JPS59135367A - Immunological automatic analytical method - Google Patents

Immunological automatic analytical method

Info

Publication number
JPS59135367A
JPS59135367A JP959983A JP959983A JPS59135367A JP S59135367 A JPS59135367 A JP S59135367A JP 959983 A JP959983 A JP 959983A JP 959983 A JP959983 A JP 959983A JP S59135367 A JPS59135367 A JP S59135367A
Authority
JP
Japan
Prior art keywords
reaction
carrier
sample
tube
stop position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP959983A
Other languages
Japanese (ja)
Other versions
JPH0577981B2 (en
Inventor
Takashi Yamada
隆 山田
Hiroshi Takegawa
宏 武川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP959983A priority Critical patent/JPS59135367A/en
Priority to DE19843448210 priority patent/DE3448210C2/de
Priority to DE19843448007 priority patent/DE3448007C2/en
Priority to DE19843448121 priority patent/DE3448121C2/de
Priority to DE19843402304 priority patent/DE3402304C3/en
Publication of JPS59135367A publication Critical patent/JPS59135367A/en
Priority to US07/119,278 priority patent/US5175086A/en
Publication of JPH0577981B2 publication Critical patent/JPH0577981B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • G01N2035/00386Holding samples at elevated temperature (incubation) using fluid heat transfer medium
    • G01N2035/00396Holding samples at elevated temperature (incubation) using fluid heat transfer medium where the fluid is a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00564Handling or washing solid phase elements, e.g. beads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0441Rotary sample carriers, i.e. carousels for samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0465Loading or unloading the conveyor

Abstract

PURPOSE:To continuously perform the distribution of a specimen, by performing the washing of a reaction tube by recirculating and passing the same through the same washing apparatus during the analysis of each specimen by recirculating and passing the reaction tube through the washing apparatus provided to a reaction line constituted in an endless form during the analysis of each specimen while continuously distributing the specimen. CONSTITUTION:In the first rotation of a reaction tue disc 12, one carrier 23 from a carrier throw-in apparatus 22 is thrown in the U-shaped tube 11 positioned at a stop position S1 from the large opening part 11a of said tube 11. At this stop position S1, a predetermined amount of a first reagent 17 comprising a buffer solution is simultaneously distributed in the tube 11 by a first reagent distributing apparatus 16. After the reaction tube 11 is sent over by three pitches, a predetermined amount of a specimen is distributed in the tube 11 at a position S4 by a specimen distributing apparatus 13. By this procedure, antigen-antibody reaction is started. The reaction tube reaches a stop position S25 at the last stage of the first rotation and washing is performed by a washing apparatus 26 while a first time B.F separation is performed. In the next step, the reaction tube disc 12 enters a second rotation and, at a stop position S3, second reaction is started. At the final stop position S25 of the second rotation, second B.F separation is performed by a washing apparatus 25.

Description

【発明の詳細な説明】 本発明は免疫学的自動分析方法に関するものである。[Detailed description of the invention] The present invention relates to an automated immunological analysis method.

近年、医療の進歩に伴ない極微量の生体成分の分析が可
能となり、各種疾患の早期診断等に役立っている。例え
ば、α−フェトプロティン、癌胎児性抗原等で代表され
る悪性腫瘍、インシュリン、サイロキシン等で代表され
るホルモンの異常分泌疾患、免疫グロブリン等で代表さ
れる免疫疾患等の難病とされていた各種疾患の診断が早
期にできるだけでなく、それら疾患の治療後のモニタ、
あるいは最近では薬物等の低分子のハプテン(不完全抗
原)も測定可能となり薬物の投与計画作成にも役立って
いる。
In recent years, advances in medical care have made it possible to analyze minute amounts of biological components, which is useful for early diagnosis of various diseases. For example, various diseases considered to be incurable, such as malignant tumors represented by α-fetoprotein and carcinoembryonic antigen, abnormal hormone secretion diseases represented by insulin and thyroxine, and immune diseases represented by immunoglobulin, etc. Not only can diseases be diagnosed early, but they can also be monitored after treatment,
Recently, it has become possible to measure low-molecular haptens (incomplete antigens) such as drugs, which is also useful in creating drug administration plans.

これらの生体成分の多くは抗原抗体反応を利用した免疫
化学的な方法で分析され、このような免疫化学的反応を
利用した分析方法として、従来種々の方法が提案されて
いる。例えば、抗原抗体反応の結果生じる抗原抗体複合
物の凝集塊等の有無を、凝集法、沈降法、比濁法等によ
って検出して所望の生体成分を分析する方法がある。し
かし、これらの分析方法は多量の抗原抗体複合物を必要
とし、感度的に劣るため、専ら定性分析あるいは半定量
分析に採用されている。また、このような分析方法の欠
点を補うために、抗体または抗原を炭素粒子や合成樹脂
等の微粒子に結合させて被検物質との抗原抗体反応を行
なわせて凝集法あるいは比濁法により被検物質を分析す
る方法や、抗体または抗原に111躬性同位元素、螢光
性物質、発光性物質あるいは酵素等の検知感度の高いマ
ーカを標識した標識抗体または抗原を用いて抗原抗体複
合物を高感度で検出して被検物質を分析する方法も提案
されている。しかし、前者の微粒子を用いる方法は後者
のマーカを用いる方法に比べ感度的に劣るため、最近で
は後者の検知感度の高いマーカを用いる分析方法が主流
になっている。
Many of these biological components are analyzed by immunochemical methods that utilize antigen-antibody reactions, and various methods have been proposed in the past as analytical methods that utilize such immunochemical reactions. For example, there are methods of detecting the presence or absence of aggregates of antigen-antibody complexes produced as a result of antigen-antibody reactions by agglutination methods, sedimentation methods, turbidimetry, etc., and analyzing desired biological components. However, these analytical methods require a large amount of antigen-antibody complexes and are inferior in sensitivity, so they are used exclusively for qualitative or semi-quantitative analysis. In order to compensate for the shortcomings of such analysis methods, antibodies or antigens are bound to fine particles such as carbon particles or synthetic resins, and antigen-antibody reactions are performed with the test substance, followed by agglutination or turbidimetry. The method of analyzing the test substance and the use of labeled antibodies or antigens labeled with highly sensitive markers such as 111 isotopes, fluorescent substances, luminescent substances, or enzymes to form antigen-antibody complexes. Methods for detecting and analyzing test substances with high sensitivity have also been proposed. However, since the former method using fine particles is inferior in sensitivity to the latter method using markers, recently the latter method of analysis using markers with high detection sensitivity has become mainstream.

このようなマーカを用いる分析方法としては、マーカと
して放射性同位元素を用いる放射性免疫分析法、螢光性
物質を用いる螢光免疫分析法、酵素を用いる酵素免疫分
析法等が知られているが、なかでも酵素免疫分析法は特
殊な設備や測定技術を必要とせず、一般に普及している
比色計を用いて容易に行なうことかできるので、最近特
に注目を集めている。この酵素免疫分析法は、免疫化学
的反応の有無により標識されている酵素の活性の変化量
を直接求めて被検物質を定量するホモジニアス(Hom
ogeneous)酵素免疫分析法と、不溶性の担体、
例えばプラスチック等の合成樹脂やガラスピーズを用い
、抗原または抗体と反応した酵素標識抗体または酵素標
識抗原と未反応のそれとを洗浄操作によりB−F分離し
、このB−F分離後の標識酵素の活性量を求めて被検物
質を定量するヘテロジニアス(Heterogeneo
us )酵素免疫分析法との2つの方法に分類される。
As analysis methods using such markers, radioimmunoassay using radioisotopes as markers, fluorescence immunoassay using fluorescent substances, enzyme immunoassay using enzymes, etc. are known. Among them, enzyme immunoassay has been attracting particular attention recently because it does not require special equipment or measurement techniques and can be easily performed using a commonly used colorimeter. This enzyme immunoassay is a homogeneous method that quantifies a test substance by directly determining the amount of change in the activity of a labeled enzyme depending on the presence or absence of an immunochemical reaction.
genetic) enzyme immunoassay and an insoluble carrier,
For example, using a synthetic resin such as plastic or glass beads, the enzyme-labeled antibody that has reacted with the antigen or antibody, or the enzyme-labeled antigen and the unreacted one, are separated into B-F by a washing operation, and the labeled enzyme after this B-F separation is separated. Heterogeneous (Heterogeneo), which quantifies the test substance by determining the amount of activity.
US) It is classified into two methods: enzyme immunoassay.

しかし、前者のホモジニアス酵素免疫分析法は、単純な
操作で行なうことができるが、薬物等の低分子のハプテ
ンlノか分析できず、高分子である生体成分の分析がで
きない欠点がある。これに対し、後者のへテロジニアス
酵素免疫分析法はB・[分離を行なうための洗浄操作を
必要とするが、被検物質が低分子であっても高分子であ
っても適正に分析でき、その分析対象が極めて広範囲で
あるところから一般化されつつある。
However, although the former homogeneous enzyme immunoassay method can be performed with simple operations, it has the disadvantage that it cannot analyze low-molecular haptens such as drugs, and cannot analyze biological components that are macromolecules. On the other hand, the latter heterogeneous enzyme immunoassay method requires a washing operation for separation, but cannot properly analyze whether the test substance is a low-molecular or high-molecular substance. , is becoming popular because its analysis targets are extremely wide-ranging.

かかるヘテロジニアス酵素免疫分析法としては、競合法
、サンドイツチ法等が知られている。競合法は、第1図
に示づ−ように、不溶性の担体1にサンプル中の被検物
質と抗原抗体反応を起す抗体または抗原を予め固定化し
、この担体1とサンプルおよびその被検物質2と同一物
質に酵素標識した標識試薬3との抗原抗体反応を行なわ
せ、その後洗浄を行なって抗原抗体反応により担体1に
競合し−C結合した被検物質2 a5よび標識試薬3と
、結合していないそれらとをB・「分離してから、標識
試薬3中の標識酵素と反応する発色試薬を加えで反応さ
せた後その反応液を比色測定して標識酵素の酵素活性を
求めて被検物質2を定量するものである。また、サンド
イツチ法は、第2図に示すように、競合法と同様にサン
プル中の被検物質と抗原抗体反応を起ず抗体または抗原
を予め固定イヒした不溶性の担体5を用い、先ずこの担
体5とサンプル7との抗原原体反応を行なわせてサンプ
ル中の被検物質6を担体5に結合させ、次に洗浄を行な
ってB−F分離した後、その担体5に被検物質6と抗原
抗体反応を起す物質を酵素で標識した標識試薬7を作用
させて抗原抗体反応を行なわせ、その後再び洗浄を行な
ってB−F分離してから標識試薬7中の標識酵素と反応
する発色試薬を加えて反応させた後、その反応液を比色
測定して標識酵素の酵素活性を求めて被検物質6を定量
するものである。
As such heterogeneous enzyme immunoassay methods, competitive methods, Sand-Deutsch methods, and the like are known. In the competitive method, as shown in Figure 1, an antibody or antigen that causes an antigen-antibody reaction with a test substance in a sample is immobilized on an insoluble carrier 1 in advance, and this carrier 1, sample, and its test substance 2 are immobilized. The same substance is subjected to an antigen-antibody reaction with an enzyme-labeled labeled reagent 3, and then washed, and the antigen-antibody reaction competes with the carrier 1 and binds to the -C-bound test substance 2 a5 and the labeled reagent 3. B. After separating them, add a coloring reagent that reacts with the labeled enzyme in labeling reagent 3 to react, and then measure the reaction solution colorimetrically to determine the enzymatic activity of the labeled enzyme. It is used to quantify test substance 2.As shown in Figure 2, the Sandermansch method is similar to the competitive method in that the antibody or antigen is pre-immobilized without causing an antigen-antibody reaction with the test substance in the sample. Using an insoluble carrier 5, first an antigenic reaction is performed between the carrier 5 and the sample 7 to bind the test substance 6 in the sample to the carrier 5, and then washing is performed to separate B-F. The carrier 5 is treated with a labeled reagent 7, which is an enzyme-labeled substance that causes an antigen-antibody reaction with the test substance 6, to cause an antigen-antibody reaction, and then washed again to separate B-F, and then the labeled reagent 7 is added. After a coloring reagent that reacts with the labeled enzyme in 7 is added and reacted, the reaction solution is colorimetrically measured to determine the enzymatic activity of the labeled enzyme, and the amount of the test substance 6 is quantified.

上述したようにヘテロジニアス酵素免疫分析法において
は、1つの被検物質の分析中に競合法においては1回、
サンドインチ法においては2回のB−F分離が必要とな
り、また抗原抗体反応を行なわせる反応容器を繰返し使
用する場合には、あるサンプルの分析終了後数のサンプ
ルの分析開始に先立って反応容器を洗浄する工程が加算
されることになる。このように、1つの被検物質の分析
にB−F分離を含む少なく共2回の洗浄工程を必要とす
る酵素免役分析法を自動化するにあたっては、各洗浄工
程毎に専用の洗浄装置を配置することも考えられるが、
このようにすると装置が大形かつ複雑、高価になる不具
合がある。このような不具合は、マーカを用いる上述し
た放射免疫分析法、螢光免疫分析法等を自動化する場合
でも同様に生じるものである。
As mentioned above, in the heterogeneous enzyme immunoassay method, in the competitive method, once during the analysis of one test substance;
In the sandwich method, two B-F separations are required, and when a reaction vessel for antigen-antibody reactions is to be used repeatedly, the reaction vessel must be This means that a cleaning process will be added. In this way, when automating the enzyme immunoassay method, which requires at least two washing steps including B-F separation for the analysis of one test substance, it is necessary to install a dedicated washing device for each washing step. Although it is possible to do so,
If this is done, the device becomes large, complicated, and expensive. Such problems similarly occur when automating the above-mentioned radioimmunoassay, fluorescence immunoassay, etc. that use markers.

本発明の目的は上述した不具合を解決し、小形で、構成
が簡単かつ安価な分析装置によって実施できる免疫学的
自動分析方法を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an automatic immunological analysis method that can be carried out using a compact, simple-configured, and inexpensive analyzer.

本発明は、所定の抗体または抗原を固定化した担体と、
所定の抗体または抗原を所定の物質で標識した標識試薬
とを用い、反応容器内で抗原抗体反応を行なわせてサン
プル中の被検物質を免疫学的に自動的に分析するにあた
り、前記反応容器を、該反応容器に収容したサンプル中
の被検物質の分析中に、反応ライン中に設けた洗浄装置
に少なく共2回搬送して、前記担体に結合した抗体また
は抗原と、担体に結合していない抗体または抗原とを分
離するB−F分離を含む洗浄を少なく共2回行なうこと
を特徴とするものである。
The present invention provides a carrier on which a predetermined antibody or antigen is immobilized;
When automatically immunologically analyzing a test substance in a sample by carrying out an antigen-antibody reaction in a reaction container using a predetermined antibody or a labeled reagent in which an antigen is labeled with a predetermined substance, the reaction container During the analysis of the test substance in the sample contained in the reaction vessel, the sample is transported at least twice to a washing device installed in the reaction line to remove the antibody or antigen bound to the carrier and the carrier. This method is characterized in that washing including B-F separation for separating uncontained antibodies or antigens is carried out at least twice.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第3図は本発明を実施する酵素免疫自動分析装置の一例
の構成を示す線図であり、第2図に示したサンドインチ
法を採用するものである。本例では反応ラインをシング
ルとして単一項目を分析する。反応容器は大口部11a
および小口部11bを有する0字管11を24個用い、
これらを反応管ディスク12の同一円周上に等間隔に保
持する。
FIG. 3 is a diagram showing the configuration of an example of an enzyme immunoassay automatic analyzer according to the present invention, which employs the sandwich method shown in FIG. 2. In this example, a single reaction line is used to analyze a single item. The reaction container has a large opening 11a.
and using 24 O-shaped tubes 11 having small openings 11b,
These are held on the same circumference of the reaction tube disk 12 at equal intervals.

反応管ディスク12は0字管11を恒温槽10(第4図
)に浸しながら水平面内で矢印で示す方向に所定のピッ
チ(例えば15秒)で間欠的に回動させる。この反応管
ディスク12の間欠的回動による0字管11の停止位置
を符号S1〜824で示ず。本例では停止位置S1にあ
る0字管11に、ザンプル分注装置13によりサンプラ
14の所定のサンプル吸引位置にあるサンプルカップ1
5からサンプルを選択的に分注する。なお、サンプラ1
4は反応管ディスク12に保持するU字管数と同数の2
4個のサンプルカップを同一円周上(こ等間隔に保持し
、反応管ディスク12の回動と同期して矢印方向に間欠
的に回動する。また、停止位置S3にあるU字管1′1
には試薬分注装置16によりサンプル中の被検物質に応
じた酵素標識試薬17を選択的に分注し、停止位置S4
にある0字管11”(・は′試薬分注装置18により発
色試薬19を、選択的に分注する。更に、停止位置SI
7にある0字管11にはその大口部11aから担体投入
器20に多数収容されているプラスチック等の合成樹脂
やガラスピーズ等の不溶性の担体21を1個選択的に投
入する。なお、担体21は0字管1・1の大口部11a
から容易に出し入れでき、かつ小口部11bには入らな
い大きざとし、その表面には上述したようにサンプル中
の被検物質と抗原抗体反応を起す抗体または抗原を予め
固定化してJ5 <と共に、担体投入器20内において
は緩衝液で湿潤させておく。また、停止位置S+sにあ
る0字管11からは、これに収容されている反応液を比
色計22に選択的に吸引し、停止位置821にある0字
管11からは、これに収容されている担体21り担体取
出器23により選択的に取出して排出する。更にまた、
停止位置822にある0字管11には洗浄ポンプ21I
により、イオン交換水、免疫分析用緩衝液、生理食塩水
等の洗浄液を選択的に注入し、また停止位置824にあ
る(3字管には緩衝液分注装置25により緩衝液26を
選択的に分注する。更に、停止位置82〜S5にある各
々の0字管11は、その小口部11bをそれぞれ共通の
撹拌用エアーポンプ27に着脱自在に連結し、同様に停
止位@522d3よびS23にある各々の0字管11は
その小口部11bをそれぞれ共通の排液ポンプ28に着
脱自在に連結する。
The reaction tube disk 12 is intermittently rotated at a predetermined pitch (for example, 15 seconds) in the direction indicated by the arrow in a horizontal plane while the O-shaped tube 11 is immersed in the constant temperature bath 10 (FIG. 4). The stopping positions of the O-shaped tube 11 due to the intermittent rotation of the reaction tube disk 12 are not indicated by symbols S1 to 824. In this example, a sample cup 1 is placed at a predetermined sample suction position of a sampler 14 by a sample dispensing device 13 into a zero-shaped tube 11 located at a stop position S1.
Selectively dispense the sample from step 5. In addition, sampler 1
4 is 2, which is the same number as the number of U-shaped tubes held in the reaction tube disk 12.
Four sample cups are held on the same circumference (at equal intervals) and rotated intermittently in the direction of the arrow in synchronization with the rotation of the reaction tube disk 12. '1
The reagent dispensing device 16 selectively dispenses the enzyme labeled reagent 17 according to the analyte in the sample, and moves to the stop position S4.
The coloring reagent 19 is selectively dispensed by the reagent dispensing device 18.
One insoluble carrier 21 such as a synthetic resin such as plastic or glass beads, which is housed in a large number in a carrier injector 20, is selectively introduced into the O-shaped tube 11 located at 7 from its large opening 11a. In addition, the carrier 21 is the large mouth part 11a of the 0-shaped tube 1.
It has a large size that can be easily taken in and taken out from the mouth part 11b and does not enter the small opening 11b, and has an antibody or an antigen that causes an antigen-antibody reaction with the test substance in the sample immobilized on its surface in advance as described above. The carrier injector 20 is kept moist with a buffer solution. Further, from the O-shaped tube 11 located at the stop position S+s, the reaction liquid contained therein is selectively sucked into the colorimeter 22, and from the O-shaped tube 11 located at the stop position 821, the reaction liquid accommodated therein is selectively drawn into the colorimeter 22. The carrier 21 is selectively taken out and discharged by a carrier extractor 23. Furthermore,
A cleaning pump 21I is attached to the O-shaped pipe 11 at the stop position 822.
At the stop position 824, the buffer solution 26 is selectively injected using the buffer solution dispensing device 25. Further, each of the O-shaped tubes 11 located at the stop positions 82 to S5 has its mouth portion 11b removably connected to the common stirring air pump 27, and similarly, the O-shaped tubes 11 located at the stop positions @522d3 and S23 are removably connected to the common stirring air pump 27. Each of the 0-shaped tubes 11 has its mouth portion 11b removably connected to a common drainage pump 28.

本発明者等は」−述した不具合を解決し、小形で、構成
くが簡単でかつ安価な分析装置Qこよって実施できる免
疫学的自動分析方法として、所定の抗体または抗原を固
定化した担体と、所定の抗体または抗原を所定の物質で
標識した標識試薬とを用い、反応容器内で抗原抗体反応
を行なわせてサンプル中の被検物質を免疫学的に自動的
に分析するにあたり、 前記反応容器を、該反応容器Qこ収容したサンプル中の
被検物質の分析中Gこ、エンドレス状に構成した反応ラ
イン中に設けた洗浄装置に循環搬送して、前記担体に結
合した抗体または抗原と、担体に結合していない抗体ま
たは抗原とを分離するB・F分離を含む洗浄を少く共2
回行なう自動分析方法を提案している。また、このよう
な自動分析方法を実施する装置として、ターンテーブル
上に多数の反応容器を円周状に設け、各サンプルについ
てターンテーブルが3回または4・回回転することGこ
よって分析を行なうようにしたものも提案している。こ
のような自動分析装置においては、ターンテーブルが一
周して総ての反応容器Gこサンプルを分注した後、ター
ンテーブルがさらに2回または3回回転するまでは次の
サンプルの分注を行なうことができず、サンプル分注が
不規則となり、サンプル分注器の駆動タイミング制御が
面倒となるだけでなくIDの制御、分析結果の処理など
も面倒となる欠点がある。また、このようにサンプル分
注が連続して行なうことができないと、サンプル処理能
率が低下する欠点もある。
The present inventors solved the above-mentioned problems and developed a carrier on which a predetermined antibody or antigen is immobilized as an immunological automatic analysis method that can be carried out using a small, simple, and inexpensive analyzer Q. and a labeled reagent in which a predetermined antibody or antigen is labeled with a predetermined substance, and an antigen-antibody reaction is performed in a reaction container to automatically immunologically analyze a test substance in a sample. During the analysis of the test substance in the sample contained in the reaction vessel, the reaction vessel is circulated and conveyed to a cleaning device installed in an endless reaction line to remove antibodies or antigens bound to the carrier. and washing including B/F separation to separate antibodies or antigens not bound to the carrier.
We are proposing an automatic analysis method that can be carried out repeatedly. In addition, as an apparatus for carrying out such an automatic analysis method, a large number of reaction vessels are arranged circumferentially on a turntable, and the turntable rotates three or four times for each sample, thereby performing analysis. We also propose something like this. In such an automatic analyzer, after the turntable has made one revolution and dispensed all samples from the reaction vessels, the next sample is dispensed until the turntable has rotated two or three more times. This method has disadvantages in that sample dispensing becomes irregular, and not only does it become troublesome to control the drive timing of the sample dispenser, but it also becomes troublesome to control the ID and process the analysis results. Furthermore, if sample dispensing cannot be carried out continuously in this way, there is also the disadvantage that sample processing efficiency decreases.

本発明の目的はこのような欠点を除去し、各サンプルの
分析中同じ洗浄装置に反応容器を循環させて通過させて
洗浄を行ないしかもサンプルの分注を連続的に行なうこ
とができるようGこした免疫学的自動分析方法を提供し
ようとするものである。
It is an object of the present invention to eliminate these drawbacks and to provide a mechanism for cleaning the reaction vessel by circulating it through the same cleaning device during the analysis of each sample, while also allowing continuous dispensing of the sample. The purpose of this paper is to provide an automatic immunological analysis method.

本発明は、所定の抗体または抗原を固定化した担体と、
所定の抗体または抗原を所定の物質で標識した標識試薬
とを用い、反応容器内で抗原抗体反応を行なわせてサン
プル中の被検物質を免疫学的に自動的Oこ分析するにあ
たり、 前記反応容器を、該反応容器Gこ収容したサンプル中の
被検物質の分析中Gご、エンドレス状に構成した反応ラ
イン中に踪けた洗浄装置に循環搬送して、前記担体(こ
結合した抗体または抗原と、担体に結合していない抗体
または抗原とを分離するB・F分離を含む洗浄を少く共
2回行なうと共に反ルフ容器へのサンプルの分注を連続
的に行なうことを特徴とするものである。
The present invention provides a carrier on which a predetermined antibody or antigen is immobilized;
In automatically immunologically analyzing a test substance in a sample by performing an antigen-antibody reaction in a reaction container using a predetermined antibody or a labeled reagent in which an antigen is labeled with a predetermined substance, the reaction described above is performed. During the analysis of the test substance in the sample contained in the reaction container, the container is circulated to a cleaning device disposed in an endless reaction line to remove the carrier (antibodies or antigens bound thereto). and washing including B and F separation for separating antibodies or antigens not bound to the carrier are performed at least twice, and the sample is continuously dispensed into the anti-Luff container. be.

以下図面を参照して本発明を詳1111に説明する。The present invention will be described in detail below with reference to the drawings.

第3図は本発明の方法を実施する酵素免疫自動分析装置
の一例の構成を示す線図てあり、第2図Gこ示したサン
ドイツチ法を採用するものである。
FIG. 3 is a diagram showing the configuration of an example of an automatic enzyme immunoanalyzer for carrying out the method of the present invention, which employs the Sandersch method shown in FIG. 2G.

本例では、反J心容器として第4・図Gこ明瞭Gこ示す
ように大口部]、laおよび小口部1]、bを有するU
字管11を25個用い、これらを反応管ティスフ12の
同一円周−1−レこ等間隔(こ保持する。反応管ディス
ク12はU字管1■を恒温槽JO(第4・図)に浸しな
がら矢印て示す方向Gこ所定のピンチ(例えば15秒)
で間欠的に回動させる。この反応管ティスフ12の間欠
的回動によるU字管11の停止位置を符号S工〜S25
で示す。本例では停止位置S工にあるU字管1.14こ
、サンプル分注装置13によりサンプラ14・の所定の
サンプル吸引位置にあるサンプルカップ15からサンプ
ルを選択的に分1−tEする。なお、サンプラ144と
しては任意の形式のものを用いることができるが、本例
では各々が10個のサンプルカップを保持する多数のラ
ック14・aを並べて保持し、左側の列のランクは第3
図において下方へ順次移動させてサンプル分注位置へ搬
送し・分注を終ったサンプルカップを保持する右側の列
のランクは上方へ移動させる。サンプル分注位置Gこあ
るラックは反応管ディスク12の回動と同期して矢印S
の方向へ間欠的に移動させる。
In this example, as an anti-J core container, a U having a large opening], la, and a small opening 1], b as shown in the fourth figure.
25 tubes 11 are used, and these are maintained at equal intervals of one circle around the same circumference of the reaction tube disk 12. While soaking in the water, hold it in the direction indicated by the arrow for a specified pinch (for example, 15 seconds).
Rotate intermittently. The stop positions of the U-shaped tube 11 due to the intermittent rotation of the reaction tube TIF 12 are indicated by symbols S to S25.
Indicated by In this example, the sample is selectively dispensed from the sample cup 15 at a predetermined sample suction position of the sampler 14 by the sample dispensing device 13 from the U-shaped tube 1.14 located at the stop position S. Note that any type of sampler 144 can be used, but in this example, a large number of racks 14.a each holding 10 sample cups are held side by side, and the rank of the left column is 3rd.
In the figure, the rank in the right column that holds the sample cup that has been dispensed is moved upward to be transported to the sample dispensing position by sequentially moving downward. The rack located at the sample dispensing position G is moved in synchronization with the rotation of the reaction tube disk 12 by the arrow S.
move intermittently in the direction of

JX (D ラックGこ保持した総てのサンプルの分注
が終了したらこのラックは右側のラック列の下側に送ら
れ、左側の列の一番下側にあるラックが次にサンプル分
注位置に送られる。このようにして順次のサンプルを所
定のピッチで連続的にサンプル分注位置Gこ送ることが
できる。
JX (D Rack G) After dispensing all the held samples, this rack will be sent to the bottom of the rack row on the right, and the rack at the bottom of the left row will be the next sample dispensing position. In this way, successive samples can be continuously sent to the sample dispensing position G at a predetermined pitch.

反・元管ディスク12の停止位置S□にあるU字管11
には第1試薬分注装置16により筑1試薬17を選択的
Gこ分注する。この第1試薬としては緩衝液を用いる。
U-shaped tube 11 at stop position S□ of opposite/main tube disk 12
Then, the first reagent dispensing device 16 selectively dispenses the Chiku 1 reagent 17. A buffer is used as this first reagent.

停止位置S3にあるU字管11. &、:は第2試薬分
注装置i″i J、 8によりサンプル中の被検物質Q
こ応した酵素試薬19を選択的に分注する。また、停止
位置S2のU字管]、]iこは第3試薬分注装置208
こより発色試薬2]を選択的(こ分注する。
U-shaped tube 11 in stop position S3. &, : is the analyte Q in the sample by the second reagent dispensing device i″i J, 8.
The corresponding enzyme reagent 19 is selectively dispensed. Also, the U-shaped tube at the stop position S2], ]i is the third reagent dispensing device 208.
Selectively dispense coloring reagent 2 from this.

更に、停止位115”SIQこあるU字管]−1,Gこ
はその大It部]、 1. aから担体投入装置22 
Gこより、そこに多数収容されているプラスチック等の
合成樹脂やカラスヒーズ等の不溶性の担体23を1個選
択的Gこ投入する。なお、担体23はU字管11の大口
部hiaから容易に出し入れてき、かつ小口部1]、b
Gこは人いらない大きさとし、その表面Gこは上述した
ようにサンプル中の被検物質と抗原抗体反応を起す抗体
または抗原を予じめ固定化しておく。また、停止位置5
2oQこあるU字管11−からは、これに収容されてい
る反応液を比色装置!t24.に選択的に吸引し、停止
位@S23にあるU字管11からは、これに収容されて
いる担体23を担体排出装置25により選択的に取出し
て排出する。更にまた、停止位置S2.OこあるU字管
1]には洗浄装置゛26により、イオン交換水、免疫分
析用緩衝液、生理食塩水などの洗浄液を選択的に注入排
出してB・F分離やU字管11の洗浄を行なう。
Further, a U-shaped tube with a stop position of 115" SIQ]-1, G is its large part], 1. From a to the carrier loading device 22
From G, one of the insoluble carriers 23 such as synthetic resins such as plastics and glass heath, which are stored in large numbers therein, is selectively introduced. Note that the carrier 23 can be easily taken in and out from the large opening hia of the U-shaped tube 11, and the small opening 1], b
The groove is so large that no one is needed, and as described above, an antibody or an antigen that causes an antigen-antibody reaction with the test substance in the sample is immobilized on its surface in advance. Also, stop position 5
From the 2oQ U-shaped tube 11-, the reaction liquid contained therein is used as a colorimetric device! t24. The carrier 23 accommodated therein is selectively taken out and discharged from the U-shaped tube 11 at the stop position @S23 by the carrier discharge device 25. Furthermore, the stop position S2. A cleaning device 26 selectively injects and discharges cleaning solutions such as ion-exchanged water, immunoassay buffer, and physiological saline into the U-shaped tube 11 for B/F separation and the U-shaped tube 11. Perform cleaning.

次Qこ、第3図に示す酵素免疫学的自動分析装置の動作
を第4・図および第5図をも参照しながら説明する。
Next, the operation of the automatic enzyme immunoanalyzer shown in FIG. 3 will be explained with reference to FIGS. 4 and 5.

庫例てはサンドイツチ法により分析を行なうものであり
、各サンプルについて見ると反応管ディスク12が3回
転して分析が完了するものである。
For example, the analysis is carried out by the Sand-Deutsch method, and for each sample, the reaction tube disk 12 rotates three times to complete the analysis.

すなわちB−F分離を2回行なうと共(こU字管を繰返
し使用するだめの洗浄を1回行なうものである。このた
め、サンプルの分注、第1.第2.第3の試薬の分注、
担体23の投入、排出、比色計への供給などは反応管デ
ィスク12が3ピツチ移動する間に1回動作するように
なっている。ただし、洗浄は上述したように分析中3回
行なうので反応管ディスク12の各移動ピッチ毎に行な
うようになっている。また、このように動作させるため
Qこは反応管ディスク12Gこ装填するU字管11の本
数はnを1.2.3・・ とするとき3n+1または3
n+2とする必要がある。本例ではU字管11の本数は
25本であり、3n+1となっている1=8)。
In other words, B-F separation is performed twice (this U-shaped tube is used repeatedly and cleaning is performed once. Therefore, the sample is dispensed, and the first, second, and third reagents are separated). Dispensing,
Loading, discharging, and supplying the carrier 23 to the colorimeter are performed once while the reaction tube disk 12 moves three pitches. However, since cleaning is performed three times during analysis as described above, it is performed at each pitch of movement of the reaction tube disk 12. In addition, in order to operate in this way, the number of U-shaped tubes 11 loaded with the reaction tube disk 12G is 3n+1 or 3 when n is 1.2.3...
It is necessary to set it to n+2. In this example, the number of U-shaped tubes 11 is 25, which is 3n+1 (1=8).

反応管ディスク12の1回転目(こおいては、先ず停止
位置81GこあるU字管11Gこ第44図鉱に示すよう
Gこ担体投入装置22から1個の担体23を、その人[
」¥ii51.1. aから投入する。この停止位置S
工で−は同時に第1試薬分注装@16Gこより緩衝液よ
り成る第1試薬17か所定量分注される。この反応管1
1は3ピッチ送られた後、停止位tffis4において
サンプル分注装置13Gこよりサンプル量分注される。
During the first rotation of the reaction tube disk 12, first, one carrier 23 is placed in the stop position 81G, the U-shaped tube 11G, and the carrier input device 22 as shown in Figure 44.
Ӵii51.1. Insert from a. This stop position S
At the same time, 17 predetermined amounts of the first reagent consisting of a buffer solution are dispensed from the first reagent dispensing device @16G. This reaction tube 1
After the sample No. 1 is fed three pitches, the sample amount is dispensed from the sample dispensing device 13G at the stop position tffis4.

これにより抗原抗f4り反応が開始される。1回転目の
最後Gここの反応管は停止位置S Q5に到達し、ここ
て洗浄装置26により洗浄が行なわれ、第1回目のB・
F分離か行なわれる。第5図においては当該サンプルに
対して行なわれる動作タイミングを左下がりの斜線で示
しである。
This initiates an antigen anti-f4 reaction. The reaction tube at the end of the first rotation G reaches the stop position SQ5, where it is cleaned by the cleaning device 26, and the first rotation B.
F separation is performed. In FIG. 5, the timing of the operation performed on the sample is indicated by diagonal lines downward to the left.

次Gこ反応管ディスク12は2回転目に入り、停止位置
S3において当該U字管11内(こ第2試薬分注装置1
8により酵素標識試薬19を所定量分注し、第2の反応
が開始される。この2回転目の最後の停止位置S2.に
おいて洗浄装置25により第2回目のB−F分離が行な
われる。
Next, the reaction tube disk 12 enters the second rotation, and at the stop position S3, the inside of the U-shaped tube 11 (second reagent dispensing device 1
8, a predetermined amount of the enzyme labeling reagent 19 is dispensed, and the second reaction is started. The final stop position S2 of this second rotation. A second B-F separation is performed by the cleaning device 25.

さらに反応管ディスク12は3回転目に入り、停止位置
82(こおいて、このU字管内に第3の試薬分注装 2
0[こより発色試薬21が所定量分注され、第3の反応
か開始される。停止位置S26Gこ到達するとU字管1
1内の検液は比色装置24・のポンプにより吸引され比
色セルへ導びかれ、ここで所定の波長の光による比色測
定か行なわれる。
Furthermore, the reaction tube disk 12 enters the third rotation and stops at the stop position 82 (at this point, a third reagent dispensing device 2 is inserted into this U-shaped tube).
0 [From this, a predetermined amount of the coloring reagent 21 is dispensed, and the third reaction is started. When reaching stop position S26G, U-shaped tube 1
The test liquid in 1 is sucked by the pump of the colorimetric device 24 and guided to the colorimetric cell, where a colorimetric measurement using light of a predetermined wavelength is performed.

次に3ピッチ回転すると停止位置S, Gこおいて担体
排出装置25によりU字管内に残っている担体23を除
去する。3回転目の最後の停止位置S2。
Next, by rotating three pitches, the carrier 23 remaining in the U-shaped tube is removed by the carrier discharging device 25 at the stop positions S and G. The final stop position S2 of the third rotation.

においてU字管11は洗浄装置26により洗浄され、次
のサンプルに対する分析に繰返し使用される。第5図に
おいては、欧のサンプルに対する動作タイミングを右下
がりの斜線で示しである。
At this point, the U-tube 11 is cleaned by the cleaning device 26 and used repeatedly for analysis of the next sample. In FIG. 5, the operation timing for the European sample is indicated by diagonal lines downward to the right.

洗浄装置26による洗浄は、U字管11の大口部11a
から洗浄液をシャワー状に間欠的に注入すると共に排液
ポンプにより小口部11bから吸引排出して?1なうこ
とかできる。第4・図に示すよう(・こ洗浄装置u” 
2 Gには洗浄液タンク26a1洗浄液供給ポンプ26
b1ノズル26C1排液ポンプ26dなどか設けられて
いる。また、担体投入装置22は、同しく第14図Gこ
示すように多数の担体23を貯蔵するホッパ22a1ホ
ンパから世1本23を11固つつ分離して供給するケー
ト装置2zbなとか設けられでいる。一般に11]f本
23は緩衝液で湿潤された状態でホッパ22a内に保持
されている。さらに担11り排出装j’)1.25はノ
ズルをU字管11の大口VflI]、 ]、aG、:降
下させ、担H\23を吸引Gこよりノズル先端に吸着さ
せて取出したり、アームをU字管の大口部中(こ降下さ
せ、担f4り23を把んて取出したりすることかできる
The cleaning device 26 cleans the large opening 11a of the U-shaped tube 11.
The cleaning liquid is intermittently injected in a shower-like manner, and the liquid is sucked and discharged from the small opening 11b using a drainage pump. 1. I can do something. As shown in Figure 4,
2G has a cleaning liquid tank 26a1 and a cleaning liquid supply pump 26.
A b1 nozzle 26C1 drainage pump 26d, etc. are provided. Further, the carrier feeding device 22 is also provided with a cage device 2zb for separating and supplying 11 pieces of carriers 23 from a hopper 22a1 which stores a large number of carriers 23, as shown in FIG. 14G. There is. Generally, the book 23 is held in the hopper 22a in a state moistened with a buffer solution. Furthermore, the carrier 11 discharge device j') 1.25 lowers the nozzle to the large opening VflI], ], aG, of the U-shaped tube 11, and removes the carrier H\23 by adsorbing it to the tip of the nozzle through the suction G. It can be lowered into the large opening of the U-shaped tube and taken out by grasping the carrier f4 23.

上述したようGこして1個のサンプルGこついての分析
動作は反応管ディスクJ2が3回転することにより終了
するか、本例ではサンプル分注、第1゜第2.第3の試
薬分注、担体の投入、排出、比色測定は反応管ディスク
12が8ピツチ移動して1回動作すると共Gこ反応管デ
ィスク12には25個(3X8+1)のU字管11か等
間隔で装着されているc′で、例えば停止位置S、Gこ
おいてサンプル分注装置13が動作するときに位置する
U字管は反応管ディスク12の1回転筒Gこ1個づつす
れることになる。このような事態は3ビンヂについて1
回動作するすべての動作Qこついて云えるので、サンプ
ル分71は3ピツチに1回の割合で連続的Gこ行なうこ
とかできる。したかつてサンプルのより制御や、分析結
果の処理なとも一定の周期で行なうことかてきるようG
、:、なり、各種の制御か容易どなる。
As described above, the analysis operation for one sample G is completed when the reaction tube disk J2 rotates three times, or in this example, the sample dispensing, the first, the second, and so on. The third reagent dispensing, loading and discharging the carrier, and colorimetric measurement are performed when the reaction tube disk 12 moves 8 pitches and operates once. For example, when the sample dispensing device 13 operates at the stop positions S and G, the U-shaped tubes C' are mounted at equal intervals. We will pass each other. This situation occurs about 1 for 3 binges.
Since it can be said that all the motions Q that are performed twice are correct, the sample portion 71 can be performed continuously G once every three pitches. In the past, it became possible to control samples and process analysis results at regular intervals.
, : , it becomes easy to control various kinds of sounds.

さらGこ反J+j;ラインをエンl−’レスとし、反応
ライン中Gこ設けた1つの洗浄装置25に、U字管11
を循環搬送してB F分離を含む洗浄を繰返し行なうよ
うGこしたから、装置金目くの構成を小形かつ節で11
とすることかでき、しかも安価にできる。
Furthermore, the U-shaped tube 11 is connected to one washing device 25 provided in the reaction line without an entrainment line.
Since the G filter is used to circulate and transport the B and F particles and to repeatedly perform washing including B and F separation, the main structure of the device is compact and has 11 sections.
This can be done at a low cost.

第6図は競合法による本発明の免疫学的分析方法を実施
する自動分析装置の一例の構成を示すものであり、第7
図はその動作を説明するためのタイミングチャートであ
る。第6[J4こおいて第3図Gこ示す構成要素と同し
ものQこけ同一符号を(=Jけて示した。第2図に就き
説明したように競合法Gこよる免疫学的分析を行なう場
合には所定の抗原または抗体を結合させた担体にサンプ
ルと酵素標識試薬とを加えて抗原抗Hく反応を行なわせ
た後B・F分離を行ない、次G、:酵素発色試薬を卯え
た後比色測定を行なうものであるから、反応容器の洗浄
を含めて2回の洗浄を行なうことになる。したがって、
第6図Gこ示す例においではU字管11を反1]iS管
ディスク12上Qこ2n+1個配列し、サンプル分とl
ミ、試薬分注、担体の投入排出°、比色測定なとは反応
管子イスク12か2図戸ツブ移動する毎0こ1回動作さ
せるよう0こし、洗浄は各ステンブ毎Gこ行なうよう(
こずれば、サンプルの分注を連続的に、すなわち2ステ
ツプ毎Gこ行なうことかできる。
FIG. 6 shows the configuration of an example of an automatic analyzer for carrying out the immunological analysis method of the present invention using a competitive method.
The figure is a timing chart for explaining the operation. 6. In J4, the same components as those shown in FIG. 3G are indicated by the same symbols (=J. When performing this, add a sample and an enzyme labeling reagent to a carrier bound with a predetermined antigen or antibody, perform an antigen-anti-H reaction, perform B/F separation, and then: Since the colorimetric measurement is carried out after the reaction vessel has been prepared, two washes are required, including washing the reaction vessel.
In the example shown in FIG.
For reagent dispensing, loading/unloading of carriers, and colorimetric measurements, strain the reaction tube so that it operates once every time the tube is moved (12 or 2), and wash it for each tube (
If this is a problem, the sample can be dispensed continuously, ie every two steps G.

第6図Qこおいて、反応管ディスク」2の円周−1−の
停止位置S工にあるU字管11(こけ第1分注装首J8
により酵素標識試薬より成る第1試薬19を分注すると
共に担体投入装置22[こより担体を1個投入する。ま
た、停止位置S2GこあるU字管11には第2試薬分注
装置20&こより発色試薬である第2試薬21を分注す
る。さらに停止位置s3GこあるU字管11Gこはザン
プル分注装置L3+cよすf ノズルを分注する。本例
てもサンプルは複数(7) 9 ノズルカップ15を保
持する複数のサンプルランク14・を翁するサンプラ1
4・がら順次にサンプル分)主位置Qこ供給するようG
こする。反応容器であるU字管11は第6図の右下Qこ
示ずようGこ大口部]、iaと小口部11bとを有する
ものとする。停止位置S2゜にあるU字管11がらは検
液を比色装置2弓・Gこ吸引し、停止位置S24.では
U字管11内の担体23を担体排出装置25&こより排
出し、停止位16S2.では洗浄装置26によりU、字
管を洗浄したりB−F分離を行なう。
In Fig. 6 Q, the U-shaped tube 11 (the moss first dispensing neck J8
The first reagent 19 consisting of an enzyme labeling reagent is dispensed, and at the same time one carrier is introduced through the carrier input device 22. Further, a second reagent 21, which is a coloring reagent, is dispensed from the second reagent dispensing device 20 and the U-shaped tube 11 located at the stop position S2G. Furthermore, the U-shaped tube 11G is located at the stop position s3G, and the sample dispensing device L3+c is used to dispense the nozzle. In this example, there are a plurality of samples (7) 9 Sampler 1 holding a plurality of sample ranks 14 holding nozzle cups 15
4) G to supply the main position Q
Rub. The U-shaped tube 11, which is a reaction vessel, has a large opening, ia, and a small opening 11b in the lower right corner of FIG. The U-shaped tube 11 at the stop position S2° aspirates the test liquid into the colorimeter 2 and G, and returns to the stop position S24. Then, the carrier 23 in the U-shaped tube 11 is discharged from the carrier discharging device 25&, and the carrier 23 is moved to the stop position 16S2. Then, the cleaning device 26 cleans the U-shaped tube and performs B-F separation.

第(3図に示す自動分析装置の動作タイミングを第7図
Qこ示ず。成るサンプルについての分析動作Gこついて
見ると、先ず、停止位fifs1においてU字管11内
Gこ担体投入装置22により1個の担体23を投入する
と共Qこ第1試薬分注装置18により酵素標識試薬19
を所定量分注する。反応管ディスク12が2ステツプ゛
移動して当該U字管11が停止日イア、 i’&、 S
 3 t□こ到達すると一+jン・プル分1′1−装j
7’i J 3Gこよりサンプルが所定量分t1″され
、抗原抗体反応か行なわれる。このU字管11が停止位
置S251こ到達するとき、すなわち1回転Llの最後
のステップ位置で洗浄装置26GこよりB F分離か行
なわれる。次に、 2スデツプ進んだ後、停庁位置52
i=おいて第:?試」5分計装置20Gこより第2試薬
である発色試薬2tが所定量分L1され、第2の反応か
開始される。このU字管11か停止位置S2゜Oこ到達
すると、検液は比色装置2・1・Qこより比色セル内に
1汲引され比色71!1]定か行なわれ−る。さら(こ
2ステ゛ノブ後、停止位iRS 24. (rこおいて
U字管11内に残っている川口く23を担体排出装置2
5により排出する。3回転目の最後の停止位置S 2 
、Bこおいて空どなったU字管11を洗浄装置26 &
こより洗浄し、次の一す゛ンプルGこ対する分析に備え
る。この上うGこして各サンプル(こついて反応管ディ
スク12を2回IWさせることにより所定の分析を行な
うことができる。また、本例では反応管子イスク12に
25個(2n+1)のU字管J[を配列し、サンプル分
注、試薬分注、1旦体の投入、排出、比色測定を2スナ
ツプ毎に1回行なうようGこしたため順次のサンプルを
2ステツプの周期で連続的Gこ分注することができる。
The operation timing of the automatic analyzer shown in FIG. 3 is shown in FIG. 7 (not shown). When one carrier 23 is introduced, the first reagent dispensing device 18 dispenses the enzyme labeled reagent 19.
Dispense a predetermined amount. When the reaction tube disk 12 moves two steps and the U-shaped tube 11 stops, i'& S
3 When you reach t
A predetermined amount t1'' of the sample is applied through 7'i J 3G, and an antigen-antibody reaction is performed. When this U-shaped tube 11 reaches the stop position S251, that is, at the last step position of one rotation Ll, the sample is removed from the cleaning device 26G. BF separation is performed.Next, after proceeding 2 steps, stop position 52
i = left number:? A predetermined amount L1 of a coloring reagent 2t, which is a second reagent, is dispensed from the sample 5-minute meter device 20G, and a second reaction is started. When this U-tube 11 reaches the stop position S2°O, the test liquid is drawn into the colorimetric cell from the colorimetric devices 2, 1, and Q, and color comparison 71!1] is carried out. (After this 2 step knob, the stop position iRS 24.
Discharge by step 5. 3rd rotation final stop position S 2
, B, the empty U-shaped tube 11 is cleaned by the cleaning device 26 &
The sample is then washed and prepared for the next analysis of Sample G. A predetermined analysis can be performed by applying IW to each sample (reaction tube disk 12) twice.In this example, 25 (2n+1) U-shaped tubes are installed in the reaction tube disk 12. Since the samples were arranged in such a way that sample dispensing, reagent dispensing, loading, discharging, and colorimetric measurements were performed once every two snaps, successive samples were continuously Can be dispensed.

たたし、洗浄装置2Gは、各ステップ毎(こ動作しなけ
ればならない1、 / 第8図はサンドインチ法による本発明の方法を実施する
自動分析装置の他の例を示すもφ)であり、本例におい
ても第3図に示す部分と回−のt71へ分(、二は同し
符号を利けで示す。ザン(パイツチ法において反応容器
を繰返し使用する場合には洗浄を3回行なう必要かある
ので、本例ではU字管11を反圧:管ティスク]2上に
251固配列する。本例と第3図に示した装置との相違
点は、本例では洗浄装置26+こより停止位置323〜
S25にある3つのIJ字管]]に対して同時(こ洗浄
を行なうよう(こした点である。このようGこ構成する
ことにより、洗浄装置2Gを各ステップ毎Gこ動作させ
る必要かなくなり、他の操作機構と同様Gこ反応管ディ
スク]2の3ステツプ毎に1回動作させれはよい。した
かつてこれら操作@r&の駆動制御を共通とすることが
できる。また、このような構成としたため担体排出装置
25を停止位W S20に設けである。
However, the cleaning device 2G must be operated for each step (1, / Figure 8 shows another example of an automatic analyzer for carrying out the method of the present invention using the Sand Inch method). In this example as well, the parts shown in Figure 3 and times t71 and 2 are shown with the same symbols. In this example, the U-shaped tube 11 is fixedly arranged on the counter pressure tube 251.The difference between this example and the apparatus shown in FIG. Stop position 323~
The three IJ-shaped tubes in S25 are cleaned simultaneously (this is the point mentioned above). By configuring the cleaning device 2G in this way, it is no longer necessary to operate the cleaning device 2G at each step. As with other operating mechanisms, it is preferable to operate the G reactor tube disk once every three steps of 2.The drive control for these operations can be made common.Also, with such a configuration Therefore, the carrier discharging device 25 is provided at the stop position WS20.

第9図は第8図に示す自動分析装置の動作タイミングを
示すものである。」二連したように本例の装@は第8図
に示すものとほぼ同様であり、洗浄か3ステツプ旬・(
こ1回行なわれる点が相違堪るたけで2あるので、その
説明は省略する。このようなf14成(こよってもサン
プルを3ステツプ毎に連続的に分注することができる。
FIG. 9 shows the operation timing of the automatic analyzer shown in FIG. 8. As you can see, the mounting in this example is almost the same as the one shown in Figure 8, and requires three cleaning steps.
Since there are only two differences in this one time, the explanation thereof will be omitted. With this f14 configuration, the sample can be continuously dispensed every three steps.

第10図は本発明による分析方法を実施する自動分析装
置のさらに他の例を示すものであり、本例ではサンドイ
ンチ法により酵素免疫分析を行なうものである。上述し
た例では反応管ディスク]2に1列のU字管11を配置
したが、本例では反応%′ティスク31上Gこ3列の反
応管32を設ける。
FIG. 10 shows still another example of an automatic analyzer for carrying out the analysis method according to the present invention, and in this example, enzyme immunoassay is performed by the sandwich method. In the above-mentioned example, one row of U-shaped tubes 11 was arranged on the reaction tube disk 2, but in this example, three rows of reaction tubes 32 are provided on the reaction disk 31.

各列には247個の反応管を設けであるか、この数(」
任が、である。説明の便宜上最外周の反応管列を第]の
反応管列32− ]−1中間の反応管列を第2の反応管
列32−2.最内同の反応管列を第3の反応管列32−
3と称する。011例と同様に反1心管ディスク31は
所定のピッチで間欠的(、二回動するものとする。停止
位置SIGこは担体投入装置33を設は担体を反応管(
こ選択的に投入する。本例ではこの担体投入装置33は
第1.第2および第3の反J心管列に順次Gこ供給でき
るようになっている。
Each row has 247 reaction tubes, or this number ("
The responsibility is. For convenience of explanation, the outermost reaction tube row is referred to as the second reaction tube row 32-]-1, and the middle reaction tube row is referred to as the second reaction tube row 32-2. The innermost identical reaction tube row is connected to the third reaction tube row 32-
It is called 3. As in Example 011, the anti-core tube disk 31 moves intermittently (twice) at a predetermined pitch. At the stop position SIG, the carrier feeding device 33 is set to transfer the carrier to the reaction tube (
Input this selectively. In this example, this carrier loading device 33 is the first carrier loading device 33. G can be supplied sequentially to the second and third anti-J heart tube rows.

ずなわぢ、第1の反応管列32−10順吹の反応管に1
個づつ担体を投入した少数に第2の反応管列32−2の
順次の反応管に1個づつ担体を投入し、さらに第3の反
応管列32−3の順次の反応管に1個づつ1月体を投入
し、再び第1の反応管列32−1の順次の反応骨例吋n
−=−−=−LM←←炒か≠奇骨Gこ1個づつ担体を投
入し、以後同様Gこして担体投入動作を繰返すようにな
っている。
Zunawaji, first reaction tube row 32-10 1 in the reaction tube of normal flow
For the small number of carriers that were introduced one by one, carriers were introduced one by one into successive reaction tubes in the second reaction tube row 32-2, and then one by one into successive reaction tubes in the third reaction tube row 32-3. Inject the January body and repeat the reaction in sequence in the first reaction tube row 32-1 again.
-=--=-LM ← ← Fried ≠ Odd bones G The carrier is introduced one by one, and thereafter the same G is applied and the carrier introduction operation is repeated.

停止位置82Gこけ洗浄装↑汀31.を設け、この停止
位置にある総ての反応管32を同時G、:洗浄するよう
にする。停止位置S8には第1の試薬分注装@35を配
置し、緩衝液より成る第1の試薬36を反応管32に分
注する。この分圧も担体投入装置33と同様に第1.第
2および第3の反応管列の順序で第1試薬を分注するも
のである。第4.0停止位置S−口はサンプル分注装@
37を設け、ザンプラ38により順次に供給されるサン
プルを反応管82に分圧する。このサンプル分注も順次
の反応管列毎に行なわれる。停止位置S5には第2試薬
分注装置39を設け、酵素標識試薬である第2の試薬4
・0を分注する。第6の停止位置860こけ第3試薬分
注装置4.1を設は酵素発色試薬である第3の試薬4・
2を分注する。これら第2および第3の試薬分注も順次
の反応管列毎Gこ行なうものである。
Stop position 82G moss cleaning device ↑Soil 31. is provided so that all reaction tubes 32 at this stop position are simultaneously cleaned. A first reagent dispensing device @35 is placed at the stop position S8, and a first reagent 36 made of a buffer solution is dispensed into the reaction tube 32. This partial pressure is also the same as the carrier charging device 33. The first reagent is dispensed in the order of the second and third reaction tube rows. 4.0 Stop position S-port is sample dispensing device @
37 is provided to partially pressure the samples sequentially supplied by the sampler 38 into the reaction tube 82. This sample dispensing is also performed for each successive reaction tube row. A second reagent dispensing device 39 is provided at the stop position S5, and a second reagent 4, which is an enzyme-labeled reagent, is disposed at the stop position S5.
・Dispense 0. At the sixth stop position 860, the moss third reagent dispensing device 4.1 is installed, and the third reagent 4.1 is an enzyme coloring reagent.
Dispense 2. These second and third reagent dispensing are also performed for each successive reaction tube row.

停止位@S23には比色装置4・8を設け、順次の反応
管列の反応管32内の検液を比色セルへ導ひいて比色測
定を行なう。また、停止位@S24には担体排出装置4
,4・を設け、反応管内に残った担体を排出する。これ
ら比色装置4,3および4JH体排出装置4・4・もI
l[ri吹の反応管列毎に動作するものである。第10
図においては、第1〜第3の反応管列の反応管に対して
同時に洗浄を行なう洗浄装置34・と反応管との間は3
本の実線で連結して示し、その他の機構と反応管との間
は1本の実線と2本の破線で示し、順次の反応管列毎G
こ動作することを表わした。
Colorimetric devices 4 and 8 are provided at the stop position @S23, and the test liquids in the reaction tubes 32 of the sequential reaction tube array are guided to the colorimetric cell for colorimetric measurement. Also, at the stop position @S24, there is a carrier ejecting device 4.
, 4. are provided to discharge the carrier remaining in the reaction tube. These colorimetric devices 4, 3 and 4JH body discharge devices 4, 4, and I
It operates for each row of reaction tubes. 10th
In the figure, there are three
The connections between other mechanisms and reaction tubes are shown by one solid line and two broken lines.
It was shown that this works.

第1]図は第10図に示す自り分析装置の動作タイミン
グを示す図であり、■、■、■はそれぞれ第]、第2お
よび第3の反応管列、32−1. 。
1] is a diagram showing the operation timing of the self-analyzing device shown in FIG. .

32−2および32−3に対する動作を表わしている。32-2 and 32-3.

洗浄は反応管ティスフ31と同期したタイミングで第1
〜第3の反応管列にス・1して同時Gこ行なわれる。
The first cleaning is performed at a timing synchronized with the reaction tube TIF31.
-G is carried out at the same time in the third reaction tube row.

先ず停止位置81において第1反応管列32−1の反応
管(こ担体が1個投入される。この反応管は次の停止位
置S2において洗浄される。洗浄を行なう前にはこの反
応管には前のサンプルに苅する検液か残存しているか、
この検液中には担体と結合するような物質は含まれてい
ないので担体がコンタミネーションを受けることはない
が、停止位GS  で洗浄することにより、前回の検液
とサンプルまたは試薬とのコンタミネーションもなくな
る。次に停止位置S3において第〕試薬分注装置35に
より緩衝液より成る第1試薬36を所定量この反応管に
分注する。さらに1ステツプ移動して停止位置S、に到
達すると、サンプル分注装置37により所定量のサンプ
ルがこの反応管に分注され、第1.の反応が開始される
。本例ではこのような担体の投入、洗浄、第1試薬の分
注、サンプルの分注げ第1の反応伐・列の順次の反応戦
・(こ対して順次に、すなわち1ステツプ毎に行なわれ
る。
First, one reaction tube (carrier) of the first reaction tube row 32-1 is introduced at the stop position 81. This reaction tube is cleaned at the next stop position S2. Before cleaning, this reaction tube is Is there any test liquid remaining in the previous sample?
This test solution does not contain any substances that would bind to the carrier, so there is no contamination of the carrier. However, by washing with stop position GS, contamination between the previous test solution and the sample or reagent can be avoided. Nation will also disappear. Next, at the stop position S3, the first reagent dispensing device 35 dispenses a predetermined amount of the first reagent 36 made of a buffer solution into the reaction tube. When it moves one more step and reaches the stop position S, a predetermined amount of sample is dispensed into this reaction tube by the sample dispensing device 37. reaction is initiated. In this example, the steps are as follows: loading the carrier, washing, dispensing the first reagent, dispensing the sample, first reaction column, sequential reaction column (in contrast, sequential reactions, that is, one step at a time). .

第1のサンプルを分注した第1反応管列の第]の反応管
が再び停止位置S2に到達すると洗浄装置34・Gこよ
り第1回目のB−F分離が行なわれる。
When the second reaction tube of the first reaction tube row into which the first sample has been dispensed reaches the stop position S2 again, the first B-F separation is performed by the cleaning device 34.G.

この反応管がこの停止位置S2.(こ到達する過程(こ
おいて停止位置S5 + S6 + S2’3 + S
24. 、 S工を通過するか、第11図から明らかな
ようにこれらは第2および第3の反応管列の反応管Gこ
対して動作しているので何んら支障Q北ない。次にこの
反応管が停止位置S5に達すると第2試薬分注装置39
により第2試薬40が所定量分注され、第2の反応か開
始される。この反応管はさらに停止位置S2に送られる
と再び洗浄され、第2回目のB−F分離が行なわれる。
This reaction tube is at this stop position S2. (The process of reaching this point (here, the stopping position S5 + S6 + S2'3 + S
24. As is clear from FIG. 11, there is no hindrance because these are operating against the reaction tubes G of the second and third reaction tube rows. Next, when this reaction tube reaches the stop position S5, the second reagent dispensing device 39
A predetermined amount of the second reagent 40 is dispensed, and the second reaction is started. When this reaction tube is further sent to the stop position S2, it is washed again and a second B-F separation is performed.

その後停止位置S6において第3試薬分注装置41によ
り第3試薬42が所定量分注され、第3の反応が開始さ
れる。この反応管はさらに停止位置S23に送られると
、比色装置4・3Gこより比色測定が行なわれる。次に
停止位置S24で反応管内に残っている担体が担体排出
装置4.4゜により反応管から排出される。ここまで当
該反応管は正回転したことになり、次に1ステツプ移動
して停止位置S工に入ると再び担体が投入され、上述し
た動作を繰返す。
Thereafter, at the stop position S6, a predetermined amount of the third reagent 42 is dispensed by the third reagent dispensing device 41, and the third reaction is started. When this reaction tube is further sent to the stop position S23, colorimetric measurement is performed by the colorimetric devices 4 and 3G. Next, at the stop position S24, the carrier remaining in the reaction tube is discharged from the reaction tube by the carrier discharge device 4.4°. Up to this point, the reaction tube has been rotated in the forward direction, and when it moves one step and enters the stop position S, the carrier is thrown in again and the above-mentioned operation is repeated.

一方、担体投入装置33について見ると、最初の1回転
目では第1反応管列32−1のjl[0次の反応管に1
個づつ担体を投入し、24・個の反応管のすべてに担体
を投入し終ったら第2反応管列82−2に移り、その2
4□個の反応管に順次1個づつ担体を投入し、次に第3
反応管列32−3に移り、その241個の反応管に順次
1個づつ担体を投入する。次に再び第1反元、管列32
−1に移り、−1−述した動作を繰返ずことになる。サ
ンプル分注装置37、第1試薬分注装置35、第2試薬
分注装置3つ、第3試薬分注装置41、比色測定装置4
・J3、担体排出装置4・1・の動作も同様であるが、
第11図に示すように対象とする反応管列が相違してい
る。例えば第11図の第1回転目においては担体投入は
第1反応管列32−1に対して行なわれ、第1試薬分注
は第3ステツプから第1反応管列に対して行なわれ、第
2試桑分注は第4・ステップまでは第2反応管列32−
2に対して行なわれ、第5ステツプから第3反応管列3
2−3に移り、第3試薬の分注は第5ステツプ1では第
1反応管列Gこ対して行なわれ、第6ステツプ以降は第
2反応管列32−2に対して行なわれること(・こなる
。このように本例においてはサンプル分注を反応管ティ
スフ31の各ステップ毎Oこ連続的に行なうことができ
るので前述した実施例と比較した場合ザンプル処理能率
か向上することになる。また、担体の投入、排出、サン
プルの分注、試薬の分注、比色測定については順次の反
応管列毎に行なうのでこれらの駆動制御は非常Gこ容易
になる。
On the other hand, regarding the carrier charging device 33, in the first rotation, jl of the first reaction tube row 32-1 [1
Once the carriers have been introduced into all 24 reaction tubes, the process moves to the second reaction tube row 82-2.
One by one, the carriers were introduced into 4□ reaction tubes, and then the third
Moving to the reaction tube row 32-3, carriers are sequentially introduced into the 241 reaction tubes one by one. Next, the first anti-element, tube row 32
The process moves to -1, and the operations described in -1- are not repeated. Sample dispensing device 37, first reagent dispensing device 35, three second reagent dispensing devices, third reagent dispensing device 41, colorimetric measurement device 4
・The operation of J3 and carrier discharge device 4.1 is also similar,
As shown in FIG. 11, the target reaction tube rows are different. For example, in the first rotation in FIG. 11, carrier injection is performed to the first reaction tube row 32-1, first reagent dispensing is performed from the third step to the first reaction tube row, and For the 2nd trial mulberry dispensing, the second reaction tube row 32- is used until the 4th step.
2, and from the fifth step to the third reaction tube row 3
Moving on to 2-3, the dispensing of the third reagent is performed to the first reaction tube row G in the fifth step 1, and is performed to the second reaction tube row 32-2 from the sixth step onward (・In this way, in this example, sample dispensing can be performed continuously for each step of the reaction tube 31, so the sample processing efficiency is improved when compared with the above-mentioned example. Furthermore, since the loading and unloading of carriers, sample dispensing, reagent dispensing, and colorimetric measurements are performed for each reaction tube row in sequence, these driving controls become extremely easy.

本発明は上述した実施例にのみ限定されるものではなく
、幾多の変形が可能である。上述した実施例では酵素標
識試薬を用いる酵素免疫分析を行なっているが、マーカ
として数対性同位元素を用いる数対免疫分析、マーカと
して螢光物質を用いる螢光免疫分析などにも同様に適用
することができる。また、反応管は必らずしも円板状の
反応管テイスク上に保持する必要はなく、例えはスネー
クチェーンやゴンドラ方式の搬送装置を用いることかで
きる。さらに上述した例では最終的に得られる検液を比
色セル(こ導びいて比色測定を行なったが、透明な反応
管を用い、検液か反応管内(こ存在する状態で比色測定
を行なうダイレクト測光方式を採用することもできる。
The present invention is not limited to the embodiments described above, but can be modified in many ways. In the above example, enzyme immunoassay using an enzyme-labeled reagent is performed, but it can also be applied to number-pair immunoassay using a number-pair isotope as a marker, fluorescence immunoassay using a fluorescent substance as a marker, etc. can do. Further, the reaction tube does not necessarily have to be held on a disk-shaped reaction tube tray, and for example, a snake chain or gondola type conveying device can be used. Furthermore, in the above example, the final test solution was introduced into the colorimetric cell (colorimetric measurement), but a transparent reaction tube was used, and the colorimetric measurement was performed while the test solution was in the reaction tube (in the state where it was present). It is also possible to adopt a direct photometry method that performs the following.

この場合、反応管内に残存する担体が測光の妨げとなる
ような場合には測光前に担体を取除くこともできる。ま
た、このようなダイレクト測光方式を採る場合(こは、
測光後担体を検液と共に排出できるので担体排出装置が
簡単となる。さらに」二連した実施例においては洗浄装
置を1個設けたが複数個設けることもできる。例えば第
3図に示す実施例において、洗浄装置26と直径的に(
旦ぼ対向する位置に第2の洗浄装置を設けることもでき
る。このようにしても洗浄装置を3個設けるものに比べ
れば装置は簡単かつ小形になる効果は得られる。さらに
上述した実施例では反応管は繰返し使用するようにした
が、このことも必らずしも必要ではなく、分析に使用し
た反応管を使い捨てとすることもできる。また、上述し
た実施例ではすべてのサンプルについて同一の測定項目
の分析を行なうようGこしたか、同時に多項目の分析を
行なうようにすることもできる。
In this case, if the carrier remaining in the reaction tube interferes with photometry, the carrier can be removed before photometry. Also, when using such a direct metering method (here,
Since the carrier can be discharged together with the test solution after photometry, the carrier discharge device becomes simple. Furthermore, although one cleaning device is provided in the two-way embodiment, a plurality of cleaning devices may be provided. For example, in the embodiment shown in FIG.
A second cleaning device can also be provided at an opposite location. Even in this case, compared to the case where three cleaning devices are provided, the device can be made simpler and more compact. Further, in the above-described embodiments, the reaction tubes are used repeatedly, but this is not always necessary, and the reaction tubes used for analysis may be disposable. Furthermore, in the above-described embodiments, all samples are analyzed for the same measurement item, or multiple items may be analyzed at the same time.

さらGこ、各種分注位置、担体の投入、排出位置、比色
測定位置なども上述した実施例Gこ限定されるものでは
なく、種々の変更が’5’4能である。また、−I−述
した例では攪拌については何んら述べていないが、適当
な攪拌機構を適当な停止位置に設けることかできる。例
えばU字状の反応管を用いる場合Gこはその小口部から
エアを送給することにより攪拌することができる。
Furthermore, various dispensing positions, carrier loading and discharging positions, colorimetric measurement positions, etc. are not limited to those of the above-mentioned embodiment G, and various changes can be made. Further, although the example described above does not mention anything about stirring, a suitable stirring mechanism can be provided at a suitable stop position. For example, when a U-shaped reaction tube is used, stirring can be achieved by supplying air from the small opening of the tube.

以上説明したように本発明の免疫学的自動分析方法にお
いては、各サンプルの分析中、エンドレス状Gこ構成し
た反応ライン中に設けた洗浄装置に反応管を循環させて
通すようにすると共にサンプルは連続的Oこ分注するよ
うにしたため、自動分析装置全体の構成を簡単かつ小形
とすることができ、しかもサンプル分注を含めた総ての
機構の動作を共通のタイミングで制御できるので制御が
容易となる。したかつてサンプルのID制御や分法結果
の処坤も容易と4L′ると云う効果が得られる。
As explained above, in the automatic immunological analysis method of the present invention, during the analysis of each sample, the reaction tube is circulated through a cleaning device installed in the reaction line configured with an endless gas line, and the sample is Since the system is designed to perform continuous dispensing, the overall configuration of the automatic analyzer can be made simple and compact.Moreover, the operation of all mechanisms, including sample dispensing, can be controlled at a common timing, making control easier. becomes easier. It is possible to easily control the sample ID and process the separation results, which is the advantage of 4L'.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は競合u<iこよる酵素免役分析σ−)過)、′
I企示ず線図、 第2図(・」サンドインチ法による酵素免疫分析の過程
を示ず線(χ1、 第13図は本発明による分析方法を実施する自動分析装
置rjσ)−例の構成を示す線図、第4・図(才回しく
そのIll<j次の動作を示す図、第5図は同しくその
各部の動作を示すタイミングチャーl−図、 第6図は本発明の分析)j次を実す市する自動分析装置
行の他の例の構成を示す線図、 第7図は同じくその動作を説明するためのタイミングヂ
ャ−ト図、 第8図は本発明の分析方法を実施する自動分析装置のさ
らに他の例の構成を示す線図、第9図は同しくその動作
を説明するためのタイミングチャート図、 第40図は本発明の分析方法を実施する自動分析装置の
さらに他の例の構成を示す図、第11図は同しくその動
作を説明するためのタイミングチャーl−図である。 11・・U字管      ]2・・反)心老ティスク
]3 サンプル分注装置 144・ザンプラ]5 サン
プルカップ  1.6 、18 、20・試薬分注装置
22−・担体投入装置   23・担体2・1・ 比色
装置     25・・担体排出装置2G・洗浄装置 
    31・反ル1入管ティスク32・・反応冶・2 32−1 、32−2 、32−3  反j心管列83
・・・担体投入装置   34.・洗浄装置35.39
.J・]・試薬分注装置 、37・・サンプル分注装置38・・づンプラ4・3・
比色装置     4,44・・担体排出装置。 手続補正書    1 昭和58 年3 月 4・ 日 ■、小事件表示 昭和58年 特 許 願第 9599 号2、発明の名
称 免疫学的自動分析方法 3、補正をする者 事件との関係  特言′1出願人 (037)  オリンパス光学工業株式会社5゜ 6、補正の対象  明細書の特許請求の範囲、発明の詳
細な説明σ)■にd明細書簡1頁第3〜17行の特許e
ft求の範囲を次のとおりに訂正する。 [2、特許請求の範囲 L 所定の抗体または抗原を固定化した担体と、所定の
抗体または抗原を所定の物質で標識した標識試薬とを用
い、反応容器内で抗原抗体反応を行なわせてサンプル中
の被検物質を免疫学的に自動的に分析するにあたり、 前記反応容器を、該反応容器に収容し たサンプル中の被検物質の分析中に、エンドレス状に構
成した反応ライン中に設けた洗浄装置に循環搬送して、
前記担体に結合した抗体または抗原と、担体に結合して
いない抗体または抗原とを分離するB−F分離を含む洗
浄を少く共2回行なうと共に反応容器へのサンプルの分
注を連続的に行なうことを特徴とする免疫学的自動分析
方法。」
Figure 1 shows enzyme immunoassay due to competition u < i
Figure 2 (-) shows the process of enzyme immunoassay using the sandwich method (χ1, Figure 13 shows an automatic analyzer rjσ that carries out the analysis method according to the present invention) - Configuration of an example Figure 4 is a diagram that cleverly shows the operation of Ill<j order, Figure 5 is a timing diagram showing the operation of each part, and Figure 6 is an analysis of the present invention. ) A diagram showing the configuration of another example of an automatic analyzer line that implements the following; FIG. 7 is a timing diagram for explaining its operation; FIG. 8 is an analysis method of the present invention. FIG. 9 is a diagram showing the configuration of still another example of an automatic analyzer for carrying out the analysis, FIG. 9 is a timing chart diagram for explaining its operation, and FIG. 40 is an automatic analyzer for carrying out the analysis method of the present invention. FIG. 11 is a timing diagram for explaining the operation of the structure of still another example. Dispensing device 144・Sampler】5 Sample cup 1.6, 18, 20・Reagent dispensing device 22-・Carrier loading device 23・Carrier 2.1・Colorimetric device 25・・Carrier discharging device 2G・Washing device
31. Reaction tube 1 entrance tube disk 32... Reaction treatment 2 32-1, 32-2, 32-3 Reverse J heart tube row 83
...Carrier loading device 34.・Cleaning device 35.39
.. J・]・Reagent dispensing device, 37・・Sample dispensing device 38・・Zumpura 4・3・
Colorimetric device 4,44...Carrier discharge device. Procedural amendment 1 March 4, 1988 ■, Minor case indication 1988 Patent Application No. 9599 2, Title of invention Immunological automatic analysis method 3, Person making the amendment Relationship with the case Special remarks' 1 Applicant (037) Olympus Optical Industry Co., Ltd. 5゜6, Subject of amendment Claims in the specification, Detailed description of the invention σ) d Patent on page 1, lines 3 to 17 of the specification letter e
Correct the range of ft calculation as follows. [2. Claim L: A sample is prepared by performing an antigen-antibody reaction in a reaction container using a carrier on which a predetermined antibody or antigen is immobilized and a labeling reagent in which the predetermined antibody or antigen is labeled with a predetermined substance. In automatically immunologically analyzing the test substance contained in the reaction vessel, the reaction vessel is installed in an endless reaction line during the analysis of the test substance in the sample contained in the reaction vessel. Circulate and transport to cleaning equipment
Washing including B-F separation for separating the antibody or antigen bound to the carrier from the antibody or antigen not bound to the carrier is performed at least twice, and the sample is continuously dispensed into the reaction container. An automated immunological analysis method characterized by: ”

Claims (1)

【特許請求の範囲】 1、所定の抗体または抗原を固定化した担体と、所定の
抗体または抗原を所定の物質で標識した標識試薬とを用
い、反応容器内で抗原抗体反応を行なわせてサンプル中
の被検物質を免疫学的に自動的に分析するにあたり、 前記反応容器を、該反応容器に収容したサンプル中の被
検物質の分析中に、エンドレス状に構成した反応ライン
中に設けた洗浄装置に循環搬送して、前記担体に結合し
た抗体または抗原と、担体に結合していない抗体または
抗原とを分離するB−F分離を含む洗浄を少く共2回行
なうと共に反応容器へのサンプルの分注を連続的に行な
うことを特徴とする免疫学的自動分析方法。
[Claims] 1. Using a carrier on which a predetermined antibody or antigen is immobilized and a labeling reagent in which the predetermined antibody or antigen is labeled with a predetermined substance, an antigen-antibody reaction is performed in a reaction container to prepare a sample. In automatically immunologically analyzing the test substance contained in the reaction vessel, the reaction vessel is installed in an endless reaction line during the analysis of the test substance in the sample contained in the reaction vessel. The sample is circulated to a washing device and washed at least twice, including B-F separation to separate antibodies or antigens bound to the carrier from antibodies or antigens not bound to the carrier, and the sample is transferred to a reaction vessel. An automatic immunological analysis method characterized by continuously dispensing.
JP959983A 1983-01-24 1983-01-24 Immunological automatic analytical method Granted JPS59135367A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP959983A JPS59135367A (en) 1983-01-24 1983-01-24 Immunological automatic analytical method
DE19843448210 DE3448210C2 (en) 1983-01-24 1984-01-24
DE19843448007 DE3448007C2 (en) 1983-01-24 1984-01-24 Reaction vessel for immunological analysis
DE19843448121 DE3448121C2 (en) 1983-01-24 1984-01-24
DE19843402304 DE3402304C3 (en) 1983-01-24 1984-01-24 Procedure for automatic immunological analysis
US07/119,278 US5175086A (en) 1983-01-24 1987-11-09 Method for effecting heterogeneous immunological analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP959983A JPS59135367A (en) 1983-01-24 1983-01-24 Immunological automatic analytical method

Publications (2)

Publication Number Publication Date
JPS59135367A true JPS59135367A (en) 1984-08-03
JPH0577981B2 JPH0577981B2 (en) 1993-10-27

Family

ID=11724775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP959983A Granted JPS59135367A (en) 1983-01-24 1983-01-24 Immunological automatic analytical method

Country Status (1)

Country Link
JP (1) JPS59135367A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117455A (en) * 1984-11-14 1986-06-04 Olympus Optical Co Ltd Automatic immunological analysis method
JPS61193073A (en) * 1985-02-22 1986-08-27 Olympus Optical Co Ltd Method and instrument for immunological analysis
JPS62133355A (en) * 1985-12-06 1987-06-16 Nitsuteku:Kk Eia automatic analyzer
JPH02242161A (en) * 1989-03-15 1990-09-26 Jeol Ltd Cartridge washing device of automatic immunity measuring apparatus
JPH02245665A (en) * 1989-03-18 1990-10-01 Jeol Ltd Automatic biochemical analyzer
JPH1038892A (en) * 1996-07-26 1998-02-13 Tosoh Corp Reactor for immune analyzer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147067A (en) * 1980-04-16 1981-11-14 Olympus Optical Co Ltd Automatic measuring instrument for enzyme immunity
JPS5774662A (en) * 1980-10-28 1982-05-10 Fujirebio Inc Automatic measuring apparatus for enzyme immunity
JPS5984159A (en) * 1982-11-06 1984-05-15 Kyoto Daiichi Kagaku:Kk Method and device for automatic immune measurement of enzyme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147067A (en) * 1980-04-16 1981-11-14 Olympus Optical Co Ltd Automatic measuring instrument for enzyme immunity
JPS5774662A (en) * 1980-10-28 1982-05-10 Fujirebio Inc Automatic measuring apparatus for enzyme immunity
JPS5984159A (en) * 1982-11-06 1984-05-15 Kyoto Daiichi Kagaku:Kk Method and device for automatic immune measurement of enzyme

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117455A (en) * 1984-11-14 1986-06-04 Olympus Optical Co Ltd Automatic immunological analysis method
JPS61193073A (en) * 1985-02-22 1986-08-27 Olympus Optical Co Ltd Method and instrument for immunological analysis
JPS62133355A (en) * 1985-12-06 1987-06-16 Nitsuteku:Kk Eia automatic analyzer
JPH02242161A (en) * 1989-03-15 1990-09-26 Jeol Ltd Cartridge washing device of automatic immunity measuring apparatus
JPH02245665A (en) * 1989-03-18 1990-10-01 Jeol Ltd Automatic biochemical analyzer
JPH1038892A (en) * 1996-07-26 1998-02-13 Tosoh Corp Reactor for immune analyzer

Also Published As

Publication number Publication date
JPH0577981B2 (en) 1993-10-27

Similar Documents

Publication Publication Date Title
US5178834A (en) Automatic immunoassay analyzer
US4803050A (en) Method and apparatus for liquid addition and aspiration in automated immunoassay techniques
US5175086A (en) Method for effecting heterogeneous immunological analysis
JPS6176957A (en) Method and instrument for immunological analysis device
US3951605A (en) Instrument for automated immunochemical analysis
US4952518A (en) Automated assay machine and assay tray
JP3372544B2 (en) Automatic chemical analysis method and apparatus
US3644095A (en) Apparatus for performing chemical analyses
JP2884604B2 (en) Automatic immunoassay device and method of using the same
GB2199407A (en) Automated patient sample analysis instrument
JPH07505473A (en) Automatic continuous random access analysis system and its components
NZ201901A (en) An apparatus suitable for performing automated heterogeneous immunoassays in a plurality of samples
CN111033263A (en) Automatic analysis device and working method thereof
US4797258A (en) Chemical reaction apparatus
JPS59135367A (en) Immunological automatic analytical method
JPS59147267A (en) Immunological automatic analytical method and reaction vessel used therein
JPH03279863A (en) Automatic analysis apparatus
JPH06308133A (en) Inspecting apparatus for specimen
JPH0688828A (en) Automatic immune analyzing instrument
JPH0656383B2 (en) Enzyme immunological automatic analyzer
JPS61117455A (en) Automatic immunological analysis method
JP3733432B2 (en) Reactor for immunoanalyzer
JPS59135366A (en) Immunological automatic analytical method
JPS61118662A (en) Immunological automatic analysis
JPS61258171A (en) Method and instrument for automatic immunological analysis