做い基板などの軸16の吊下荷重をwとし、さら
に案内輪の丸ビレツトへの押付けによりシリンダピスト
ン装置3に反力として加わるFと逆向きの力をFcとす
るとき、F−W−Fc・・・・・・・・・・・・・・・
・・・ (1)となる。
Each coil is fixed to the sensor holder 25 by a holder 32 made of non-magnetic material, and another proximity switch 33, 34 is attached to the front of the sensor holder 25 at a predetermined interval, and It is designed to detect the position of the part. In the configuration of the sensor block described above, for example, when the curved round billet 1 is rotated, it can be considered that its center 0 revolves along a broken line trajectory as shown in FIG. The pressing force applied by the fluid pressure cylinder piston device 3 is F
Let w be the suspension load of the shaft 16 of the short wheel device, sensor holder, support base, slide board, short board, etc., and furthermore, a reaction force is applied to the cylinder piston device 3 by pressing the guide ring against the round billet. When the force opposite to the applied F is Fc, F-W-Fc...
...(1).

この力Fの大きさと、案内輪27と丸ビレツト1との接
触角α}よびスライダ19の左右移動抵抗Fsとが次の
(2)式を満足するとき案内輪27による曲りに対する
左右の做いが果される。FcOtα〉Fs・・・・・・
・・・・・・ (2)但し(2)式では案内輪と丸ビレ
ツトとの回転摩擦抵抗を無視している。また上下の動き
に対してはまでの加速度Vに対して追従可能である。(
但しgは重力加速度)すなわち第5図に}いてFなる下
向きの力で角度αで丸ビレツトに接する案内輪には角度
αの方向に反力Nが生じ、それと直角方向に摩擦力μN
が生じ、これらと釣合う内向きの做い力FcOtαが生
じる。従つてFcOtα〉FsのときF=Nsinα−
μNcOsαは〜μ《lとすればF=Nsinαとなり
、FcOtα−Fsできまる加速度で基板22が左右に
做い動作できることになる。上記の条件を満すように案
内輪27の径および間隔寸法、シリンダピストン装置3
のストローク、スライダ19のストローク等が、被検査
材の外径寸法、曲りの大きさ、回転速度、センサプロツ
クの自重、各種摩擦等を考慮して定められ、シリンダピ
ストン装置3による加圧力の調整で同一做い装置で或る
外径寸法範囲の被検査材に対する做いを行なう。
When the magnitude of this force F, the contact angle α between the guide ring 27 and the round billet 1, and the lateral movement resistance Fs of the slider 19 satisfy the following equation (2), the left and right resistance to bending by the guide ring 27 is will be fulfilled. FcOtα〉Fs・・・・・・
(2) However, formula (2) ignores the rotational frictional resistance between the guide ring and the round billet. Further, it is possible to follow the acceleration V up to the vertical movement. (
(where g is the gravitational acceleration), that is, the downward force F as shown in Fig. 5 causes a reaction force N in the direction of the angle α on the guide wheel that contacts the round billet at an angle α, and a friction force μN in the direction perpendicular to it.
are generated, and an inward force FcOtα that balances these forces is generated. Therefore, when FcOtα>Fs, F=Nsinα−
If μNcOsα is ~ μ<<l, then F=Nsinα, and the substrate 22 can move left and right with an acceleration determined by FcOtα−Fs. The diameter and interval dimensions of the guide ring 27 and the cylinder piston device 3 are adjusted to meet the above conditions.
The stroke of the slider 19, the stroke of the slider 19, etc. are determined by taking into account the outer diameter of the material to be inspected, the size of the bend, the rotational speed, the weight of the sensor block, various frictions, etc. The same device performs testing on materials to be inspected within a certain outer diameter size range.

この場合、被検査材と接触する案内輪や使用ベアリング
の寿命を延長して長時間の安定動作を得るため、シリン
ダピストン装置3は案内輪と被検査材との接触圧力をそ
の做い動作が得られる限界まで下げるべく負の圧力を生
成してもよい。例えばセンサプロツクが吊下け式で支持
されてその全自重が丸ビレツトとの案内輪接触点に加わ
り、しかもそれが做い動作のため以上に大きなものとな
る場合は上記シリンダピストン装置に生成される圧力は
センサプロツクを引上ける上向きの力である。この力F
c′をどの程度にするかは、シリンダピストン装置3の
ピストン摩擦力FPl被検査材の最大曲り振巾A1被検
査材回転数n(Rpm)により、次の(4)式が満足さ
れる範囲内であれば被検査材と案内輪との接触が保持さ
れることになる。
In this case, in order to prolong the life of the guide ring and bearings that come into contact with the material to be inspected and obtain stable operation over a long period of time, the cylinder-piston device 3 reduces the contact pressure between the guide ring and the material to be inspected so that the movement of the guide ring and the bearings used is extended. Negative pressure may be generated to reduce the pressure to the limit obtained. For example, if the sensor block is supported in a hanging manner and its entire weight is applied to the point of contact between the guide wheel and the round billet, and the weight becomes even larger due to its fleeting motion, the above-mentioned cylinder-piston device will generate Pressure is an upward force that pulls up the sensor block. This power F
The extent to which c' should be determined is determined by the piston friction force FPL of the cylinder piston device 3, the maximum bending amplitude A1 of the inspected material, the rotation speed n (Rpm) of the inspected material, and the range in which the following equation (4) is satisfied. If inside, contact between the inspected material and the guide ring is maintained.

被検査材の断面外形は必ずしも真円とは限らず、以下に
も述べるように種々の異常形状があるので上記Fc′の
大きさには限界があるが、上記(4)式による圧力制御
によつて接触圧力に起因する案内輪やペアリング等の機
器摩耗は著るしく低減する。
The cross-sectional external shape of the material to be inspected is not necessarily a perfect circle, and there are various abnormal shapes as described below, so there is a limit to the size of Fc', but pressure control using equation (4) above Therefore, wear on equipment such as guide wheels and pairings caused by contact pressure is significantly reduced.

丸ビレツト1には通常第6図に示すような凹状のオーバ
ル35a又は凸状のオーバル35bがあり、これが回転
してコイル下部に近づいたとき、上記センサプロツクで
は保持体25がばね23を介して支持されていると共に
転動輪28,28zオーバルに追従してコイル直下のギ
ヤツプを一定に保つから、コイルがオーバル突部で破損
されることがなく、コイルとビレツト外表面との間隙値
は常に一定に保たれて検出特性の変化も生じない。また
丸ビレツト端部側の保持体25の一端には、上記コイル
下面より下方に突出し上記転動輪下端よジ上方に位置す
る保護具36が設けられており、丸ビレツト端部で転動
輪28が落ちた際に丸ビレツト端部の端縁でコイルが破
損されるのを防いでいる。上記丸ビレツト端部をコイル
より先行して検出するために第1と第2の近接スイツチ
33,34が設けられ、この第1の近接スイツチ33が
ビレツト端部を検出したときに台車移動速度を減じると
共に、さらに減速された後に第2の近接スイツチ34が
ビレツト端部を検出したときに所定の時限を与えて転動
輪28がなるべくビレツト端部上に載つている状態で台
車が停止するようにシーケンスが組まれる。
The round billet 1 usually has a concave oval 35a or a convex oval 35b as shown in FIG. At the same time, the rolling wheels 28, 28z follow the oval and maintain a constant gap just below the coil, so the coil will not be damaged by the oval protrusion and the gap between the coil and the billet outer surface will always remain constant. is maintained, and no change in detection characteristics occurs. Further, at one end of the holder 25 on the round billet end side, a protector 36 is provided that protrudes downward from the lower surface of the coil and is positioned above the lower end of the rolling wheel, so that the rolling wheel 28 is secured at the round billet end. This prevents the coil from being damaged by the edges of the round billet when it falls. First and second proximity switches 33 and 34 are provided to detect the round billet end before the coil, and when the first proximity switch 33 detects the billet end, it changes the cart moving speed. When the second proximity switch 34 detects the billet end after further deceleration, a predetermined time limit is given so that the bogie stops with the rolling wheels 28 resting on the billet end as much as possible. A sequence is created.

一方、丸ビレツト端部から先行の案内輪が外れた場合に
おいてもなおコイル下面と丸ビレツト表面との間隙を一
定に保つて曲りに做いながら表面探傷できるようにする
ために、第7図に示すように案内輪27,27′と同様
な別の案内輪27//,2715をセンサ保持体の両側
或いは少なくともその一方の側部に位置させて做い基板
22に取付けても良い。この場合は先行側の案内輪27
,27が丸ビレツト端部を外れてもなお案内輪゛27/
T27//G27′,27′とによつて曲りに対する做
いが果され、先行側の転動輪28が丸ビレツト端部を超
えるまで所定の表面探傷が行なわれ、従つてこの場合の
端部非検査部分は転動輪28と第1のコイル29aとの
間隔寸法分だけの極めて少ない部分となる。探傷回路の
基本構成は第8図に示す通りであり、渦流探傷コイル2
9に基準周波数信号発生器37からの交流信号を増巾器
38を介して与えてそれによる渦電流を丸ビレツトに生
じさせ、疵による渦電流の変化をコイルインピーダンス
の変化として検出し位相検波器39から探傷出力信号を
得るものであつて、第8図に訃ける40は位相検波のた
めの同期信号を与える移相器である。
On the other hand, in order to maintain a constant gap between the lower surface of the coil and the surface of the round billet even if the leading guide ring comes off from the end of the round billet, and to perform surface flaw detection while bending, the As shown, other guide wheels 27//, 2715, similar to guide wheels 27, 27', may be mounted on the separate base plate 22, located on both sides of the sensor holder, or at least on one side thereof. In this case, the leading side guide wheel 27
, 27 is removed from the end of the round billet, the guide wheel も7/
T27//G27', 27' protect against bending, and a predetermined surface flaw detection is performed until the rolling wheel 28 on the leading side exceeds the end of the round billet. The inspection portion is an extremely small portion corresponding to the distance between the rolling wheel 28 and the first coil 29a. The basic configuration of the flaw detection circuit is as shown in Figure 8, with eddy current flaw detection coil 2
An alternating current signal from a reference frequency signal generator 37 is applied to 9 via an amplifier 38 to generate an eddy current in the round billet, and a change in the eddy current due to a flaw is detected as a change in coil impedance. A flaw detection output signal is obtained from 39, and 40 shown in FIG. 8 is a phase shifter that provides a synchronizing signal for phase detection.

この場合、増巾器38への基準信号の入力電圧をEin
とし、コイルインピーダンスをZl,Z2とすると出力
信号EOutはとなる。
In this case, the input voltage of the reference signal to the amplifier 38 is Ein
When the coil impedances are Zl and Z2, the output signal EOut is as follows.

但し上式に訃いてGは増巾器38の利得である。コイル
インピーダンスZ1及びZ2の基準状態での値を適当に
選ぶことによジ回路の帰還率が変化し、また増巾器38
の増巾度及び探傷位相を変えることによつて疵深さに対
して直線性の良い出力が得られる範囲が変化する。従つ
て例えば探傷コイル29a〜29hを5wm以内の疵深
さで直線性が得られる小中疵用コイルとして設定し、探
傷コイル30を5m以上の疵深さで直線性が得られる大
疵用コイルとして設定しておくと疵の程度が識別可能で
ある。伺コイル形状も上記特性を変化させるから大疵用
コイルだけを大形にしてもよい距離検出コイル31は第
8図の回路において位相検波の代ジに直線検波を行なう
距離検出回路に接続され、その出力は、第8図の検波器
出力の後段での自動利得制御増巾回路(AGC回路)で
の制御信号に用いられる。
However, according to the above formula, G is the gain of the amplifier 38. By appropriately selecting the values of the coil impedances Z1 and Z2 in the reference state, the feedback ratio of the amplifier circuit can be changed, and the amplifier 38
By changing the degree of amplification and the flaw detection phase, the range in which an output with good linearity with respect to the flaw depth can be obtained changes. Therefore, for example, the flaw detection coils 29a to 29h are set as coils for small to medium flaws that can obtain linearity at a flaw depth of 5 wm or less, and the flaw detection coil 30 is set as a coil for large flaws that can obtain linearity at a flaw depth of 5 m or more. If set as , the extent of the flaw can be identified. Since the shape of the coil also changes the above-mentioned characteristics, it is possible to make only the coil for large defects large.The distance detection coil 31 is connected to a distance detection circuit that performs linear detection instead of phase detection in the circuit shown in FIG. The output is used as a control signal in an automatic gain control amplification circuit (AGC circuit) downstream of the detector output shown in FIG.

第3図の実施例に}いて例えばコイル29a〜29hの
1つずつの巾寸法が18mで全体で144Tanの巾を
持つ場合、探傷ピツチを135Tfmすなわち探傷ラツ
プ率を(144−135)/144二0.06(6%)
とすると、ターニングローラによる丸ビレツト回転の周
速Vrを500TWL/Secに一定にしたとき、丸ビ
レツトの外径d(m)によつて台車移動速度vが次式の
通りに定まる。
In the embodiment shown in FIG. 3, for example, if the width of each of the coils 29a to 29h is 18 m and the total width is 144 Tan, the flaw detection pitch is set to 135 Tfm, that is, the flaw detection lap rate is set to (144-135)/1442. 0.06 (6%)
Then, when the circumferential speed Vr of rotation of the round billet by the turning roller is kept constant at 500 TWL/Sec, the cart moving speed v is determined by the outer diameter d (m) of the round billet as shown in the following equation.

この演算式に基づいて搬入されたビレツトの外径を設定
することにより台車移動速度を自動的に制御する制御装
置が台車駆動系に設けられている。
A control device is provided in the cart drive system to automatically control the moving speed of the cart by setting the outer diameter of the billet carried in based on this calculation formula.

第4図に示すようにセンサプロツク14a,14bには
各々マーキング塗料吹付用のノズル41が例えば保持体
25に支持されてコイル直下から所定寸法遅れた丸ビレ
ツト表面上に指向している。上記所定寸法はターニング
ローラによるビレツト回転の周速に応じて定められ、コ
イルが検出した位置が信号系および作動系の遅れ時間の
後にノズル直下にくるようになつている。例えば小中疵
用のコイル29a〜29hに対してそれが疵を検出した
ときに白い塗料を該コイルに対応する位置に取付けられ
たノズルから吹付けるようにし、大疵用のコイル30に
対してそれが疵を検出したときに赤い塗料を該コイルに
対応する位置に取付けられた別のノズルから吹付けるよ
うにする。第4図においてノズル41へ接続された導管
42は塗料導管であり、導管43は圧縮空気導管である
。塗料導管42には図示しない電磁弁を介して塗料タン
クおよびポンプが接続され、空気導管43には圧縮空気
源が接続されて常時空気を吹出して丸ビレツト表面の粉
塵等を除去する機能を兼ねさせる。コイルが検出した疵
信号によつて上記電磁弁が作動されノズルに塗料が供給
されて丁度ノズル直下に検出された疵が来た時点でノズ
ルから塗料が吹付けられる。以上に述べた如くこの発明
のセンサプロツクによれば、断面外形が円形状の被検査
体に対してその曲りに追従してセンサが做い動作を行な
い、異形の突起や凹部等があつてもセンサ下面と被検査
材表面との間隙寸法を常に一定に保つことができ、しか
も被検査体の端部に}いてセンサが破壊されることなく
端部非検査部分も少くすることが可能であり、センサプ
ロツクの押付力を調整することにより種々の外形の被検
査体に対応できて案内輪間隔の再調整等が不要であるか
らサイプ変更時の余分な作業が省略できるものである。
As shown in FIG. 4, each of the sensor blocks 14a and 14b has a nozzle 41 for spraying marking paint supported by, for example, a holder 25 and directed onto the surface of a round billet a predetermined distance behind the coil. The above-mentioned predetermined dimensions are determined according to the circumferential speed of billet rotation by the turning roller, and the position detected by the coil is located directly below the nozzle after a delay time of the signal system and the actuation system. For example, when the coils 29a to 29h for small and medium defects detect a defect, white paint is sprayed from a nozzle installed at a position corresponding to the coil, and the coil 30 for large defects is sprayed with white paint. When it detects a flaw, red paint is sprayed from another nozzle installed at a position corresponding to the coil. Conduit 42 connected to nozzle 41 in FIG. 4 is a paint conduit, and conduit 43 is a compressed air conduit. A paint tank and a pump are connected to the paint conduit 42 via a solenoid valve (not shown), and a compressed air source is connected to the air conduit 43, which also functions to constantly blow out air and remove dust, etc. from the surface of the round billet. . The electromagnetic valve is actuated by the flaw signal detected by the coil, and paint is supplied to the nozzle. When the detected flaw arrives just below the nozzle, the paint is sprayed from the nozzle. As described above, according to the sensor block of the present invention, the sensor performs a gentle operation by following the bending of the object to be inspected, which has a circular cross-sectional outer shape, and even if there are irregularly shaped protrusions or recesses, the sensor The gap size between the lower surface and the surface of the object to be inspected can be kept constant, and the sensor can be prevented from being destroyed at the edges of the object to be inspected, and the non-inspected portions at the edges can be reduced. By adjusting the pressing force of the sensor block, objects to be inspected with various external shapes can be handled, and there is no need to readjust the guide ring interval, so extra work when changing the sipe can be omitted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る表面疵探傷装置を示
す斜視図、第2図は同じく正面図、第3図はセンサプロ
ツク部分の正面図、第4図は第3図の−線矢視図、第5
図は做い輪装置の機能説明図、第6図は丸ビレツトのオ
ーバルを示す端面図、第7図は案内輪配置の別の実施例
を示す平面配置図、第8図は探傷回路図である。 1:被検査体(丸ビレツト)、2:做い輪装置、3:流
体圧シリンダピストン装置、7:端面合せテーブル設備
、8:ターニングロールテーブル設備、10:エキスト
ラクタ、11:流体圧シリンダピストン装置、12:支
持ガーダ、13a,13b:台車、14a,14b:セ
ンサプロツク、16:昇降押圧軸、18:支持基盤、1
9:スライダ、20:スライド基板、22:做い基板、
21,23:ばね、24:ヒンジ部、25:センサ保持
体、27,27:案内輪、28,28:転動輪、29a
,29b〜29h,30:探傷コイル、31:距離検出
コイル、33,34:近接スイツチ、41:ノズル。
FIG. 1 is a perspective view showing a surface flaw detection apparatus according to an embodiment of the present invention, FIG. 2 is a front view of the same, FIG. 3 is a front view of a sensor block, and FIG. 4 is an arrow indicated by the - line in FIG. View, 5th
The figure is a functional explanatory diagram of the broken wheel device, Figure 6 is an end view showing the oval of the round billet, Figure 7 is a plan layout diagram showing another example of the guide wheel arrangement, and Figure 8 is a flaw detection circuit diagram. be. 1: Inspected object (round billet), 2: Breaking wheel device, 3: Fluid pressure cylinder piston device, 7: End face matching table equipment, 8: Turning roll table equipment, 10: Extractor, 11: Fluid pressure cylinder piston Device, 12: Support girder, 13a, 13b: Cart, 14a, 14b: Sensor block, 16: Lifting press shaft, 18: Support base, 1
9: slider, 20: slide board, 22: short board,
21, 23: Spring, 24: Hinge portion, 25: Sensor holder, 27, 27: Guide wheel, 28, 28: Rolling wheel, 29a
, 29b to 29h, 30: flaw detection coil, 31: distance detection coil, 33, 34: proximity switch, 41: nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 長さ方向の軸回りに回転される断面外形が円形状の
被検査材に跨座することにより被検査材の外表面を走査
するセンサブロックにおいて、固定架台に支持される支
持基盤と、被検査材の長さ方向と直角な方向に滑動自在
に該支持基盤に取付けられたスライド基盤と、上記滑動
の方向に間隔をあけて被検査材の外表面に各々接して上
記回転により転動する二つの案内輪からなる做い輪装置
と、該做い輪装置を被検査材長さ方向に間隔をあけて一
対支持し被検査材に対して做い輪装置を押圧する方向に
て第1の弾性部材を介して上記スライド基板と結合され
た做い基板と、上記一対の做い輪装置間の間隔内におい
て上記押圧方向にて第2の弾性部材を介し且つ上記滑動
方向を向いた軸心回りに回動可能に上記做い基板に結合
されたセンサー保持体と、該センサー保持体の中央部に
取付けられたセンサの下面と被検査材表面との間隔寸法
を所定値に保持するように上記做い輪装置間の間隔内に
て上記センサー保持体の上記長さ方向両端に各々取付け
られて被検査材の回転によりその表面に接して転動する
転動輪と、上記支持基盤を押圧することにより上記スラ
イド基板と上記做い基板および第1と第2の弾性部材を
介して上記案内輪および転動輪を被検査材表面に押圧す
る加圧装置とを備え、さらに、センサー保持体中央部の
少なくとも一方の側部にて被検査材表面に接して転動す
る別の案内輪を做い基板に支持させて配設し、固定架台
は、被検査材を回転させるターニングローラ設備の直上
に架設された支持ガーダであつて、支持基盤がガーダに
移動可能に懸架された台車に吊架され、加圧装置が該台
車に支持された流体圧シリンダピストン装置で構成され
、センサー保持体の少なくとも一方の端部において、セ
ンサと転動輪との間にセンサ下面より下方に突出し転動
輪下端より上方に位置する底面を有するセンサ下面保護
金具を備えたことを特徴とする断面外形が円形状の被検
査材の外表面走査用センサブロック。
1. In a sensor block that scans the outer surface of a material to be inspected by sitting astride the material to be inspected, which is rotated around an axis in the longitudinal direction and has a circular cross-sectional outline, a support base supported by a fixed pedestal and a A slide base is attached to the support base so as to be slidable in a direction perpendicular to the length direction of the test material, and a slide base is slidably attached to the support base in a direction perpendicular to the length direction of the test material, and the slide base is in contact with the outer surface of the test material at intervals in the direction of sliding and rolls by the rotation. A dead ring device consisting of two guide wheels, and a pair of said hard wheel devices supported with an interval in the length direction of the material to be inspected, and a first one in the direction of pressing the broken wheel device against the material to be inspected. a short base plate coupled to the sliding base plate through an elastic member; and a shaft oriented in the pressing direction through the second elastic member and in the sliding direction within the space between the pair of short wheel devices. A sensor holder is rotatably connected to the thin substrate, and the distance between the lower surface of the sensor attached to the center of the sensor holder and the surface of the material to be inspected is maintained at a predetermined value. A rolling wheel is attached to each longitudinal end of the sensor holder within the interval between the wheel devices and rolls in contact with the surface of the object to be inspected as it rotates, and presses the support base. a pressurizing device for pressing the guide wheel and rolling wheel against the surface of the material to be inspected via the sliding substrate, the fragile substrate, and the first and second elastic members; Another guide wheel that rolls in contact with the surface of the material to be inspected is supported by a small substrate on at least one side of the section, and the fixed frame is directly above the turning roller equipment that rotates the material to be inspected. The support girder is constructed in such a way that the support base is suspended from a truck movably suspended on the girder, and the pressurizing device is constituted by a fluid pressure cylinder piston device supported by the truck, A sensor lower surface protection fitting having a bottom surface protruding below the lower surface of the sensor and located above the lower end of the rolling wheel is provided between the sensor and the rolling wheel at least on one end. Sensor block for scanning the outer surface of the inspected material.
JP11320277A 1977-09-22 1977-09-22 Sensor block for scanning the outer surface of inspected materials with a circular cross-sectional shape Expired JPS5913701B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11320277A JPS5913701B2 (en) 1977-09-22 1977-09-22 Sensor block for scanning the outer surface of inspected materials with a circular cross-sectional shape
GB7837395A GB2007366B (en) 1977-09-22 1978-09-19 Eddycurrent flaw detection apparatus
IT27836/78A IT1099116B (en) 1977-09-22 1978-09-19 ELECTRICALLY CONDUCTIVE EQUIPMENT FOR THE DISPERSE CURRENT DETECTION OF DEFECTS ON THE EXTERNAL SURFACE OF ROUND OR CYLINDRICAL MATERIAL
US05/943,865 US4247819A (en) 1977-09-22 1978-09-19 Apparatus for surface flaw detection on electrically conductive cylindrical material
DE2841165A DE2841165C3 (en) 1977-09-22 1978-09-21 Device for detecting surface defects on cylindrical pieces of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11320277A JPS5913701B2 (en) 1977-09-22 1977-09-22 Sensor block for scanning the outer surface of inspected materials with a circular cross-sectional shape

Publications (2)

Publication Number Publication Date
JPS5447695A JPS5447695A (en) 1979-04-14
JPS5913701B2 true JPS5913701B2 (en) 1984-03-31

Family

ID=14606129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11320277A Expired JPS5913701B2 (en) 1977-09-22 1977-09-22 Sensor block for scanning the outer surface of inspected materials with a circular cross-sectional shape

Country Status (1)

Country Link
JP (1) JPS5913701B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232248A (en) * 1988-07-22 1990-02-02 Nkk Corp Eddy current flaw detecting device for long-sized material
JP2007057281A (en) * 2005-08-23 2007-03-08 Sumitomo Metal Ind Ltd Leakage flux flaw detection device

Also Published As

Publication number Publication date
JPS5447695A (en) 1979-04-14

Similar Documents

Publication Publication Date Title
US4258319A (en) Surface defect detecting apparatus for use with rotating circularly shaped metallic material
US4247819A (en) Apparatus for surface flaw detection on electrically conductive cylindrical material
US5533371A (en) Measurement device for roll gap control and process for its operation
JP3696715B2 (en) Running rail inspection method and apparatus
US4855678A (en) Apparatus for guiding the sensor holder of a surface testing apparatus
CN209911290U (en) Eddy current probe real-time follow-up device for flaw detection of steel surface
JPS5913701B2 (en) Sensor block for scanning the outer surface of inspected materials with a circular cross-sectional shape
US4974333A (en) Width measuring device
CN205616149U (en) Track is vertical to wearing and tearing detection device
GB1308439A (en) Measuring the camber of a roll
JPH0890397A (en) Grinding structure for detecting minute defect in steel plate
JP3551739B2 (en) Crack inspection method for rolling rolls
US4976158A (en) Tension measuring apparatus
JPS6365361A (en) Eddy current flaw detection sensor
GB2069699A (en) Surface inspection equipment
CN219416136U (en) Steel length measuring equipment
JPS5939701B2 (en) Flaw detection equipment for moving objects
JPH0821823A (en) Marking method and device for metal wire or bar
JPH02287102A (en) Curve detector of die steel
CA1163227A (en) Apparatus for turning elongate objects of polygonal cross section about an edge thereof
JPS60224059A (en) Follow-up control device
RU2037822C1 (en) Device for carrying out ultrasonic control of sheet rolled products
CN2544853Y (en) Pneumatic plate shape apparatus
JPS6234047A (en) Method and apparatus for ultrasonic flaw detection
JPH089640Y2 (en) Exit guide mechanism for rotary flaw detector