JPS5913559B2 - Fluorescent material for slow electron beam excitation - Google Patents

Fluorescent material for slow electron beam excitation

Info

Publication number
JPS5913559B2
JPS5913559B2 JP8833375A JP8833375A JPS5913559B2 JP S5913559 B2 JPS5913559 B2 JP S5913559B2 JP 8833375 A JP8833375 A JP 8833375A JP 8833375 A JP8833375 A JP 8833375A JP S5913559 B2 JPS5913559 B2 JP S5913559B2
Authority
JP
Japan
Prior art keywords
phosphor
excitation
ppm
electron beam
luminous efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8833375A
Other languages
Japanese (ja)
Other versions
JPS5212686A (en
Inventor
恒世 住田
正 若月
義雄 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8833375A priority Critical patent/JPS5913559B2/en
Publication of JPS5212686A publication Critical patent/JPS5212686A/en
Publication of JPS5913559B2 publication Critical patent/JPS5913559B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 本発明は螢光表示管のような低速電子線で励起する電子
管に好適する螢光体の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a phosphor suitable for an electron tube excited by a slow electron beam, such as a fluorescent display tube.

従来酸化亜鉛を主成分とする自己付活螢光体は、フライ
シダ・スポット・スキャナー用ブラウン管などの短残光
螢光面において、数KV以上の印下電5 圧の下で使用
されているが、数eV程度の電子線励起でも発光するこ
とが知られており(H、W。Leverent2;In
troductiontoLumine−scence
ofSolids、1949、P156、P427など
)、近年になつて螢光表示管用螢光面などの10低速電
子線励起発光にも応用されている。ところで酸化亜鉛を
主成分とする自己付活螢光体の電子線励起による螢光効
率は、通常のフライシダ・スポット・スキャナー用ブラ
ウン管などに使用した場合は、7.5%と報告されてい
る。(A。15Bril&A、Klassens、Ph
ilipsRes、Repts。
Conventionally, self-activating phosphors mainly composed of zinc oxide have been used under applied voltages of several KV or more on short-afterglow phosphor surfaces such as cathode ray tubes for fly flea spot scanners. It is known that it emits light even when excited with an electron beam of about several eV (H, W. Level 2; In
production to Lumine-sence
ofSolids, 1949, P156, P427, etc.), and in recent years it has also been applied to low-speed electron beam excitation light emission such as fluorescent surfaces for fluorescent display tubes. Incidentally, the fluorescence efficiency of a self-activating phosphor containing zinc oxide as a main component by electron beam excitation is reported to be 7.5% when used in a common cathode ray tube for fly fern spot scanners. (A. 15 Bril & A, Klassens, Ph
ilipsRes, Repts.

7P401(1952))が、螢光表示管などのような
20〜30eV程度の低速の電子線で励起した場合の発
光効率を実測すると、その発光効率は1.3〜2.0%
程度で、高電圧で加速した電子線ク0 で励起した場合
に比べ著じるしく低い。
7P401 (1952)) when excited with a low-velocity electron beam of about 20 to 30 eV, such as from a fluorescent display tube, the luminous efficiency was 1.3 to 2.0%.
This is significantly lower than when excited by an electron beam accelerated at a high voltage.

したがつて、この螢光体は低速の電子線で励起する螢光
表示管などの用途においては、多大の消費電力、とりわ
け大きな電流を要するので、陰極の負担が大きくなり、
寿命その他に悪影響をもたらすなどのク5 欠点を有す
るものであつた。なお、従来の酸化亜鉛を主成分とする
自己付活螢光体(このものは不純物として重量比でカド
ミウムを3pμm銅を25ppm、銀を15pμm含有
したものである)の発光効率と励起電子の加速電圧の関
係を第1図に示す。30本発明は上に述べたような欠点
を解消するために低速電子線励起によつて、従来より高
い発光効率を示す螢光体を提供することを目的とするも
のである。
Therefore, when this phosphor is used in fluorescent display tubes that are excited by low-speed electron beams, it consumes a lot of power, especially a large current, which places a heavy burden on the cathode.
It had disadvantages such as having an adverse effect on lifespan and other problems. In addition, the luminous efficiency and acceleration of excited electrons of a conventional self-activating phosphor whose main component is zinc oxide (this one contains 3 pμm of cadmium, 25 ppm of copper, and 15 pμm of silver as impurities by weight) Figure 1 shows the voltage relationship. 30 The present invention aims to eliminate the above-mentioned drawbacks by providing a phosphor that exhibits a higher luminous efficiency than conventional ones by excitation with a slow electron beam.

すなわち本発明は自己付活酸化亜鉛螢光体にお35いて
、前記螢光体中に含有される金属不純物、とくにカドミ
ウムを1pμm以下に減少せしめたことを特徴とする低
速電子線励起用螢光体であり、さらに他の金属不純物と
くに銅および銀についてもその含有量が10ppm以下
であるような低速電子線励起用螢光体をも包含するもの
である。
That is, the present invention provides a self-activated zinc oxide phosphor for excitation with slow electron beams, characterized in that metal impurities, particularly cadmium, contained in the phosphor are reduced to 1 pμm or less. The term also includes phosphors for excitation with slow electron beams which contain 10 ppm or less of other metal impurities, particularly copper and silver.

従来より、特定の不純物元素が螢光体の発光に有害な影
響を与えることは公知であり、特に発光効率を低下させ
る作用を有する場合には、これをキラ一(Killer
)と称していることも良く知られているが、キラ一は螢
光体の使用条件、例えば、励起電子の加速電圧を変化さ
せてもその作用に変化は見られず、一様に有害であると
信じられている。
It has long been known that certain impurity elements have a detrimental effect on the luminescence of phosphors, and in particular, when they have the effect of reducing luminous efficiency, they are treated as killer elements.
), but Kiraichi is a phosphor whose effects do not change even if the usage conditions of the phosphor are changed, for example, the acceleration voltage of excited electrons, and it is uniformly harmful. It is believed that there is.

ところが、螢光体の発光効率を向上せしむるための種々
の検討の結果、本発明に関わる螢光体に含有されるある
種の金属不純物は、フライング・スポツト・スキヤナ一
用ブラウン管などに採用されるような比較的高い電圧で
加速された電子線による励起においては、キラ一として
の有害な作用を有しないにもかかわらず、約1000e
V以下の低速電子励起においてのみ螢光体の発光に有害
な作用を有することが判明した。
However, as a result of various studies aimed at improving the luminous efficiency of the phosphor, certain metal impurities contained in the phosphor related to the present invention have not been adopted in cathode ray tubes for flying spot scanners, etc. When excited by an electron beam accelerated at a relatively high voltage such as
It has been found that only slow electron excitation below V has a detrimental effect on the luminescence of the phosphor.

以下に詳細に述べるように、カドミウム、銅、銀などの
特定の金属不純物元素が、自己付活酸化亜鉛螢光体の発
光効率、とりわけ低速電子線励起に対する発光効率に対
し著じるしい影響を与える理由は充分解明されるに至つ
ていないが、おそらくは、電子の螢光体粒子中への侵入
深さが浅くなるにつれて、不純物の作る表面準位や汚染
などが発光効率に大きく寄与し、その低下をもたらすも
のと考えられる。本発明者等はかかる認識に着眼して本
発明を完成させたものである。すなわち螢光体用原料あ
るいは螢光体製造工程で必然的に混入する不純物の特定
範囲における効果を見出したものである。
As detailed below, certain metallic impurity elements such as cadmium, copper, and silver have a significant effect on the luminous efficiency of self-activated zinc oxide phosphors, especially for slow electron beam excitation. Although the reason for this has not yet been fully elucidated, it is probably because as the penetration depth of electrons into the phosphor particles becomes shallower, surface levels created by impurities and contamination greatly contribute to the luminous efficiency. This is thought to be the cause of this decline. The present inventors have completed the present invention by paying attention to this recognition. In other words, we have found an effect in a specific range of impurities that are inevitably mixed in as raw materials for phosphors or in the phosphor manufacturing process.

以下にその詳細を述べる。従来の螢光体用原料を用いて
、種々の不純物を添加して螢光体を作成した場合の発光
効率については第1表にその結果を示すが、低電圧励起
において、とくに発光に有害な作用を及ぼす金属不純物
としては、カドミウムが最もその作用が著じるしく、次
いで銅および銀がこれに次ぐ。
The details are described below. Table 1 shows the results of the luminous efficiency when phosphors were created by adding various impurities using conventional raw materials for phosphors. Among the metal impurities that exert an effect, cadmium has the most significant effect, followed by copper and silver.

表に掲げたその他の不純物については、数+Ppm添加
してもほとんど有害な作用を示さない。また高電圧で励
起した場合の発光効率はどの不純物についても大差ない
値を示している。
Regarding the other impurities listed in the table, addition of a few plus ppm shows almost no harmful effect. Furthermore, the luminous efficiency when excited at high voltage shows a value that is not significantly different for any impurity.

なお第1表については高電圧においてもキラ一効果を示
すようなニツケル鉄、鉛その他の重金属類は除いてある
。次に低電圧励起において特にキラ一効果を有するカド
ミウム等の金属不純物について、特に精製した原料を用
いてその効果を詳細に検討すると、第2図に示すように
、その含有量が少ないほど低電圧励起で発光効率が高く
なる傾向を示す。また同図において高電圧励起の場合発
光効率は不純物の含有量が変化してもあまり変動しない
。また低電圧励起において発光効率が向上するのは銅お
よび銀については数+Ppml特に10ppm以下であ
り、カドミウムについては数Ppm特に1ppm以下で
ある。さらにこれらの不純物が共存する場合の発光効率
は第2表に従来例とあわせて示すとうりで、カドミウム
、銅および銀のいずれの含有量も少ないものが低鬼圧励
起で最も高い効率を示している。第2表の内容をさらに
詳しく検討すると、従来のものに比較して低速電子励起
で発光効率を著じるしく向上させるのはカドミウム減量
によるものが最も効果的であり銅および銀はカドミウム
に比べるとその効果は大きくはないが、それでも従来の
ものよりも発光効率を数倍向上させる効果を有すること
がわかる。第2表において掲げた試料黒1〜6について
発光効率と励起電圧との関係は第3図に示すとうりで金
属不純物含有量の少ないものほど、低電圧励起下での発
光効率が高い。
Note that Table 1 excludes nickel iron, lead, and other heavy metals that exhibit a sparkling effect even at high voltages. Next, we examine in detail the effect of metal impurities such as cadmium, which has a particularly strong effect on low-voltage excitation, using particularly purified raw materials. As shown in Figure 2, we find that the lower the content, the lower the voltage. The luminous efficiency tends to increase with excitation. Furthermore, in the same figure, in the case of high voltage excitation, the luminous efficiency does not change much even if the content of impurities changes. Further, in low voltage excitation, the luminous efficiency improves at a few ppm for copper and silver, particularly at 10 ppm or less, and for cadmium at a few ppm, especially at 1 ppm or less. Furthermore, the luminous efficiency when these impurities coexist is shown in Table 2 together with the conventional example, and the one with a small content of cadmium, copper, and silver shows the highest efficiency with low oni pressure excitation. ing. Examining the contents of Table 2 in more detail, we find that the most effective way to significantly improve luminous efficiency with slow electron excitation compared to conventional methods is by reducing cadmium, and that copper and silver are more effective than cadmium. It can be seen that although the effect is not large, it still has the effect of improving the luminous efficiency several times over the conventional one. The relationship between luminous efficiency and excitation voltage for Sample Blacks 1 to 6 listed in Table 2 is as shown in FIG. 3, and the lower the metal impurity content, the higher the luminous efficiency under low voltage excitation.

また試料黒7の発光効率と励起電圧の関係は以前に示し
た第1図と同一であるが、あわせて第3図に示す。第3
図中の曲線の番号は第2表中の試料番号に相当している
。不純物含有量の少ないものの発光効率が従来のものあ
るいは不純物含有量の多いものに比較して高くなるのは
、第3図に示されるようにほぼ1000eV以下の低電
圧においてである。以下に本発明を具体的に実施例につ
き説明する。
Further, the relationship between the luminous efficiency and the excitation voltage for Sample Black 7 is the same as that shown in FIG. 1 previously shown, but is also shown in FIG. 3. Third
The curve numbers in the figure correspond to the sample numbers in Table 2. As shown in FIG. 3, the luminous efficiency of a device with a low impurity content becomes higher than that of a conventional device or a device with a high impurity content at a low voltage of about 1000 eV or less. The present invention will be specifically explained below using examples.

実施例 1原料である酸化亜鉛を主成分とする粉末を1
0重量%の硫酸溶液に溶解し、次いで硫化水素を通じ、
硫化亜鉛を生成せしめる。
Example 1 Powder whose main component is zinc oxide, which is a raw material, is
Dissolved in 0% by weight sulfuric acid solution, then passed through hydrogen sulfide,
Generates zinc sulfide.

初期に生成、沈澱した硫化亜鉛は不純物元素を多く含む
ので、これを一たん除去した後に残りをすべて硫化亜鉛
として沈澱せしめると、ほぼ不純物総量として10−5
%以下であるような高純度の硫化亜鉛粉末が得られる。
この硫化亜鉛粉末を、フイルタ一を通して除塵した高純
度酸素気流中で7000C〜1000℃で数時間ないし
10時間加熱し、完全に酸化亜鉛とする。こうして得ら
れた酸化亜鉛は通常工業的に入手しうる酸化亜鉛に比べ
著じるしく高純度であり、また母体の組成も完全なもの
である。これを水素を25%含有した窒素気流中で95
0℃で30分焼成することによつて自己付活酸化亜鉛螢
光体を得た。このものは、第2表試料屋1に示す純度を
有し、発光効率も従来のものに比べ低電圧励起では約3
倍に向上している。この螢光体を用いて基板上に沈降法
によつて膜厚約50μの螢光膜を形成して螢光表示管を
作成した。この場合25Vの印加電圧で従来のものに比
べ約2.7倍の光出力を示した。実施例 2 電気分解法により精練した金属亜鉛をフイルタ一で除塵
した高純度の酸素気流中700℃に加熱し、燃焼させて
高純度の酸化亜鉛粉末を得て、このものを水素5%窒素
95%の混合ガス気流中で850℃で1.5時間焼成し
、自己付活酸化亜鉛螢光体を得た。
The zinc sulfide that is initially formed and precipitated contains many impurity elements, so if this is removed once and all the rest is precipitated as zinc sulfide, the total amount of impurities will be approximately 10-5.
% or less of zinc sulfide powder is obtained.
This zinc sulfide powder is heated at 7000C to 1000C for several to 10 hours in a stream of high-purity oxygen from which dust has been removed through a filter to completely convert it into zinc oxide. The zinc oxide thus obtained has a significantly higher purity than zinc oxide that is normally available industrially, and also has a perfect matrix composition. This was heated at 95% in a nitrogen stream containing 25% hydrogen.
A self-activated zinc oxide phosphor was obtained by firing at 0° C. for 30 minutes. This product has the purity shown in Table 2, sample shop 1, and has a luminous efficiency of about 3 compared to conventional products under low voltage excitation.
It has improved twice as much. Using this phosphor, a phosphor film having a thickness of about 50 μm was formed on a substrate by a precipitation method to prepare a phosphor display tube. In this case, at an applied voltage of 25 V, the optical output was about 2.7 times that of the conventional one. Example 2 Metallic zinc refined by electrolysis was heated to 700°C in a high-purity oxygen stream from which dust was removed using a filter, and burned to obtain high-purity zinc oxide powder, which was mixed with 5% hydrogen and 95% nitrogen. % mixed gas flow at 850° C. for 1.5 hours to obtain a self-activated zinc oxide phosphor.

このものは第2表試料屋2に示す純゛度を有し、発光効
率も従来のものに比べ低電圧励起では約2.5倍向上し
ている。実施例1と同じく、本実施例の螢光体を用いて
螢光表示管を作成したところ、この螢光表示管は25V
の印加電圧下で従来のものに比べ約2.3倍の光出力を
示した。実施例 3顔料として工業的に製造されている
1号亜鉛華を1100℃で5時間空気中で焼成し、主と
してカドミウム含有量を蒸発により減少せしめ、これを
冷却した後、ポールミルで平均粒径が1.5〜2.5μ
程度になるまでよく粉砕する。
This product has the purity shown in Table 2, Sample 2, and its luminous efficiency is about 2.5 times higher than that of the conventional product under low voltage excitation. As in Example 1, a fluorescent display tube was made using the phosphor of this example, and the fluorescent display tube had a voltage of 25V.
The optical output was about 2.3 times that of the conventional one under an applied voltage of . Example 3 No. 1 zinc white, which is industrially produced as a pigment, was calcined in air at 1100°C for 5 hours to mainly reduce the cadmium content by evaporation, and after cooling, the average particle size was reduced using a pole mill. 1.5~2.5μ
Grind well until fine.

このものを水素を4%含有した窒素気流中で800℃2
時間焼成すると自己付活酸化亜鉛螢光体が得られる。こ
のものの純度はカドミウムが0.7ppm銅が7.5p
pm銀が10ppmであり、その発光効率は25eV励
起時は3.5%10KeV励起時は7.401)であつ
た。すなわち低電圧励起(25eV)において従来のも
のに比べ約2倍程度の発光効率の向上を示した。さらに
実施例1と同じく、本例の螢光体を用いて螢光表示管を
作成したところ、従来のものに比べ25eV励起におい
て約1.9倍の発光効率を示した。以上に述べたように
、本発明の螢光体は約1000eV以下の低速の電子で
励起した場合に発光効率が従来より著じるしく高く、実
用上螢光表示管の消費電力の減少あるいは寿命の延長が
可能になるなど種々の利点を有するものである。なお、
本発明ではカドミウムまたは銅または銀の含有量の下限
は含まない。
This material was heated to 800℃2 in a nitrogen stream containing 4% hydrogen.
After time baking, a self-activated zinc oxide phosphor is obtained. The purity of this product is 0.7 ppm cadmium and 7.5 ppm copper.
The pm silver was 10 ppm, and the luminous efficiency was 3.5% at 25 eV excitation and 7.401 at 10 KeV excitation. That is, at low voltage excitation (25 eV), the luminous efficiency was improved by approximately twice that of the conventional one. Further, as in Example 1, when a fluorescent display tube was prepared using the phosphor of this example, it exhibited a luminous efficiency approximately 1.9 times higher than that of the conventional one at 25 eV excitation. As described above, the phosphor of the present invention has a significantly higher luminous efficiency than the conventional one when excited by low-speed electrons of about 1000 eV or less, which is useful for reducing the power consumption and service life of fluorescent display tubes in practice. It has various advantages such as being able to extend the In addition,
The present invention does not include any lower limit for the content of cadmium, copper or silver.

なぜなら自己付活硫化亜鉛螢光体においてカドミウムま
たは銅または銀等の不純物を全く含まない螢光体の製造
は現時点において実現不可能でありその有する効果等の
実態については不明だからである。なお不純物の量は現
在の通常の分析技術ではほぼ0.1ppmまでしか検出
できないため実験データとしては0.1ppmまでしか
得られなかつたが将来分析技術が向上した場合、上記不
純物の下限はOを越え0.1ppmの範囲においても充
分効果を発揮するであろうことは第2図からも当然予想
されることである。また本発明の螢光体の用途としては
主として螢光表示管について説明したが、低電圧で印加
された電子線を用いる種々の陰極線管についてもその用
途が存在し、本発明は螢光表示管の用途のみに限定され
るものではない。
This is because it is currently impossible to produce a self-activated zinc sulfide phosphor that does not contain any impurities such as cadmium, copper, or silver, and the actual state of its effects is unknown. The amount of impurities can only be detected down to about 0.1 ppm using current ordinary analytical techniques, so experimental data could only be obtained up to 0.1 ppm. However, if analytical techniques improve in the future, the lower limit of the impurities mentioned above will exceed O. It is expected from FIG. 2 that sufficient effects will be exhibited even in the range of 0.1 ppm. Furthermore, although the phosphor of the present invention has mainly been described as a fluorescent display tube, it can also be used in various cathode ray tubes that use electron beams applied at low voltage, and the present invention is applicable to fluorescent display tubes. It is not limited to the use of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自己付活酸化亜鉛螢光体における励起電
子の加速電圧と発光効率の関係を示し、第2図は本発明
の螢光体を含む各種螢光体における不純物含有量と発光
効率の関係を10KeVおよび25e肋起について示し
たものである。
Figure 1 shows the relationship between acceleration voltage of excited electrons and luminous efficiency in a conventional self-activated zinc oxide phosphor, and Figure 2 shows the relationship between impurity content and luminous efficiency in various phosphors including the phosphor of the present invention. The efficiency relationship is shown for 10KeV and 25e ribs.

Claims (1)

【特許請求の範囲】 1 自己付活酸化亜鉛螢光体中、重量比1ppm以下(
但し0は除く)のカドミウムを含有することを特徴とす
る低速電子線励起用螢光体。 2 自己付活酸化亜鉛螢光体中、重量比1ppm以下(
但し0は除く)のカドミウムおよび重量比10ppm以
下(但し0は除く)の銅を含有することを特徴とする低
速電子線励起用螢光体。 3 自己付活酸化亜鉛螢光体中、重量比1ppm以下(
但し0は除く)のカドミウムおよび重量比10ppm以
下(但し0は除く)の銀を含有することを特徴とする低
速電子線励起用螢光体。 4 自己付活酸化亜鉛螢光体中、重量比1ppm以下(
但し0は除く)のカドミウムおよび重量比10ppm以
下(但し0は除く)の銅および銀を含有することを特徴
とする低速電子線励起用螢光体。
[Claims] 1. In a self-activated zinc oxide phosphor, a weight ratio of 1 ppm or less (
A phosphor for low-speed electron beam excitation, characterized in that it contains cadmium (excluding 0). 2 In the self-activated zinc oxide phosphor, the weight ratio is 1 ppm or less (
A phosphor for excitation with a slow electron beam, characterized in that it contains cadmium (excluding 0) and copper at a weight ratio of 10 ppm or less (excluding 0). 3 Weight ratio of 1 ppm or less in self-activated zinc oxide phosphor (
A phosphor for excitation with a slow electron beam, characterized in that it contains cadmium (excluding zero) and silver at a weight ratio of 10 ppm or less (excluding zero). 4 1 ppm or less by weight in self-activated zinc oxide phosphor (
A phosphor for excitation with a slow electron beam, characterized in that it contains cadmium (excluding zero) and copper and silver at a weight ratio of 10 ppm or less (excluding zero).
JP8833375A 1975-07-21 1975-07-21 Fluorescent material for slow electron beam excitation Expired JPS5913559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8833375A JPS5913559B2 (en) 1975-07-21 1975-07-21 Fluorescent material for slow electron beam excitation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8833375A JPS5913559B2 (en) 1975-07-21 1975-07-21 Fluorescent material for slow electron beam excitation

Publications (2)

Publication Number Publication Date
JPS5212686A JPS5212686A (en) 1977-01-31
JPS5913559B2 true JPS5913559B2 (en) 1984-03-30

Family

ID=13939937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8833375A Expired JPS5913559B2 (en) 1975-07-21 1975-07-21 Fluorescent material for slow electron beam excitation

Country Status (1)

Country Link
JP (1) JPS5913559B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554386A (en) * 1978-09-20 1980-04-21 Dainippon Toryo Co Ltd Fluorescent substance and fluorescent display tube with low-speed electron beam excitation

Also Published As

Publication number Publication date
JPS5212686A (en) 1977-01-31

Similar Documents

Publication Publication Date Title
Bredol et al. Designing luminescent materials
US5601751A (en) Manufacturing process for high-purity phosphors having utility in field emission displays
US4479886A (en) Method of making cerium activated yttrium aluminate phosphor
JP2000073053A (en) Phosphor and cathode-ray tube using the same
JP2003013059A (en) Color cathode ray tube and red phosphor to be used therein
US2210087A (en) Process for synthesizing luminescent material
CA1041153A (en) Penetration phosphors and display devices
JPS5913559B2 (en) Fluorescent material for slow electron beam excitation
CN1285703C (en) Image display device
JPH0352515B2 (en)
JP2506980B2 (en) Phosphor
JPH0228218B2 (en)
JPH0625350B2 (en) Sulphide phosphor
GB2084395A (en) Electron emission composition and process of producing it
JP2719209B2 (en) Phosphor manufacturing method
JPH0629421B2 (en) Blue light emitting phosphor and blue light emitting cathode ray tube for color projection type image device using the same
KR930010522B1 (en) Green luminous phosphor
JPH0352516B2 (en)
JPH10140150A (en) Phosphor and production of phosphor
JP3942766B2 (en) Phosphor
JPH01229092A (en) Phosphor composition
KR930006480B1 (en) Crt
KR910002681B1 (en) Green-radiation fluorescent substance
JPS5933155B2 (en) Green luminescent composition and slow electron beam excitation fluorescent display tube
JPS6040188A (en) Fluorescent material