JPS59134737A - Preparation of benzaldehyde and benzyl alcohol - Google Patents

Preparation of benzaldehyde and benzyl alcohol

Info

Publication number
JPS59134737A
JPS59134737A JP58007072A JP707283A JPS59134737A JP S59134737 A JPS59134737 A JP S59134737A JP 58007072 A JP58007072 A JP 58007072A JP 707283 A JP707283 A JP 707283A JP S59134737 A JPS59134737 A JP S59134737A
Authority
JP
Japan
Prior art keywords
reaction
toluene
benzaldehyde
compound
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58007072A
Other languages
Japanese (ja)
Other versions
JPH0434530B2 (en
Inventor
Takao Maki
真木 隆夫
Yoshitake Araki
荒木 良剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP58007072A priority Critical patent/JPS59134737A/en
Publication of JPS59134737A publication Critical patent/JPS59134737A/en
Publication of JPH0434530B2 publication Critical patent/JPH0434530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a ratio of the titled substance to benzoic acid with keeping high catalytic activity, by oxidizing toluene with molecular oxygen in a liquid phase, using an alkali metal compound and a compound of Co, Mn, V, etc. as a catalyst. CONSTITUTION:In preparing a mixture consisting essentially of the titled compound and benzoic acid by oxidizing toluene with molecular oxygen in a liquid phase, the reaction is carried out using (A) an alkali metal compound and (B) a compound of an element selected from Co, Mn, and V as a catalyst. Especially Na benzoate, Na acetate, etc. are preferable as the component A, and an amount of it used is preferably about 100-500ppm calculated as metal based on the reaction system. The component B is used in the form of acetate, naphtenate, acetylacetonato, etc., and its amount used is 0.5-40ppm based on the reaction system in the case of Co. In the reaction, preferably formed water is continuously removed from the reaction system by azeotropic distillation with toluene, etc.

Description

【発明の詳細な説明】 本発明はトルエンを液相において分子状酸素により酸化
し、ベンズアルデヒド、およびベンジルアルコールを製
造する方法に関するものである。ベンズアルデヒドおよ
びベンジルアルコールの製造方法としては、従来、トル
エンを塩素化し、得られる塩素化物を加水分解する方法
が知られている。しかしながらこの方法は、多量の塩素
を必要とし、しかも、生成するベンズアルデヒド等に少
量の有機塩素化合物が残存混在し、精製が困難である欠
点を有している。また、トルエンをタングステン、モリ
ブデン等の化合物触媒の存在下、気相において接触的に
酸化する方法も知られているが−1この方法では炭酸ガ
ス等の燃焼、生成物が多く収率が低い。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing benzaldehyde and benzyl alcohol by oxidizing toluene with molecular oxygen in a liquid phase. As a method for producing benzaldehyde and benzyl alcohol, a method is conventionally known in which toluene is chlorinated and the resulting chlorinated product is hydrolyzed. However, this method requires a large amount of chlorine, and has the disadvantage that small amounts of organic chlorine compounds remain in the produced benzaldehyde and the like, making purification difficult. A method is also known in which toluene is catalytically oxidized in the gas phase in the presence of a compound catalyst such as tungsten or molybdenum.

現在工業的に有用なベンズアルデヒド等の製造方法とし
て認められているのけ、トルエンを液相においてコバル
ト系触媒の存在下分子状酸素により酸化して安息香酸を
製造する際、併産するベンズアルデヒド、ベンジルアル
コールを回収する方法である。一方、最近ベンズアルデ
ヒドおよびベンジルアルコールの需要が増加するにとも
ない、ベンズアルデヒド等の安息香酸に対する併産比率
を増加することがのぞまれている。しかしながら、従来
のコバルト系触媒を用いた技術では、との併産比を増加
の方向で調節することが困難であった。かかる事情から
、本発明者らは、トルエンの液相酸化反応の際に、従来
の単純なコバルト系触媒に替えて、新規な触媒を用いる
ことにより、ベンズアルデヒドおよびベンジルアルコー
ルの安息香酸に対する併産比を高め、市場の要求にこた
えるととを目的として鋭意検討を行なった結果、本発明
に到達したものである。
Currently recognized as an industrially useful method for producing benzaldehyde, etc., when toluene is oxidized in the liquid phase with molecular oxygen in the presence of a cobalt-based catalyst to produce benzoic acid, benzaldehyde and benzyl are co-produced. This is a method of recovering alcohol. On the other hand, as the demand for benzaldehyde and benzyl alcohol increases recently, it is desired to increase the co-production ratio of benzaldehyde and other benzoic acids. However, with conventional technology using cobalt-based catalysts, it has been difficult to adjust the co-production ratio to increase. Under these circumstances, the present inventors used a new catalyst in place of the conventional simple cobalt-based catalyst during the liquid phase oxidation reaction of toluene, thereby improving the co-production ratio of benzaldehyde and benzyl alcohol to benzoic acid. The present invention was developed as a result of extensive research aimed at improving the performance and meeting market demands.

本発明方法の%9とするところは、トルエン金分子状酸
素により液相酸化する際に、触媒として■アルカリ金属
化合物および■コバルト、マンガンおよびバナジウム労
・ら選ばれた一種以上の元素の化合物を使用する改にあ
る。
%9 in the method of the present invention means that when performing liquid phase oxidation with toluene and gold molecular oxygen, an alkali metal compound and a compound of one or more elements selected from cobalt, manganese, and vanadium are used as catalysts. There is a change to use.

従来、コバルト触媒を単独で使用した場合は触媒活性は
高いがさきにのべたように有用寿併産品の併産化が低い
こ七が知られている。また、アルカリ金属のようなその
他の金属の化合物を触媒洗用いた場合、あまりにも活性
が低く、低転化率で反応が停止してし寸い、反応を安定
的に持続させることが困難で実用触媒としては用いるこ
とができなかった。本発明方法はこれらの問題点を解決
し、触媒活性を高く保ちつつ併産品の併産比を高めるこ
とに成功したものである。
Conventionally, it has been known that when a cobalt catalyst is used alone, the catalytic activity is high, but as mentioned above, the co-production of useful products is low. In addition, when compounds of other metals such as alkali metals are used for catalyst washing, the activity is too low and the reaction is on the verge of stopping at a low conversion rate, making it difficult to sustain the reaction stably. It could not be used as a catalyst. The method of the present invention has succeeded in solving these problems and increasing the co-production ratio of co-products while maintaining high catalytic activity.

本発明方法に用いられるアルカリ金属化合物としては、
リチウム、ナトリウム、カリウム、ルビジウムおよびセ
シウムの化合物、特にナトリウム化合物が好ましい。ア
ルカリ金属化合物は反応条件下で少なくとも一部が反応
系に可溶な形態であればどのような形態で用いても良い
が、反応器に対する腐食等を起こさないような形、通常
、安息香酸塩、酢酸塩等の有機酸塩として用いればよい
。あるいは水酸化物、炭酸塩等を反応生成物である安息
香酸の存在するところに添加しても良い。アルカリ金属
化合物の使用量としては、反応系に対し金属として20
〜ユ、θθo ppm程度より好ましくは10θ〜50
0ppm程度が良い。
The alkali metal compounds used in the method of the present invention include:
Preference is given to compounds of lithium, sodium, potassium, rubidium and cesium, especially sodium compounds. The alkali metal compound may be used in any form as long as it is at least partially soluble in the reaction system under the reaction conditions, but it must be in a form that does not cause corrosion to the reactor, usually benzoate. , it may be used as an organic acid salt such as acetate. Alternatively, hydroxide, carbonate, etc. may be added to the reaction product benzoic acid present. The amount of alkali metal compound to be used is 20% as metal in the reaction system.
〜Yu, θθo ppm or so, preferably 10θ~50
Approximately 0 ppm is good.

つぎにコバルト、マンガンおよびバナジウム化合物であ
るが、同様に反応系に可溶または可溶化するような形態
で用いるのが良く、酢酸塩。
Next are cobalt, manganese, and vanadium compounds, which are also preferably used in a form that is soluble or solubilized in the reaction system, such as acetate.

ナフテン酸基、アセチルアセトナート等が用いられる。Naphthenic acid group, acetylacetonate, etc. are used.

使用量は反応系に対しθ、/〜/、000ppm程度、
より好1しくけ例えばコバルトでは0.5〜’l OD
pm程度である。液相酸化反応は通常無済岸で行なわれ
るが、酢酸、安息香酸等の不活性溶媒の存在下で行なっ
てもよい。
The amount used is about θ, / ~ /, 000 ppm, based on the reaction system.
More preferably 1, for example, 0.5~'l OD for cobalt
It is about pm. The liquid phase oxidation reaction is usually carried out in a vacuum, but it may also be carried out in the presence of an inert solvent such as acetic acid or benzoic acid.

反応温度は/ 、? OCないしユ20C1より好まし
くは/SθCないし/デo′cの間で選ばれる。反応圧
力は3 k、q、/antないし20 kq/cr&よ
り好ましくはs kq/ crd iいし/ Ok、q
、、/crd程FWの範囲で選ばれるが、決定的でリニ
ない。
What is the reaction temperature? It is preferably selected between /SθC and /Deo'c rather than OC and U20C1. The reaction pressure is from 3 kq/ant to 20 kq/cr& more preferably from kq/crd/ok,q
,,/crd is selected within the range of FW, but it is not decisive and linear.

トルエンの転化率は通常IO係ないし15係程度が良い
。転化:りが高い場合は、ベンズアルデヒドおよびベン
ジルアルコールの併産比が低下し、また場合により反応
停止現象が観察される。一方、転化率が低い場合は併産
化は増大するものの未反応トルエンの回吸再使用に多大
のエネルギーを要し、経済性が低Fする。
The conversion rate of toluene is usually about IO to 15%. When the conversion rate is high, the co-production ratio of benzaldehyde and benzyl alcohol decreases, and in some cases, a reaction termination phenomenon is observed. On the other hand, when the conversion rate is low, co-production increases, but a large amount of energy is required to recover and reuse unreacted toluene, resulting in low F.

反応時間は、所要の転化率により決定されるが、本発明
方法の場合概して反応速度は大きく、短かい時間で所定
の転化率に到達することができる。
The reaction time is determined by the required conversion rate, but in the case of the method of the present invention, the reaction rate is generally high and the desired conversion rate can be reached in a short time.

反応に際し、アゾビスイソブチロニトリル、ベンズアル
デヒドのような開始剤を併用しても良い。もちろん連続
的に反応を実施する際はこのよう々添加物は必要ない。
During the reaction, an initiator such as azobisisobutyronitrile or benzaldehyde may be used in combination. Of course, such additives are not required when the reaction is carried out continuously.

酸化に用いるガスは空気をその+ま使用するとともでき
るが、また酸素濃度を適当に調節して用いても差しつか
えない。反応系の気相部に爆発混合物が生成しないよう
な配慮が必要である。トルエンの液相酸化反応では、し
げしげ過酸化物が蓄積し、反応自体の安全性あるいは回
収精製工程において問題をひきおこす事があるが、本発
明方法による場合は過酸化物の蓄積は少なく、この点で
も本方法は優れている。
Air can be used as the gas for oxidation, but the oxygen concentration may also be appropriately adjusted. Care must be taken to prevent the formation of explosive mixtures in the gas phase of the reaction system. In the liquid phase oxidation reaction of toluene, peroxide accumulates, which can cause problems in the safety of the reaction itself or in the recovery and purification process, but in the method of the present invention, the accumulation of peroxide is small, and this point is But this method is superior.

反応に際しては、生成する水を反応系から連続的に除去
するように行なうことがのぞましい。
During the reaction, it is preferable to carry out the reaction so that the produced water is continuously removed from the reaction system.

これは、例えばトルエンとの共沸法等により容易に実施
することができる。
This can be easily carried out, for example, by an azeotropic method with toluene.

次に実施例によって本発明を更に具体的に説明するが、
本発明はその要旨を越えない限り、以下の実施例に制約
されるものでは々い。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to the following examples unless the gist of the invention is exceeded.

実施例1 100yeオートクレーブにトルエンタOf。Example 1 Toluenta in a 100ye autoclave.

アゾビスイソブチロニトリルθ、o t r、および触
fIYとして安息香酸ナトリウムをナトリウムとして全
系にtj [、2θo ppm、ナフテン酸コバルトを
コバルトとして全系に対しs ppm添加し、/gO”
Qに昇温し1反応圧力10kg/atにおいて堺拌しな
がら空気を吹込んだ。酸素吸収は速やかに開始し、安定
した状態が持続した。一時間後反応を停止し、生成物を
分析し以下の結果を得た。
Azobisisobutyronitrile θ, o tr, and sodium benzoate as sodium to the whole system as sodium tj [, 2θo ppm, cobalt naphthenate as cobalt s ppm to the whole system, /gO”
The temperature was raised to Q, and air was blown into the reactor while stirring at a reaction pressure of 10 kg/at. Oxygen absorption started quickly and remained stable. After one hour, the reaction was stopped and the product was analyzed, giving the following results.

トルエン転化率     /コ、左Aq6ベンズアルデ
ヒド収率       β、/クチベンジルアルコール
収率      /、110%安息香酸収率     
  g、33係ベンズアルデヒド士ベンジルアルコール
□モル比=θ、lI/ 41 安息香酸 実施例2〜6 * 使用した化合物は、NaおよびCOについては実施
例1と同様であり、K、 Mn、 Vについてはそれぞ
れ安息香酸カリウム、ナフテン酸マンガン、バナジルナ
フチネートである。
Toluene conversion rate /, left Aq6 benzaldehyde yield β, /cutibenzyl alcohol yield /, 110% benzoic acid yield
g, 33 benzaldehyde benzyl alcohol molar ratio = θ, lI/41 Benzoic acid Examples 2 to 6 * The compounds used were the same as in Example 1 for Na and CO, and for K, Mn, and V. These are potassium benzoate, manganese naphthenate, and vanadyl naphthinate, respectively.

参考例 公知のトルエンの液相酸化方法においては触7媒として
コバルト化合物をコバルトとして全系?/ (zq、t
x)) 実施例1と同一条件で但し触媒としてナフテン酸コバル
トをコバルトとして全系にλθo ppm添加し、反応
を行なった。1時間lO分後反応を中止し、生成物を分
析した結果以下の結果を得た。
Reference Example: In the known liquid phase oxidation method of toluene, a cobalt compound is used as a catalyst and the whole system is oxidized as cobalt. / (zq,t
x)) The reaction was carried out under the same conditions as in Example 1, except that λθo ppm of cobalt naphthenate was added to the entire system as a catalyst. After 1 hour and 10 minutes, the reaction was stopped and the product was analyzed, and the following results were obtained.

トルエン転化率     / 2./ /%ベンズアル
デヒド収率       /、4 / %ベンジルアル
コール収率      、0.3g%安息香酸収率  
     9.4’7チ比較例/ 実施例/と同一の条件で触亦をナフテン酸コバルトのみ
でコバルトとして全系に対しt ppm使用するように
変更し反応を行なった。
Toluene conversion rate / 2. / /% benzaldehyde yield /, 4 /% benzyl alcohol yield, 0.3g% benzoic acid yield
A reaction was carried out under the same conditions as in Comparative Example/Example/9.4'7, except that the catalyst was changed to only cobalt naphthenate, and the amount of cobalt was t ppm based on the entire system.

酸素吸収が見られず反応が進行しかかった。No oxygen absorption was observed and the reaction was about to proceed.

比較例コ 実施例/と同一の条件で触I/Ii+−を安息香酸ナト
リウムのみでナトリウムとして全系に対し一〇θppm
使用するように変更し反応を行なった。
Comparative Example I/Ii+- was treated under the same conditions as Example/with only sodium benzoate at a concentration of 10 θppm based on the total system.
I changed it to use and performed the reaction.

長い誘導期ののち酸素吸収が開始したが、吸収の状況は
不安定であった。ダ時間後反応が停止してしまったので
生成物を分析し以下の結果を得た。
Oxygen absorption started after a long induction period, but the absorption situation was unstable. After several hours, the reaction stopped, so the product was analyzed and the following results were obtained.

トルエン転化率      g、’st%ベンズアルデ
ヒド収率       、2.70%ベンジルアルコー
ル収Hi、gtaty安息香酸収率       グ、
3乙ヂ反応の状況が不安定であり小ルエンの転化率が低
いところで反応が停止してしまうため、実用触媒として
の使用は困難であると判断される。
Toluene conversion rate g, 'st% benzaldehyde yield, 2.70% benzyl alcohol yield Hi, gtaty benzoic acid yield g,
3. Because the reaction conditions are unstable and the reaction stops when the conversion rate of small toluene is low, it is judged that it is difficult to use it as a practical catalyst.

比較例3 実施例Sと同一の条件で触媒成分からす) IJウムを
除いて反応を行々つた。/時間sO分後反応が停止して
しまったので生成吻合分析したところ以下の結果余得た
Comparative Example 3 The reaction was carried out under the same conditions as in Example S except that the catalyst component (glass) was removed. Since the reaction stopped after /hour sO minutes, the anastomosis produced was analyzed and the following results were obtained.

トルエン転化率      グ、oq礪ベンズアルデヒ
ド収率       ハ、tAq6ペンジルアルコール
収”4      0.33%安息香酸収率     
  ハク4(%なお反応液には多量の不溶成分の析出が
見られた。
Toluene conversion rate g, oq benzaldehyde yield c, tAq6 pendyl alcohol yield 4 0.33% benzoic acid yield
Haku 4 (%) A large amount of insoluble components were observed to precipitate in the reaction solution.

出 願 人  三菱化戒工業株式会社 代 理 人  弁理士 長谷用   −ほか/名Sender: Mitsubishi Kakai Industries, Ltd. Representative Patent Attorney Hase - Others/Names

Claims (1)

【特許請求の範囲】[Claims] (1)トルエンを液相において分子状酸素によシ酸化し
、ベンズアルデヒド、ベンジルアルコールおよび安息香
酸を主とする混合物を製造するに際し、触媒として■ア
ルカリ金属化合物おヨヒ■コバルト、マンガンおよびバ
ナジウムから選ばれた一種以上の元素の化合物を使用す
ることを特徴とする、ベンズアルデヒドおよびベンジル
アルコールの製造方法。
(1) When toluene is oxidized with molecular oxygen in the liquid phase to produce a mixture mainly consisting of benzaldehyde, benzyl alcohol and benzoic acid, the catalyst used is an alkali metal compound selected from cobalt, manganese and vanadium. A method for producing benzaldehyde and benzyl alcohol, characterized by using a compound of one or more elements.
JP58007072A 1983-01-19 1983-01-19 Preparation of benzaldehyde and benzyl alcohol Granted JPS59134737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58007072A JPS59134737A (en) 1983-01-19 1983-01-19 Preparation of benzaldehyde and benzyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58007072A JPS59134737A (en) 1983-01-19 1983-01-19 Preparation of benzaldehyde and benzyl alcohol

Publications (2)

Publication Number Publication Date
JPS59134737A true JPS59134737A (en) 1984-08-02
JPH0434530B2 JPH0434530B2 (en) 1992-06-08

Family

ID=11655870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58007072A Granted JPS59134737A (en) 1983-01-19 1983-01-19 Preparation of benzaldehyde and benzyl alcohol

Country Status (1)

Country Link
JP (1) JPS59134737A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145572A (en) * 1974-10-16 1976-04-19 Hitachi Ltd BUNKOKODOKEI
JPS535132A (en) * 1976-07-05 1978-01-18 Mitsubishi Chem Ind Ltd Preparation of benzaldehyde
JPS55145637A (en) * 1979-05-02 1980-11-13 Teijin Hercules Kk Preparation of aromatic carboxylic acid or its methyl ester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145572A (en) * 1974-10-16 1976-04-19 Hitachi Ltd BUNKOKODOKEI
JPS535132A (en) * 1976-07-05 1978-01-18 Mitsubishi Chem Ind Ltd Preparation of benzaldehyde
JPS55145637A (en) * 1979-05-02 1980-11-13 Teijin Hercules Kk Preparation of aromatic carboxylic acid or its methyl ester

Also Published As

Publication number Publication date
JPH0434530B2 (en) 1992-06-08

Similar Documents

Publication Publication Date Title
US5221800A (en) One step air oxidation of cyclohexane to produce adipic acid
US4560793A (en) Process for producing terephthalic acid
US20020198406A1 (en) Two stage process for the production of unsaturated carboxylic acids by oxidation of lower unsaturated hydrocarbons
JPS5872529A (en) Olefin hydroxylation
EP1551787A1 (en) Method of producing trimellitic acid
JPH0616655A (en) Production of trimellitic anhydride
JP4788022B2 (en) Process for producing aromatic polycarboxylic acid
JPS59134737A (en) Preparation of benzaldehyde and benzyl alcohol
JP3715492B2 (en) Improved process for the production of benzaldehyde by catalytic liquid phase air oxidation of toluene
JP2008534577A (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
US4835308A (en) Process for producing trimellitic acid
US4564703A (en) Process for preparing methacrylic acid
CS209932B2 (en) Method of making the phenylglyxole acid
HU177337B (en) Process for producing terephtaloic acid
JPS603057B2 (en) Method for producing P-nitrobenzoic acid
JP2711517B2 (en) Method for producing 6-alkyl-2-naphthalenecarboxylic acid and 6-isopropyl-2-naphthalenecarboxylic acid
JPH01160943A (en) Production of naphthalenedicarboxylic acid
JP2000290235A (en) Production of 3-nitro-2-methylbenzoic acid
JPH03181436A (en) Nitrification of polyoxypropyleneglycol
JP2697787B2 (en) Method for producing trimellitic acid
KR960003797B1 (en) Process for preparing aceticacid by methanol carbonylation
JPS6214534B2 (en)
JP2000169420A (en) Production of acrylic acid
JP3137200B2 (en) Phenol production catalyst and phenol production method
KR100966141B1 (en) Catalyst and process for preparing carboxylic acid esters