JPS59136638A - Optoacoustic analyzer - Google Patents

Optoacoustic analyzer

Info

Publication number
JPS59136638A
JPS59136638A JP58009850A JP985083A JPS59136638A JP S59136638 A JPS59136638 A JP S59136638A JP 58009850 A JP58009850 A JP 58009850A JP 985083 A JP985083 A JP 985083A JP S59136638 A JPS59136638 A JP S59136638A
Authority
JP
Japan
Prior art keywords
modulating frequency
optoacoustic
light
signal
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58009850A
Other languages
Japanese (ja)
Inventor
Takehiko Kitamori
武彦 北森
Masaaki Fujii
藤井 正昭
Katsuo Tsukada
塚田 勝男
Yoshio Toyama
遠山 恵夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58009850A priority Critical patent/JPS59136638A/en
Publication of JPS59136638A publication Critical patent/JPS59136638A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable measurement of a phenomenon having a short time constant, such as the process of the heat emission from a sample, by measuring the optoacoustic effect utilizing a high optical modulating frequency at good S/N ratio. CONSTITUTION:A measuring method for the grain size distribution of suspended particles in a suspension is exampled as below. A suspension of Zr powder having a central grain size of 5mum is fed into a measuring cell having 11mm. inside diameter and 50mm. length through a sample inlet 1 thereof and Ar laser light of an output 1W is made incident to the same through an optical window 3. An oscillator is used to oscillate the laser light which is moudlated to pulse light by an acoustooptic modulator. The optoacoustic signal generated in the cell is detected with a cylindrical piezo-electric element 4 and is inputted from a signal taking out terminal 5 to a lock-inamplifier by means of a conductor. The intensity and phase of the optoacoustic signal are measured by the lock-in amplifier. The light modulating frequency characteristic (solid line) of the intensity of the optoacoustic signal and the light modulating frequency characteristic (broken line) of S/N ratio are thus obtd. The measurement in this case necessitates simply the use of the optical modulating frequency of a peak P4.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光音響分析装置に係り、特に高周波数の光変
調周波数を用いる測定に好適な光音響分析装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a photoacoustic analyzer, and particularly to a photoacoustic analyzer suitable for measurements using high optical modulation frequencies.

〔従来技術〕[Prior art]

光音管イぎ号は光変調周波数の増加と共に減衰する性(
ホ?持つので、従来の光音響分析装置では、できろたけ
低い光変調周波数を用いていたため、外部からの4・′
械的振動ノイズテ受は易い欠点があった。また、従来の
光音響分析装置でに、低い光変調周波数衾用いたため、
試料の熱放出過程など早い過渡現象の測定が困難であっ
た。
The photoacoustic tube signal has the tendency to attenuate as the optical modulation frequency increases (
Ho? Conventional photoacoustic analyzers use optical modulation frequencies as low as possible because of the
It has the disadvantage of being easily susceptible to mechanical vibration noise. In addition, because conventional photoacoustic analyzers use a low optical modulation frequency,
It was difficult to measure fast transient phenomena such as the heat release process of the sample.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高い周波数の光変調周波数特性い、か
つ、測定に十分な強[’r持つ光音響信号を発生する光
音響分析装置t提供することにある。
An object of the present invention is to provide a photoacoustic analyzer that generates a photoacoustic signal that has high-frequency optical modulation frequency characteristics and is strong enough for measurement.

〔発明の概要〕[Summary of the invention]

光音響信号の光変調周波数特性には、検出器の電気的共
振ピーク、セルの構造共振ピーク及び光音響波の共鳴ピ
ークなどが現われる。これらのピークは、通常10kH
z以上の光変調周波数領域に現われる場合が多い。この
領域では共振・共鳴ピーク以外の光変調周波数に対し7
て、光音響信号は小さく、はとんど検出されない。しか
し、ピークにおいては、光音響信号は102倍以上も増
強され、検出に十分な強度となる。
The optical modulation frequency characteristics of the photoacoustic signal include an electrical resonance peak of the detector, a structural resonance peak of the cell, a resonance peak of the photoacoustic wave, and the like. These peaks are usually around 10kHz
It often appears in the optical modulation frequency region above z. In this region, for optical modulation frequencies other than resonance and resonance peaks, 7
Therefore, the photoacoustic signal is small and is rarely detected. However, at the peak, the photoacoustic signal is enhanced by more than 102 times and becomes strong enough for detection.

〔発明の実施例〕[Embodiments of the invention]

以下、第1図〜第4図により、本発明の一実施例全説明
する。本実施例は懸濁液中の懸濁粒子粒径分布測定法に
、本発明全適用した例である。第1図には、測定に用い
た内径111rrrnφ、長さ50郷の測定セルを示し
た。測定セルの試料人口1xす、5μn]に中心粒径を
もつジルコニウム粉末の懸濁液を注入し、光学窓3より
光出力IWのアルゴンレーザー光全入射すゐ。アルゴン
レーザー光は488nm発振線全用い、音響光学変調器
によりパルス光に変調しである。セル内で発生した光音
響信号は円筒状rlEl集電4で検出し、信号取出端子
5より導線にてロックインアンプに入力する。ロックイ
ンアンプにより光音響(M号の強度及び位相を測定する
Hereinafter, one embodiment of the present invention will be fully explained with reference to FIGS. 1 to 4. This example is an example in which the present invention was fully applied to a method for measuring the size distribution of suspended particles in a suspension. FIG. 1 shows a measuring cell with an inner diameter of 111 mm and a length of 50 mm used for measurement. A suspension of zirconium powder having a center particle size was injected into a sample population of 1 x 5 μm in a measurement cell, and argon laser light with an optical output of IW was totally incident on it through the optical window 3. The argon laser beam uses all 488 nm oscillation lines and is modulated into pulsed light by an acousto-optic modulator. A photoacoustic signal generated within the cell is detected by a cylindrical rlEl current collector 4 and inputted to a lock-in amplifier via a signal output terminal 5 via a conductive wire. A lock-in amplifier measures the intensity and phase of photoacoustics (M number).

第2図は、本分析セルで測定した光音響信号強度の光変
調同波数特性(実線)、及びS/N の光変調周波数特
性(破gl)を示した。第2図の中の10kH−z の
ピーク1〕、及び20kHzのピークP2はセルの構造
共振であり、40kH2及び80kHzのピークは圧電
素子の電気的共振による共鳴ピークであゐ。これらのピ
ークは、セルに対する力ロ振器及びインヒーダンスメー
タにより測定し、同定し、た、壕だ、150kHzに現
われたピークP、l−,;を光音響波の空洞共振にとる
ピークである。光音響信号強度、及びS/N  の光変
調周波数特性から、高周波の光変調周波数特性する測定
には、ピークP4の光変調周波数衾用いればよいことが
わかる。
FIG. 2 shows the optical modulation same wavenumber characteristic (solid line) of the photoacoustic signal intensity and the optical modulation frequency characteristic (broken gl) of S/N measured with this analysis cell. In FIG. 2, the peak 1 at 10 kHz and the peak P2 at 20 kHz are the structural resonance of the cell, and the peaks at 40 kHz and 80 kHz are resonance peaks due to the electrical resonance of the piezoelectric element. These peaks were measured and identified using a force oscillator and an impedance meter for the cell, and it was found that the peak P, l-, which appeared at 150 kHz was the peak associated with the cavity resonance of the photoacoustic wave. be. From the optical modulation frequency characteristics of the photoacoustic signal strength and S/N, it can be seen that the optical modulation frequency of peak P4 can be used to measure the high frequency optical modulation frequency characteristics.

400Hz以下の光変調周波数領域では、光音響信号強
度は太きいが、外部からの振動ノイズを受は易く、S/
Nけ優れない。
In the optical modulation frequency region below 400Hz, the photoacoustic signal strength is strong, but it is easily affected by external vibration noise, and S/
N is not good.

以下、400Ffz 、 60kHz 、 80kHz
  f用いた粒径分布測定の例を示す。試料に用いたジ
ルコニウム懸濁液の粒径分布)第3図に示す。これに対
し、光音響信号の位相スペクトル全測定した結果全第4
図に示す。第4図の位相スペクトルは、各々、8−80
kHz、 9−60kHz、 10−400Hzに対応
する。400Hzのスペクトル9では試料の熱放出時1
1JIが光パルスの時間巾に比較して十分早いため、第
3図の粒径分布を反映しない。捷だ、60kHzのスペ
クトル10では信号レベルが小さく、良好な測定結果が
得られない。一方、圧電素子の電気的共振を利用した8
(lkl(z  のスペクトル8では、第3図の粒径分
布?良く反映し、かつ8/Nも10以上と良好な測定結
果2得た。
Below, 400Ffz, 60kHz, 80kHz
An example of particle size distribution measurement using f is shown. Particle size distribution of the zirconium suspension used as a sample) is shown in Figure 3. On the other hand, as a result of measuring the entire phase spectrum of the photoacoustic signal,
As shown in the figure. The phase spectra in Figure 4 are 8-80, respectively.
Compatible with kHz, 9-60kHz, 10-400Hz. In the 400Hz spectrum 9, when the sample releases heat 1
Since 1JI is sufficiently fast compared to the time width of the optical pulse, it does not reflect the particle size distribution shown in FIG. Unfortunately, in spectrum 10 of 60kHz, the signal level is low and good measurement results cannot be obtained. On the other hand, 8
In spectrum 8 of (lkl(z), the particle size distribution shown in FIG. 3 was well reflected, and 8/N was also 10 or more, which was a good measurement result 2.

本実施例によれば、圧電素子の8flkHzの電気的共
振を利用することにより、5μmを中心とする懸イ濁粒
子の粒径分布を測定でき、寸だ、S/N  も10と良
好な測定結果を得々ことができる。
According to this example, by utilizing the 8 flkHz electrical resonance of the piezoelectric element, it is possible to measure the particle size distribution of suspended particles with a center of 5 μm, and the S/N ratio is also as good as 10. You can get great results.

〔発明の効果〕〔Effect of the invention〕

本発明に;れげ、高い光変調周波数を利用した光音響効
果ゲ、良好なS/Nで測定できるので、試料の熱放出過
程など短い時定数を持つ現象の測定が可能となる。
According to the present invention, the photoacoustic effect using a high optical modulation frequency can be measured with a good S/N ratio, making it possible to measure phenomena with short time constants such as the heat release process of a sample.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(d本発明の光音響分析セルの実施例の光音響分
析セルの斜視図、第2し」は第1図のセルの光音響信号
及びS/Nの光度i+1 I@波数特性図、第3図1第
2図のジルコニウム懸濁液の粒径分布(7,1、第4図
は第2肉の光音響信号の位相スペクトル説明図である。 1・・・試料人口、2・・・試料出口、3・・・光学窓
、4・・・圧電素子(セラミクス)、訃・・信号取出線
、6・・・“光音響信号、7・・・S/N 0 穿1図 第2図 0−1   1     ro     to。 弛(謂同>L数(団り
FIG. 1 (d) is a perspective view of a photoacoustic analysis cell according to an embodiment of the photoacoustic analysis cell of the present invention, and FIG. , Fig. 3 Particle size distribution of the zirconium suspension in Fig. 1 Fig. 2 (7, 1, Fig. 4 is an explanatory diagram of the phase spectrum of the photoacoustic signal of the second meat. 1... sample population, 2... ...Sample exit, 3...Optical window, 4...Piezoelectric element (ceramics), Signal output line, 6...Photoacoustic signal, 7...S/N 0 Hole 1 Figure 2 Figure 0-1 1 ro to.

Claims (1)

【特許請求の範囲】[Claims] 1 光源、光変調器、測定上ノへ増幅器及び記録針等よ
り成る光音響分析装置において、検出器の固有振動数あ
るいは電気的な共振周波数などの共鳴周波数の近傍の光
変調周波数に用い々ことを特徴とする光音響分析装置。
1. In a photoacoustic analyzer consisting of a light source, a light modulator, a measurement amplifier, a recording needle, etc., it is used for light modulation frequencies near the resonance frequency such as the natural frequency of the detector or the electrical resonance frequency. A photoacoustic analyzer featuring:
JP58009850A 1983-01-26 1983-01-26 Optoacoustic analyzer Pending JPS59136638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58009850A JPS59136638A (en) 1983-01-26 1983-01-26 Optoacoustic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009850A JPS59136638A (en) 1983-01-26 1983-01-26 Optoacoustic analyzer

Publications (1)

Publication Number Publication Date
JPS59136638A true JPS59136638A (en) 1984-08-06

Family

ID=11731605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009850A Pending JPS59136638A (en) 1983-01-26 1983-01-26 Optoacoustic analyzer

Country Status (1)

Country Link
JP (1) JPS59136638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0180140A2 (en) * 1984-10-25 1986-05-07 Hitachi, Ltd. Method for analyzing impurities in liquid and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0180140A2 (en) * 1984-10-25 1986-05-07 Hitachi, Ltd. Method for analyzing impurities in liquid and apparatus therefor

Similar Documents

Publication Publication Date Title
Miklós et al. Application of acoustic resonators in photoacoustic trace gas analysis and metrology
Patel et al. Optoacoustic spectroscopy of liquids
Perondi et al. Minimal‐volume photoacoustic cell measurement of thermal diffusivity: Effect of the thermoelastic sample bending
CA1228148A (en) Laser with stabilized external passive cavity
EP0173955A2 (en) A method and device for detecting a specific acoustic spectral feature
US4594004A (en) Continuous particulate-measuring apparatus using an optoacoustic effect
US4303343A (en) Optoacoustic spectroscopy of condensed matter in bulk form
Breazeale et al. 2. Ultrasonic Wave Velocity and Attenuation Measurements
US9606052B2 (en) Tuning-fork based near field probe for spectral measurement, near-field microscope using the same, and spectral analysis method using near-field microscope
US4276780A (en) Optoacoustic spectroscopy of thin layers
JPH0479570B2 (en)
JPS59136638A (en) Optoacoustic analyzer
Baures et al. Measurements of optical absorption at 1.06 μm in low-loss materials
Bonnet et al. Determination and optimization of frequency response of constant temperature hot‐wire anemometers in supersonic flows
Shaw Helmholtz resonance cells for pulsed dye laser‐excited high resolution optoacoustic spectroscopy
CN108398393A (en) A kind of the cavity ring-down spectroscopy instrument and measurement method of quick measurement greenhouse gases content
CN114018171A (en) High-resolution strain sensor based on differential optical fiber resonant cavity
JPS5957136A (en) Method for evaluating characteristics of am-fm noise of light source
WO2024103638A1 (en) Photoacoustic-spectroscopy phase locking method, apparatus and system
Krüger et al. Brillouin spectroscopy of induced phonons in x-cut quartz
JP2734843B2 (en) Nonlinear optical constant evaluation method and apparatus
GB2367360A (en) Microwave acoustic gas analyser
CN109358002A (en) Open optical fiber cavity enhances optoacoustic spectroscopy sensing device
JPS58100741A (en) Laser raman spectroscopic apparatus removing fluorescence
Maznev et al. Impulsive stimulated thermal scattering for sub-micron-thickness film characterization