JPS5913502Y2 - Rotary atomization device - Google Patents

Rotary atomization device

Info

Publication number
JPS5913502Y2
JPS5913502Y2 JP14879978U JP14879978U JPS5913502Y2 JP S5913502 Y2 JPS5913502 Y2 JP S5913502Y2 JP 14879978 U JP14879978 U JP 14879978U JP 14879978 U JP14879978 U JP 14879978U JP S5913502 Y2 JPS5913502 Y2 JP S5913502Y2
Authority
JP
Japan
Prior art keywords
rotating shaft
liquid
injection ports
diameter
cylindrical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14879978U
Other languages
Japanese (ja)
Other versions
JPS5564621U (en
Inventor
光 森下
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP14879978U priority Critical patent/JPS5913502Y2/en
Publication of JPS5564621U publication Critical patent/JPS5564621U/ja
Application granted granted Critical
Publication of JPS5913502Y2 publication Critical patent/JPS5913502Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Nozzles (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Description

【考案の詳細な説明】 この考案は筒状回転軸の壁に設けた噴射口から回転軸の
回転による遠心力を利用して液体、例えば液体燃料を霧
状で、回転軸の円周方向に均一な分布で噴射する装置に
関するものである。
[Detailed description of the invention] This invention utilizes the centrifugal force caused by the rotation of the rotating shaft to atomize liquid, such as liquid fuel, from the injection port provided on the wall of the cylindrical rotating shaft in the circumferential direction of the rotating shaft. It concerns a device that sprays with uniform distribution.

回転軸の前端からその中心に設けた小径の液体通路を通
って燃料等の液体を供給し、回転軸の遠心力を利用して
液体を微粒化する方法については、従来第5図に示すよ
うに回転軸301の図示しない液体通路に連通ずる内部
孔303に噴射口302を一列だけ設けたものや、第6
図に示すように回転軸401に液体通路403に連通ず
る渦巻きノズル402を設けたものがある。
The conventional method of supplying liquid such as fuel from the front end of the rotating shaft through a small diameter liquid passage provided in the center and atomizing the liquid using the centrifugal force of the rotating shaft is as shown in Fig. 5. In some cases, only one row of injection ports 302 are provided in the internal hole 303 of the rotating shaft 301 that communicates with a liquid passage (not shown), or in a sixth
As shown in the figure, there is one in which a rotating shaft 401 is provided with a spiral nozzle 402 that communicates with a liquid passage 403.

然し第5図の装置は噴射口302から噴射される噴霧の
粒径が余り小さくならないことが知られている。
However, it is known that in the apparatus shown in FIG. 5, the particle size of the spray injected from the injection port 302 does not become very small.

このことは後述するように回転軸の周速m/secと粒
径μmと関係を示す第7図からも明かである。
This is also clear from FIG. 7, which shows the relationship between the circumferential speed of the rotating shaft (m/sec) and the particle size μm, as will be described later.

特に回転軸301の回転数が低く周速が大きくない時は
粒径は相当大きくなることが知られている。
It is known that the particle size becomes considerably large, especially when the rotational speed of the rotating shaft 301 is low and the circumferential speed is not high.

一方第6図のように渦巻きノズル402を設けることに
よって回転軸401の周速が小さい時でも粒径の小さい
噴霧が得られることが知られている。
On the other hand, it is known that by providing a spiral nozzle 402 as shown in FIG. 6, a spray having a small particle size can be obtained even when the circumferential speed of the rotating shaft 401 is small.

然し回転軸401に渦巻きノズル402を設けた場合、
回転軸401の回転によって渦巻きノズル402には非
常に大きい遠心力が作用するので渦巻きノズル402の
回転軸401への取り付けを強固にしておかないと渦巻
きノズル402は回転軸401から飛び出す危険がある
However, when the spiral nozzle 402 is provided on the rotating shaft 401,
Since a very large centrifugal force acts on the spiral nozzle 402 due to the rotation of the rotating shaft 401, there is a risk that the spiral nozzle 402 will jump out from the rotating shaft 401 unless the spiral nozzle 402 is firmly attached to the rotating shaft 401.

又第6図の装置は構成部品が多くさらに渦巻きノズル4
02には高い工作精度が必要となる。
In addition, the device shown in Fig. 6 has many components, and the spiral nozzle 4
02 requires high machining accuracy.

この考案の一つの目的は一つの回転軸の中心に設けた小
径の液体通路に導入された液体を粒径の極めて小さい、
かつ回転軸の円周方向に均等に分布された噴霧とする回
転微粒化装置を提供することである。
One purpose of this invention is to transform the liquid introduced into the small diameter liquid passage provided at the center of one rotating shaft into extremely small particle size particles.
Moreover, it is an object of the present invention to provide a rotary atomization device that generates spray that is evenly distributed in the circumferential direction of a rotating shaft.

この考案のもう一つの目的はガスタービンの燃焼室のよ
うな高温部に臨んで取付は可能であり、かつ燃焼室には
粒径の極めて小さい、かつ均等な分布の噴霧を供給する
回転微粒化装置を提供することである。
Another purpose of this invention is that it can be installed facing high-temperature areas such as the combustion chamber of a gas turbine, and the rotary atomization system supplies spray with extremely small particle size and uniform distribution to the combustion chamber. The purpose is to provide equipment.

以下実施例を示す図面に基づきこの考案を説明し、併せ
てガスタービンへのこの考案の使用例について述べる。
This invention will be described below based on drawings showing embodiments, and an example of the application of this invention to a gas turbine will also be described.

第2図、第3図及び第4図はこの考案の一実施例を示す
、回転微粒化装置100は一つの回転軸例えば後述する
ガスタービンTの回転軸1と、その中心に設けた小径の
液体通路2と、これと同心の円錐面3aおよび円筒面3
bとを有し、隔壁21により後端が閉鎖されている内部
孔3と、円筒面3bにlの間隔で配置した2列の噴射口
101.102とからなっている。
FIGS. 2, 3, and 4 show an embodiment of this invention. A rotary atomizer 100 has one rotating shaft, for example, the rotating shaft 1 of a gas turbine T, which will be described later, and a small diameter Liquid passage 2, conical surface 3a and cylindrical surface 3 concentric therewith
b, and consists of an internal hole 3 whose rear end is closed by a partition wall 21, and two rows of injection ports 101 and 102 arranged at an interval of 1 on the cylindrical surface 3b.

液体通路2はその後端において内部孔3の前端と連通し
、円錐面3aは後方に行くにつれて直径が大きくなって
いる。
The liquid passage 2 communicates with the front end of the internal hole 3 at its rear end, and the diameter of the conical surface 3a increases toward the rear.

円筒面3bは円錐面3aの後端と同径で同後部に接続し
ている。
The cylindrical surface 3b has the same diameter as the rear end of the conical surface 3a and is connected to the rear end thereof.

噴射口101は噴射口102の前方に位置し、第3図に
示すように円筒面3bの円周方向に等間隔に4個配置さ
れ、又噴射口102は第4図に示すように等間隔に2個
配置されている。
The injection ports 101 are located in front of the injection ports 102, and as shown in FIG. 3, four injection ports are arranged at equal intervals in the circumferential direction of the cylindrical surface 3b, and the injection ports 102 are arranged at equal intervals as shown in FIG. Two are placed in the.

噴射口101の直径は0.5〜Q、3mmであるが噴射
口102の直径は噴射口101の直径よりも十分大きく
なっている。
The diameter of the injection port 101 is 0.5 to Q, 3 mm, but the diameter of the injection port 102 is sufficiently larger than the diameter of the injection port 101.

上記の構成において、回転軸1の前端(第2図で図示し
ない左端)から供給された液体は液体通路2を経て内部
孔3に供給される。
In the above configuration, liquid supplied from the front end (left end not shown in FIG. 2) of the rotating shaft 1 is supplied to the internal hole 3 via the liquid passage 2.

内部孔3に供給された液体は回転軸1の回転による遠心
力を受けて内部孔3の円錐面3aに沿って薄い膜状にな
って後方に流れ円筒面3bに達してその全周に非常に薄
い膜状で拡がる。
The liquid supplied to the internal hole 3 is subjected to centrifugal force due to the rotation of the rotating shaft 1, and flows backwards along the conical surface 3a of the internal hole 3 in the form of a thin film, reaching the cylindrical surface 3b, where it spreads over its entire circumference. It spreads in a thin film.

回転軸1の回転数が増加して内筒面3bの周速が大きく
なると液体に働く遠心力が非常に大きくなるので(例え
ば回転軸1がガスタービンの回転軸とすると円筒面3b
の周速は約200m/secになる。
As the rotational speed of the rotating shaft 1 increases and the circumferential speed of the inner cylindrical surface 3b increases, the centrifugal force acting on the liquid becomes extremely large (for example, if the rotating shaft 1 is the rotating shaft of a gas turbine, the cylindrical surface 3b
The circumferential speed is approximately 200 m/sec.

この周速では液体に作用する遠心力は105Gのオーダ
となる。
At this circumferential speed, the centrifugal force acting on the liquid is on the order of 105G.

但しGは重力加速度である。However, G is gravitational acceleration.

)液体は円筒面3bの全周に亙り非常に薄い膜状で拡が
る。
) The liquid spreads in a very thin film over the entire circumference of the cylindrical surface 3b.

この膜状の液体は円筒面3bに設けた噴射口101 、
102から半径方向に等量で、大きな遠心力で噴射され
る。
This film-like liquid flows through the injection port 101 provided on the cylindrical surface 3b,
102 in the radial direction in equal amounts and with a large centrifugal force.

この場合の燃料の流量は回転軸1がガスタービンの回転
軸と同程度に高速回転していると噴射口101 、10
2の断面に液体が全部詰まって流れると仮定した流量よ
り遥に少ない。
In this case, the fuel flow rate is determined by the injection ports 101 and 10 when the rotating shaft 1 is rotating at the same high speed as the rotating shaft of the gas turbine.
The flow rate is much lower than the flow rate assuming that all the liquid is packed in the cross section of 2.

この理由は各噴射口101,102から小量ずつかつ等
量で液体が噴射されているがらである。
The reason for this is that liquid is injected from each of the injection ports 101 and 102 in small but equal amounts.

そして液体は前述のように非常に大きな遠心力を受けて
高速で噴射されるので周囲の気体により大きな剪断作用
を受は粒径の極めて小さい噴霧にされる。
Since the liquid is injected at high speed under the influence of a very large centrifugal force as described above, the liquid is subjected to a large shearing action by the surrounding gas and is turned into a spray having extremely small particle sizes.

一般に回転微粒化装置において、液体の微粒化に寄与す
るエネルギは液体に作用する遠心力による運動のエネル
ギである。
Generally, in a rotary atomization device, the energy that contributes to atomization of a liquid is the energy of movement due to centrifugal force acting on the liquid.

このエネルギを最も効果的に利用することが粒径の小さ
い噴霧を得ることになる。
Utilizing this energy most effectively results in spray having small particle size.

液体に与えられたエネルギを最も効果的に利用する方法
は液体が液滴に分裂を開始する前に液体の表面積/重量
の比を出来るだけ大きくすることである。
The most efficient way to utilize the energy imparted to a liquid is to make the surface area/weight ratio of the liquid as large as possible before the liquid begins to break up into droplets.

従ってこの考案の回転微粒化装置100のように液体を
内部孔3の円筒面3b上に極めて薄い液膜として拡げ、
さらに2列の噴射口101 、102から少量ずつ極め
て大きい遠心力で噴射する微粒化装置では粒径の極めて
小さい噴霧が得られる。
Therefore, as in the rotary atomization device 100 of this invention, the liquid is spread as an extremely thin liquid film on the cylindrical surface 3b of the internal hole 3,
Furthermore, an atomization device that injects a small amount at a time with an extremely large centrifugal force from two rows of injection ports 101 and 102 can obtain a spray with an extremely small particle size.

第7図は横軸に回転軸の周速m/secを取り、縦軸に
粒径μmを取ってこの考案による回転微粒化装置100
の特性(図中目領域)と直径が0.2〜2mnnの噴射
口が一列のみの第5図に示す従来の回転微粒化装置の特
性(図中イ領域)との比較を示す。
FIG. 7 shows the rotary atomizer 100 according to this invention, with the horizontal axis representing the circumferential speed of the rotating shaft in m/sec and the vertical axis representing the particle size μm.
A comparison is shown between the characteristics of the conventional rotary atomizer shown in FIG. 5, which has only one row of injection ports having a diameter of 0.2 to 2 mnn (region A in the figure).

液体としては水が使用され、粒径は5auter平均直
径(体面積平均直径)で示されている。
Water is used as the liquid, and the particle size is shown in 5 outer average diameter (body area average diameter).

液体として燃料油を使用した場合は粒径は水の場合の6
0〜70%となる。
When fuel oil is used as the liquid, the particle size is 6
It becomes 0-70%.

第7図から噴射口1列のみの第5図の装置から得られる
粒径は噴射口をどんなに小さくしてもこの考案の回転微
粒化装置100により得られる粒径よりも非常に大きい
ことが分る。
It can be seen from FIG. 7 that the particle size obtained from the apparatus shown in FIG. 5 with only one row of injection ports is much larger than the particle size obtained by the rotary atomizer 100 of this invention, no matter how small the injection port is. Ru.

この理由は回転微粒化装置100はlの距離(lは2m
m程度)をへだてて2列の噴射口101,102を有す
るからである。
The reason for this is that the rotary atomizer 100 is located at a distance of l (l is 2 m).
This is because there are two rows of injection ports 101 and 102 separated by a distance of about m).

この場合噴射口102の口径を噴射口101の口径より
十分大きくシ、噴射口102の数を噴射口101の数よ
り多くしないことが望ましい。
In this case, it is desirable that the diameter of the injection ports 102 is sufficiently larger than the diameter of the injection ports 101 and that the number of injection ports 102 is not greater than the number of injection ports 101.

その理由は回転軸1の内部孔3の円錐面3a又は円筒面
3bからの伝熱によって液体の一部が蒸発して噴射口1
01 、102から液体とその蒸気との混合物が噴射さ
れる場合に径小の噴射口101からの噴射量が蒸気閉塞
により十分でなくても噴射口102の口径が十分大きい
と液体も蒸気も噴射口102内で殆んど抵抗なく噴射さ
れるからである。
The reason for this is that a part of the liquid evaporates due to heat transfer from the conical surface 3a or cylindrical surface 3b of the internal hole 3 of the rotating shaft 1, and the injection port 1
When a mixture of liquid and its vapor is injected from 01 and 102, even if the injection amount from the small-diameter injection port 101 is not sufficient due to steam blockage, if the diameter of the injection port 102 is sufficiently large, both liquid and vapor will be injected. This is because it is injected within the mouth 102 with almost no resistance.

もし□噴射口101.102の口径がともに通常程度の
値であると噴射される液の流れは振動又は脈動し、ある
いは噴射口101,102から噴射される流量が小さい
値に制限されるような不具合が生じる。
□If the diameters of the injection ports 101 and 102 are both normal values, the flow of the liquid injected will vibrate or pulsate, or the flow rate of the injection port 101 and 102 will be limited to a small value. A problem occurs.

次に回転微粒化装置100を第1図のガスタービンTに
組み込み回転軸1をガスタービンTの回転軸とした場合
の同装置の作用をガスタービンTの構成、作用とともに
説明する。
Next, the operation of the rotary atomizer 100 when it is installed in the gas turbine T shown in FIG. 1 and the rotating shaft 1 is used as the rotating shaft of the gas turbine T will be explained together with the structure and operation of the gas turbine T.

回転軸1は後述のタービンロータ17により回転させら
れる。
The rotating shaft 1 is rotated by a turbine rotor 17, which will be described later.

回転軸1の回転により圧縮機ロータ4が回転し、空気は
矢印Aのように圧縮機ロータ4に吸入され、同ロータ4
により速度エネルギを附与されてテ゛イフユ−ザ6のテ
゛イフユーザ翼6aに矢印Bのように流入し、テ゛イフ
ユーザ6により減速、昇圧され矢印Cのように外側ハウ
ジング7、内側ハウジング8間の環状の空気流路9に送
り込まれる。
The rotation of the rotating shaft 1 rotates the compressor rotor 4, and air is sucked into the compressor rotor 4 as shown by arrow A.
The air is imparted with velocity energy and flows into the tiff user blade 6a of the tiff user 6 as shown by arrow B, and is decelerated and pressurized by the tiff user 6, creating an annular air flow between the outer housing 7 and the inner housing 8 as shown by arrow C. Sent to Route 9.

空気は空気流路9から矢印りのように流れて図示されて
いない熱交換器に導入され、加熱されて矢印Eのように
空気室10に導入され、又通気管12を通って矢印Fの
ように空気室11にも導入される。
Air flows from the air passage 9 as shown by the arrow, is introduced into a heat exchanger (not shown), is heated and introduced into the air chamber 10 as shown by the arrow E, and also passes through the ventilation pipe 12 as shown by the arrow F. It is also introduced into the air chamber 11 in the same way.

一方間転軸1内の液体通路2の前端(第1図の図示され
ない左端)から同通路内に導入された液体燃料は同通路
2を経て内部孔3内に入り遠心力により円錐面3a、円
筒面3bで非常に薄い液膜となって噴射口101,10
2から燃焼室15内に噴射され、ガスタービン7のケー
シング13 a 、14 aに設けられた空気孔19
a 、19 b 、19 C,19d 、19 eから
燃焼室15内に導入された空気により剪断されて粒径の
極めて小さい、かつ回転軸1の円周方向に一様分布の噴
霧となる。
On the other hand, liquid fuel introduced into the liquid passage 2 from the front end (left end not shown in FIG. 1) in the interrotary shaft 1 passes through the passage 2 and enters the internal hole 3, and due to centrifugal force, the liquid fuel enters the conical surface 3a, A very thin liquid film forms on the cylindrical surface 3b and the injection ports 101, 10
2 into the combustion chamber 15, and air holes 19 provided in the casings 13a, 14a of the gas turbine 7.
The particles are sheared by the air introduced into the combustion chamber 15 from a, 19b, 19c, 19d, and 19e, and become a spray with extremely small particle size and uniform distribution in the circumferential direction of the rotating shaft 1.

噴霧状燃料は点火プラグ20で着火され以後燃焼室15
内で連続燃焼する。
The atomized fuel is ignited by the spark plug 20 and then flows into the combustion chamber 15.
Continuous combustion inside.

燃焼ガスはケーシング13 b 、14 bに設けられ
た空気孔19f、19gから燃焼室15内に導入される
空気と混合して適正な温度に下げられ、矢印Gのように
タービンノズル16に導入され、タービンロータ17に
吹きつけられてこれを回転させる。
The combustion gas is mixed with air introduced into the combustion chamber 15 through air holes 19f and 19g provided in the casings 13b and 14b, lowered to an appropriate temperature, and introduced into the turbine nozzle 16 as shown by arrow G. , is blown onto the turbine rotor 17 to rotate it.

なお、18は気体軸受装置であって図示されていないも
う一つの軸受とで回転軸1を高速回転可能に支承してい
る。
Note that 18 is a gas bearing device that supports the rotary shaft 1 so as to be rotatable at high speed with another bearing (not shown).

この考案は一つの回転軸の内部に、これと同心の小径の
液体通路と、円錐面及び円錐面の後端に接続する円筒面
とからなる一つの内部孔とを設け、円錐面の径小の前端
部を液体通路の後端に連通させ、円筒面の後端を閉鎖し
、円筒面に該当する回転軸の部分に回転軸の壁を貫通す
る前後2列の噴射口を回転軸の円周方向に等間隔に配設
し、後列の噴射口の口径を前列の噴射口の口径より大き
く設定し、前列の噴射口の数を複列の噴射口の数より多
く設定したので次のような優れた効果を有する。
This device has a small diameter liquid passage concentric with the rotating shaft, an internal hole consisting of a conical surface and a cylindrical surface connected to the rear end of the conical surface, and the conical surface has a small diameter. The front end of the cylindrical surface is connected to the rear end of the liquid passage, the rear end of the cylindrical surface is closed, and two rows of injection ports (front and rear) penetrating the wall of the rotary shaft are installed in the part of the rotary shaft corresponding to the cylindrical surface in the circle of the rotary shaft. They are arranged at equal intervals in the circumferential direction, the aperture of the rear row nozzles is set larger than the aperture of the front row nozzles, and the number of nozzles in the front row is set to be greater than the number of nozzles in the double row, so the following is done. It has excellent effects.

(イ)回転軸が高速回転している場合、液体通路の前端
から供給された液は内部孔の円錐面と円筒面とで極めて
薄い液膜となり、ついで噴射口から回転軸の半径方向に
高速で噴射され、周りの空気に強く剪断されて粒径の極
めて小さい、かつ回転軸の円周方向に一様分布の噴霧と
なる。
(b) When the rotating shaft is rotating at high speed, the liquid supplied from the front end of the liquid passage forms an extremely thin liquid film on the conical surface and cylindrical surface of the internal hole, and then flows from the injection port at high speed in the radial direction of the rotating shaft. It is injected by the surrounding air and is strongly sheared by the surrounding air, resulting in a spray with extremely small particle size and uniform distribution in the circumferential direction of the rotating shaft.

(ロ)従ってガスタービンの燃料供給装置として使用す
るとガスタービンの燃焼室内では粒径の小さい、円周方
向に均一な流量分布の噴霧が得られるので燃料の蒸発及
び空気との混合性能が向上し、その結果ガスタービンの
燃焼効率、温度分布の均−性及び熱負荷率が著しく向上
する。
(b) Therefore, when used as a fuel supply device for a gas turbine, spray with small particle size and uniform flow rate distribution in the circumferential direction can be obtained in the combustion chamber of the gas turbine, improving fuel evaporation and mixing performance with air. As a result, the combustion efficiency, uniformity of temperature distribution, and heat load factor of the gas turbine are significantly improved.

(ハ)またガスタービンの燃料供給装置として使用した
時タービンロータからの熱伝導等によって回転軸の温度
が高くなり、内部孔の円錐面及び円筒面からの伝熱によ
って燃料の一部が蒸発するような場合でも噴射口101
の後方に位置する噴射口102の大きさを十分大きくで
きるので燃焼室に噴射される燃料流量に脈動、振動の不
具合は全く生じない。
(c) Also, when used as a fuel supply device for a gas turbine, the temperature of the rotating shaft increases due to heat conduction from the turbine rotor, etc., and a portion of the fuel evaporates due to heat transfer from the conical and cylindrical surfaces of the internal hole. Even in such a case, the injection port 101
Since the size of the injection port 102 located at the rear of the combustion chamber can be made sufficiently large, problems such as pulsation and vibration do not occur in the flow rate of fuel injected into the combustion chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例をガスタービンに使用した
場合のガスタービンの部分縦断面図、第2図はこの考案
の第1実施例の縦断側面図、第3図は第2図のIII
−III線断面図、第4図は第2図のI■−IV線断面
図、第5図及び第6図は従来の回転微粒化装置の縦断側
面図、第7図はこの考案及び従来の回転微粒化装置の特
性比較図である。 1・・・・・・回転軸、2・・・・・・液体通路、3・
・・・・・内部孔、3a・・・・・・円錐面、3b・・
・・・・円筒面、101 、102・・・・・・噴射口
Fig. 1 is a partial vertical sectional view of a gas turbine in which an embodiment of this invention is used in a gas turbine, Fig. 2 is a longitudinal sectional side view of the first embodiment of this invention, and Fig. 3 is the same as that shown in Fig. 2. III
-III line sectional view, Figure 4 is the I■-IV line sectional view of Figure 2, Figures 5 and 6 are vertical side views of the conventional rotary atomizer, and Figure 7 is the conventional rotary atomizer. It is a characteristic comparison diagram of a rotary atomization device. 1...Rotating shaft, 2...Liquid passage, 3.
...inner hole, 3a...conical surface, 3b...
...Cylindrical surface, 101, 102...Injection port.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一つの回転軸がその内部に、これと同心の小径の液体通
路と、円錐面及び円錐面の径大の後端に接続する円筒面
とからなる一つの内部孔とを有し、円錐面の径小の前端
部は液体通路の後端と連通し、円筒面の後端は閉鎖され
、円筒面に該当する回転軸の部分が回転軸の壁を貫通す
る前後2列の、円周方向に等間隔に配置された噴射口を
有し、後列の噴射口の口径は前列の噴射口の口径より大
きく設定され、前列の噴射口の数は後列の噴射口の数よ
り多く設定されていることを特徴とする回転微粒化装置
One rotary shaft has an internal hole consisting of a small-diameter liquid passage concentric therewith, a conical surface, and a cylindrical surface connected to the large-diameter rear end of the conical surface. The small-diameter front end communicates with the rear end of the liquid passage, the rear end of the cylindrical surface is closed, and the part of the rotating shaft corresponding to the cylindrical surface penetrates the wall of the rotating shaft in two rows in the circumferential direction. It has injection ports arranged at equal intervals, the diameter of the injection ports in the rear row is set larger than the diameter of the injection ports in the front row, and the number of injection ports in the front row is set to be greater than the number of injection ports in the rear row. A rotary atomization device featuring:
JP14879978U 1978-10-26 1978-10-26 Rotary atomization device Expired JPS5913502Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14879978U JPS5913502Y2 (en) 1978-10-26 1978-10-26 Rotary atomization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14879978U JPS5913502Y2 (en) 1978-10-26 1978-10-26 Rotary atomization device

Publications (2)

Publication Number Publication Date
JPS5564621U JPS5564621U (en) 1980-05-02
JPS5913502Y2 true JPS5913502Y2 (en) 1984-04-21

Family

ID=29131532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14879978U Expired JPS5913502Y2 (en) 1978-10-26 1978-10-26 Rotary atomization device

Country Status (1)

Country Link
JP (1) JPS5913502Y2 (en)

Also Published As

Publication number Publication date
JPS5564621U (en) 1980-05-02

Similar Documents

Publication Publication Date Title
US3667221A (en) Fuel delivery apparatus
US3605405A (en) Carbon elimination and cooling improvement to scroll type combustors
US3512359A (en) Dummy swirl cup combustion chamber
CN102872994B (en) Long-distance air supply mist and smoke spraying machine
JPS5913502Y2 (en) Rotary atomization device
JP3929874B2 (en) High-pressure single-fluid atomizing nozzle for increased output of gas turbines
CN202715498U (en) Remote air supply mist and smoke spraying machine
JPS6232973B2 (en)
CN102872995B (en) Long-distance air supply smoke spraying machine
JPS5825933B2 (en) liquid atomization device
US3556401A (en) Streaming
CN202700696U (en) A long-distance pneumatic conveying fog machine
JPS609543Y2 (en) liquid fuel vaporization burner
GB2310457A (en) Rotary fuel atomiser
JPS58182014A (en) Burner for liquid fuel
JPS58140505A (en) Combustion device for liquid fuel
US1544208A (en) Oil burner
JPS60194215A (en) Air flow spray type rotary burner
JPH0229381Y2 (en)
JPS5941369Y2 (en) Fuel diffusion device in vaporizing burner
JPS6012093B2 (en) atomization device
JPS6026248Y2 (en) liquid fuel combustion equipment
JPH0344980Y2 (en)
JPS636765B2 (en)
JPS6021616Y2 (en) rotary gasification burner