JPS59134687A - Multi-joint mechanism - Google Patents

Multi-joint mechanism

Info

Publication number
JPS59134687A
JPS59134687A JP880983A JP880983A JPS59134687A JP S59134687 A JPS59134687 A JP S59134687A JP 880983 A JP880983 A JP 880983A JP 880983 A JP880983 A JP 880983A JP S59134687 A JPS59134687 A JP S59134687A
Authority
JP
Japan
Prior art keywords
unit
joint
operating string
shaped universal
joint mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP880983A
Other languages
Japanese (ja)
Inventor
林 勝二郎
吉川 金春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP880983A priority Critical patent/JPS59134687A/en
Publication of JPS59134687A publication Critical patent/JPS59134687A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はロボット等の棒状多関節機構に関し、詳しくは
へびのを椎の如く巻回運動、蛇行運動が任意の方向に出
来るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rod-like multi-joint mechanism such as a robot, and more specifically, it is capable of winding motion and meandering motion in any direction like a vertebra.

近年、溶接、塗装、組立等作業用ロボットの発達は目覚
しいものがある。しかしながら、それらの作業用ロボッ
トはおおむね平面上の作業しh\出来ないものであり、
危険な高所作業や凹凸面、急斜面での作業や狭い所での
作業はごく一部を除きすべて人力に頼っているのが実情
である。
In recent years, the development of robots for tasks such as welding, painting, and assembly has been remarkable. However, these work robots are generally unable to work on a flat surface.
The reality is that all but a few tasks, such as dangerous work at heights, work on uneven surfaces, steep slopes, and work in narrow spaces, rely on human power.

従って人身事故もしばしば起っており、そのような危険
性を伴う作業こそロボットにやらせるべきだとの社会的
要望が強いにもかかわらず、高所作業等の出来るロボッ
トはなかなか出現しな0のである。
As a result, accidents resulting in injury or death often occur, and despite strong social demand for robots to perform such dangerous work, robots that can perform tasks such as work at heights have not yet appeared. be.

本発明はかかる社会的要望に応えるため、高所作業等の
出来るロボットを作成するために必要な、へびのを椎の
如く巻回運動、蛇行運動が任意の方向に出来る、ロボッ
ト等の棒状多関節機構を1足供することを目的とする。
In order to meet such social demands, the present invention has developed a rod-shaped robot capable of winding and meandering motions in any direction, like a vertebrae, which is necessary to create a robot capable of working at heights, etc. The purpose is to provide one pair of joint mechanisms.

次に本発明による多関節i構の一実施例を図面に基づい
て詳細に説明する。
Next, an embodiment of the multi-joint i-structure according to the present invention will be described in detail with reference to the drawings.

まず、第1図は本発明による多関節機構の中心線縦断面
説明図であり、第2図は横断面説明図である。
First, FIG. 1 is a longitudinal cross-sectional view along the center line of the multi-joint mechanism according to the present invention, and FIG. 2 is a cross-sectional view.

中央部の一面に四部1a1他面に凸部1bを有する円板
状自在継手1が数個(図では5個)互に嵌合して連なっ
ており、ユニットA部を形成している。前記凹凸部1a
11bの中央部には操作ひも3を通す通し孔4が明けて
あり管状に連なっている。
Several disc-shaped universal joints 1 (five in the figure) having four parts 1a1 on one surface of the central part and a convex part 1b on the other surface are connected to each other to form a unit A part. The uneven portion 1a
A through hole 4 through which the operating string 3 is passed is formed in the center of 11b and is continuous in a tubular shape.

又、円板状自在継手1の中心に対して相対する同心円上
には復帰ばね2.2.2′、2′があり円板状自在継手
1を互に連結している。同じく円板状自在継手1の中心
に対して相対する同心円上には操作ひも3.3′を通す
小穴6.6.6′、6−があり操作ひ゛も3.3′が通
っている。操作ひも3の両端はユニットA部の一端の円
板状自在継手の小穴部分に止め具7.7によって固着さ
れている。操作ひも3は途中から通し孔4の連結されて
出来る管の中を通り、回動型滑車A5によって相互引張
操作が出来るように掛は合わされている。回動型滑車A
5を矢印方向に廻すとユニットA部の5枚の円板状自在
継手1の間にある4対の復帰ばね2が順次伸縮して、ユ
ニットA部を上下に湾曲させることになる。又、復帰ば
ね2.2と直角に交わる方向には復帰ばね2′、2′と
操作ひも3′があり、操作ひも3−は操作ひも3と同じ
構造で回動型滑車A5−に掛は合わされている。
Further, there are return springs 2, 2, 2', 2' on concentric circles facing the center of the disc-shaped universal joint 1, and connect the disc-shaped universal joint 1 to each other. Similarly, on a concentric circle opposite to the center of the disc-shaped universal joint 1, there are small holes 6.6.6', 6- through which the operating string 3.3' passes, and the operating string 3.3' passes therethrough. Both ends of the operating string 3 are fixed to the small holes of the disc-shaped universal joint at one end of the unit A portion by fasteners 7.7. The operating string 3 passes through a tube formed by connecting through holes 4 from the middle, and is hooked together so that mutual pulling operation can be performed by a rotary pulley A5. Rotating pulley A
5 in the direction of the arrow, the four pairs of return springs 2 located between the five disc-shaped universal joints 1 of the unit A section expand and contract in sequence, causing the unit A section to curve up and down. Further, in the direction perpendicular to the return spring 2.2, there are return springs 2', 2' and an operating string 3', and the operating string 3- has the same structure as the operating string 3 and is not hung on the rotary pulley A5-. It is matched.

回動型滑車A5−を点線の矢印方向に廻すとユニットA
部の5枚の円板状自在継手の間にある4対の復帰はね2
−が順次伸縮して、ユニットA部を左右に湾曲させるこ
とになる。又、一対の滑車A5とA5−を同時に1対1
の割合で廻すことによりユニットA部を45度の斜め角
度に湾曲させることが出来る。更に一対の滑車A5とA
5”を同時に2対1の割合で廻すことによりユニットA
部を30痩あるいは60度の斜め角度に湾曲させること
が出来る。このように一対の滑車△5どA5′の廻す割
合を変えることにより、ユニットA部を任意の方向に湾
曲させることが出来る。又、滑車A5とA5−をもとの
位置に戻すと復帰はねめ働きによりユニットA部はまっ
すぐになる。
When turning the rotary pulley A5- in the direction of the dotted arrow, unit A
4 pairs of return springs 2 between the 5 disk-shaped universal joints
- expands and contracts in sequence, causing the unit A section to curve left and right. Also, a pair of pulleys A5 and A5- are connected one to one at the same time.
By turning at a rate of , the unit A section can be bent at an oblique angle of 45 degrees. Furthermore, a pair of pulleys A5 and A
5” at the same time at a ratio of 2:1.
The part can be curved to a diagonal angle of 30 degrees or 60 degrees. By changing the rotation rate of the pair of pulleys Δ5 and A5' in this manner, the unit A section can be curved in any direction. Furthermore, when the pulleys A5 and A5- are returned to their original positions, the unit A section becomes straight due to the action of the return screw.

尚、一対の滑車A5とA5′は必ずしも滑車でなくとも
回動レバー等相互引張操作の出来るものならなんでもよ
い。又、復帰ばねは2.2−の2対であるが、これを3
対、4対とした方が精度を高めることが出来るとも考え
られる。要は同心円上の相対する所にあることが条件と
なる。又、円板状自在継手1は必ずしも円板でなくとも
よく、角板その他の形状であっても差しつかえない。
Incidentally, the pair of pulleys A5 and A5' are not necessarily pulleys, but may be of any type, such as rotating levers, which can be operated in tension with each other. Also, the return springs are two pairs of 2.2-, but these are 3 pairs.
It is also considered that the accuracy can be improved by using four pairs. The key is that they must be located at opposite locations on concentric circles. Further, the disc-shaped universal joint 1 does not necessarily have to be a disc, and may be a square plate or other shape.

それから図面では1ユニツトが5個の板状自在継手より
構成されているが、実際には6ないし8個が適当である
と考えられる。
Furthermore, in the drawings, one unit is composed of five plate-shaped universal joints, but in reality, six to eight joints are considered appropriate.

次に、12718部について説明すると構造はユニット
A部と全く同じものであり、一対の滑車B5と85”を
矢印方向と点線の矢印方向にいろいろな比率で廻すこと
により、任意の方向に湾曲させることが出来る。
Next, let us explain about part 12718. Its structure is exactly the same as part A, and it can be bent in any direction by turning a pair of pulleys B5 and 85" at various ratios in the direction of the arrow and in the direction of the dotted line. I can do it.

又、ユニットA部と12718部との境界は復帰ばねで
はなく、固定棒6によって固定されている。
Further, the boundary between the unit A part and the 12718 part is fixed by a fixing rod 6 instead of a return spring.

従ってユニットA部の動作が12718部に伝達される
ことはなく、12718部の動作がユニットA部に伝達
されることもない。つまり、それぞれ独立した動作をす
ることとなる。従って一対の滑車A5、A5 ′ともう
一対の滑車B5.85′を同じ割合で同じ方向に廻せば
ユニットA部と12718部は巻回運動をすることにな
り、逆の方向に廻せばユニットA部と12718部は蛇
行運動をすることになる。尚、ユニットA部と1271
8部との境界は図面のような構造でな(とも、要するに
固定構造により連結されていればよいのである。
Therefore, the operation of the unit A section is not transmitted to the 12718 section, and the operation of the 12718 section is not transmitted to the unit A section. In other words, they each operate independently. Therefore, if you turn a pair of pulleys A5, A5' and another pair of pulleys B5.85' at the same rate and in the same direction, units A and 12718 will perform a winding motion, and if you turn them in the opposite direction, unit A will move. The parts 12,718 and 12718 will move in a meandering motion. In addition, unit A section and 1271
The boundary with part 8 does not have to have a structure as shown in the drawing (in short, it is sufficient if it is connected by a fixed structure).

次にユニットC部について説明すると、ユニットA部、
12718部と全く同じ構造となっており、一対の滑車
C5とC5−の操作によって任意の方向に独立した湾曲
運動をすることが出来る。
Next, to explain unit C section, unit A section,
It has exactly the same structure as the 12718 part, and can perform independent bending movements in any direction by operating a pair of pulleys C5 and C5-.

又、12718部とユニットC部との連結部もユニット
A?Pと12718部との連結部と全く同じ固定構造で
ある。
Also, is the connection between section 12718 and unit C also unit A? It has exactly the same fixed structure as the connecting part between P and 12718 parts.

以下、ユニット0部、E部・・・・・・・・・・・・と
任意の数のユニット部を形成することが出来る。
Hereinafter, any number of unit parts such as unit 0 part, E part, etc. can be formed.

1ユニツトの湾曲可能角度は約90度であるがら、4ユ
ニツトで360度つまり1回転の巻回運動をすることが
出来る。
Although the bendable angle of one unit is approximately 90 degrees, four units can perform a winding motion of 360 degrees, that is, one rotation.

又、1ユニツトずつ逆の方向に湾曲させるとこまかい蛇
行運動をすることとなり、2ユニット単位で逆の方向に
湾曲させると大きい蛇行運動を行うことが出来る。
Further, if each unit is bent in the opposite direction, a fine meandering motion will be made, and if two units are made to be bent in the opposite direction, a large meandering motion will be made.

更に1ユニツトずつ方向を変えながら内側に湾曲させて
いけば、へびが木や鉄塔に登ったり降りたりすることが
出来る螺旋運動も可能となる。
Furthermore, by bending each unit inward while changing its direction, it becomes possible to create spiral movements that allow snakes to climb up and down trees and steel towers.

実際のへびのを椎は非常に多数のを椎骨つまり自在継手
よりなり立っているものであるから色々複雑な運動をす
ることが出来る。
An actual snake's vertebrae are made up of a large number of vertebrae, or universal joints, so they can perform a variety of complex movements.

本発明による多関節機構を用いてへびと同じような運動
を行わせるためには、少(とも拾数ユニ・  ットを必
要とする。本発明は操作ひもによる筋肉II造を用いて
いるために、そのようなことはほとんど不可能であるが
、少くともへびの首の部分に相当する運動を行うことは
可能である。又、本発明による多関節機構の原理を用い
て操作ひもに代わるべき優れた筋肉構造を用いるならば
、へびの動作を真似ることが出来る道理である。
In order to perform movements similar to those of a snake using the multi-joint mechanism according to the present invention, a small number of units are required. Although it is almost impossible to do such a thing, it is possible to at least perform movements equivalent to the neck of a snake.Also, using the principle of the multi-joint mechanism according to the present invention, it is possible to perform a movement that is equivalent to the neck of a snake. If you use a good muscle structure, you can imitate the movements of a snake.

次にA5、A5′、B5、B5−1C5、C5′等数対
の滑車の操作であるが、−これは図示はしていないが複
数のモーターと、そのモーターを制御する操作ボックス
を用いることで解決出来る。
Next is the operation of the equal number pairs of pulleys A5, A5', B5, B5-1C5, C5' - although this is not shown, multiple motors and an operation box to control the motors are used. It can be solved with

該操作ボックスは電算機を内蔵するものであることが望
ましいが、手動操作のものも考えられる。
It is preferable that the operation box has a built-in computer, but a manually operated one is also conceivable.

しかし、その機構は本発明の範囲外であるので説明を省
略する。
However, since the mechanism is outside the scope of the present invention, a description thereof will be omitted.

第3図は本発明による多関節機構の蛇行運動を分りやす
く図示した模型説明図である。
FIG. 3 is an explanatory model diagram illustrating the meandering motion of the multi-joint mechanism according to the present invention in an easy-to-understand manner.

第4図と第5図は本発明による多関節機構に用いられる
板状自在継手の部分拡大縦断面図である。
4 and 5 are partially enlarged vertical cross-sectional views of a plate-like universal joint used in the multi-joint mechanism according to the present invention.

第4図は金属製の場合であり、第5図は強化プラスチッ
ク等弾力性のある材料を用いた場合である。
FIG. 4 shows the case of using metal, and FIG. 5 shows the case of using elastic material such as reinforced plastic.

板状自在継手1の一面にある四部1aにもう一つの板状
自在継手1の凸部1bが嵌合した形をなしており、その
接触面は互に球面状をなしているので、容易に任意の方
向に少しずつ折り曲げることが出来る。これがいくつか
連結されていれば相当な角度湾曲出来ることになる。尚
、第4図は金属性であるので四部の入口に向けて多少の
余裕が作っである。又中心部は操作ひもの通し孔4とな
っている。これは−見簡単に外れそうに見えるが、板状
自在継手1は互に復帰ばね2.2.2′、2−によって
連結されており引張作用が働いているので容易に外れる
ことはない。又、第5図の方は強化プラスチック等弾力
性のある材料を用いた場合であり、凸部1bを圧力によ
って凹部1aに押し込んであるので容易なことでは外れ
ない。
The four parts 1a on one side of the plate-shaped universal joint 1 are fitted with the convex part 1b of another plate-shaped universal joint 1, and their contact surfaces are spherical, so it is easy to It can be bent little by little in any direction. If several of these are connected, it will be possible to bend a considerable angle. In addition, since the one shown in FIG. 4 is made of metal, some allowance is made toward the entrance of the fourth part. Also, the center part is a hole 4 through which an operating string is passed. Although it looks like it will easily come off, the plate-shaped universal joint 1 is connected to each other by the return springs 2, 2, 2', 2-, and a tensile action is applied, so that it will not come off easily. Moreover, the case shown in FIG. 5 is a case where a resilient material such as reinforced plastic is used, and since the convex part 1b is pushed into the concave part 1a by pressure, it cannot be easily removed.

尚、図示はしていないが凹部1aと凸部1bの接触面に
テフロン等の緩衝材を嵌入させておけば一層スムーズに
動く自在継手が出来ることは自明の理である。
Although not shown in the drawings, it is obvious that if a buffer material such as Teflon is inserted into the contact surface between the concave portion 1a and the convex portion 1b, a universal joint that moves more smoothly can be obtained.

更に図示はしていないが、本発明による多関節機構を実
用化する場合には内部が見えないよう、へびの皮膚に相
当づ−る蛇腹管により被覆して、合わせて防塵、防湿等
の配慮を行うことは言う迄もない。
Furthermore, although not shown in the drawings, when the multi-joint mechanism of the present invention is put to practical use, it is covered with a bellows tube similar to the skin of a snake so that the inside cannot be seen, and considerations such as dustproofing and moistureproofing are also taken. Needless to say, we do this.

以上説明した如く、本発明による多関節機構を用いるこ
とにより、今迄はとんど出現していない、危険性を伴う
高所作業や、凹凸面、急斜面での作業や狭い所での作業
の出来る作業用ロボットの基礎を作ることが可能となる
As explained above, by using the multi-joint mechanism of the present invention, it is possible to perform dangerous work at heights, work on uneven surfaces, steep slopes, and work in narrow spaces, which have not occurred until now. This makes it possible to create the basis for a work robot that can be developed.

又、竜や蛇の面白いおもちゃを提供することも出来る。We can also provide interesting dragon and snake toys.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による多関節機構の中心線縦断面説明図
であり、第2図は横断面説明図である。 第3図は本発明による多関節機構の蛇行運動を示す模型
説明図であり、第4図と第5図は板状自在継手の部分拡
大縦断面図である。 図において 1 は板状自在継手 1aは板状自在継手の凹部 11]は板状自在継手の凸部 2 は復帰はね 3 は操作ひも 4 は操作ひもの通し穴 5 は滑車 6 は固定構造        である。
FIG. 1 is an explanatory centerline vertical cross-sectional view of the multi-joint mechanism according to the present invention, and FIG. 2 is a cross-sectional explanatory view. FIG. 3 is a model explanatory view showing the meandering motion of the multi-joint mechanism according to the present invention, and FIGS. 4 and 5 are partially enlarged longitudinal sectional views of the plate-shaped universal joint. In the figure, 1 is a plate-shaped universal joint 1a is a concave portion of the plate-shaped universal joint 11 is a convex portion of the plate-shaped universal joint 2 is a return spring 3 is an operating string 4 is a through hole for the operating string 5 is a pulley 6 is a fixed structure. be.

Claims (1)

【特許請求の範囲】[Claims] ロボット等の棒状多riJ節msに於て、−面に凹部、
他面に凸部を中央部に形成して互に嵌合すると共に相対
する同心円上で復帰ばねと操作ひもによって連結される
数個の板状自在継手により1ユニツトを構成し、前記凹
凸部の中央部に前記操作ひもの通し穴を形成すると共に
、前記操作ひもは前記ユニットの一端の板状自在継手の
相対する同心円上に固着されて相互引張操作が可能にな
るよう構成されており、固定構造により連結された複数
の前記ユニットより成ることを特徴とする多関節機構。
In the rod-shaped multi-riJ joint ms of robots, etc., there is a concave part on the - side,
One unit is made up of several plate-shaped universal joints that are formed with a convex part in the center on the other surface and are fitted into each other and are connected on opposing concentric circles by return springs and operating strings. A through hole for the operating string is formed in the center, and the operating string is fixed on opposing concentric circles of the plate-shaped universal joint at one end of the unit to enable mutual pulling operation, and the operating string is fixed. A multi-joint mechanism comprising a plurality of the units structurally connected.
JP880983A 1983-01-24 1983-01-24 Multi-joint mechanism Pending JPS59134687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP880983A JPS59134687A (en) 1983-01-24 1983-01-24 Multi-joint mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP880983A JPS59134687A (en) 1983-01-24 1983-01-24 Multi-joint mechanism

Publications (1)

Publication Number Publication Date
JPS59134687A true JPS59134687A (en) 1984-08-02

Family

ID=11703158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP880983A Pending JPS59134687A (en) 1983-01-24 1983-01-24 Multi-joint mechanism

Country Status (1)

Country Link
JP (1) JPS59134687A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150794A (en) * 1984-08-14 1986-03-13 三菱重工業株式会社 Multi-joint arm
WO1989002350A1 (en) * 1987-09-09 1989-03-23 Kabushiki Kaisha Komatsu Seisakusho Flexible arm robot
WO2002100608A1 (en) * 2001-06-13 2002-12-19 Oliver Crispin Robotics Limited Link assembly for a snake like robot arm
JP2007091174A (en) * 2005-09-30 2007-04-12 Press Kogyo Co Ltd Sash for automobile window
JP2010253584A (en) * 2009-04-22 2010-11-11 Ihi Corp Gripping device
US8205522B2 (en) 2001-06-13 2012-06-26 Oliver Crispin Robotics Limited Link assembly with defined boundaries for a snake like robot arm
US8219246B2 (en) 2001-06-13 2012-07-10 Oliver Crispin Robotics Limited System and method for controlling a robotic arm
WO2017006373A1 (en) * 2015-07-09 2017-01-12 川崎重工業株式会社 Joint for robot arm, and surgical instrument
JP2020189499A (en) * 2019-05-17 2020-11-26 国立大学法人東北大学 Surface circulation apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563193A (en) * 1979-03-16 1981-01-13 Robotgruppen Hb Flexible arm

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563193A (en) * 1979-03-16 1981-01-13 Robotgruppen Hb Flexible arm

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451315B2 (en) * 1984-08-14 1992-08-18 Mitsubishi Heavy Ind Ltd
JPS6150794A (en) * 1984-08-14 1986-03-13 三菱重工業株式会社 Multi-joint arm
WO1989002350A1 (en) * 1987-09-09 1989-03-23 Kabushiki Kaisha Komatsu Seisakusho Flexible arm robot
US5174168A (en) * 1987-09-09 1992-12-29 Kabushiki Kaisha Komatsu Seisakusho Flexible robot arm
US8219246B2 (en) 2001-06-13 2012-07-10 Oliver Crispin Robotics Limited System and method for controlling a robotic arm
WO2002100608A1 (en) * 2001-06-13 2002-12-19 Oliver Crispin Robotics Limited Link assembly for a snake like robot arm
US8205522B2 (en) 2001-06-13 2012-06-26 Oliver Crispin Robotics Limited Link assembly with defined boundaries for a snake like robot arm
JP2007091174A (en) * 2005-09-30 2007-04-12 Press Kogyo Co Ltd Sash for automobile window
JP2010253584A (en) * 2009-04-22 2010-11-11 Ihi Corp Gripping device
WO2017006373A1 (en) * 2015-07-09 2017-01-12 川崎重工業株式会社 Joint for robot arm, and surgical instrument
CN107530888A (en) * 2015-07-09 2018-01-02 川崎重工业株式会社 The joint of manipulator arm and surgical instruments
JPWO2017006373A1 (en) * 2015-07-09 2018-04-19 川崎重工業株式会社 Robot arm joints and surgical equipment
US10369707B2 (en) 2015-07-09 2019-08-06 Kawasaki Jukogyo Kabushiki Kaisha Joint of robot arm and surgical instrument
CN107530888B (en) * 2015-07-09 2020-11-27 川崎重工业株式会社 Joint of manipulator arm and surgical instrument
JP2020189499A (en) * 2019-05-17 2020-11-26 国立大学法人東北大学 Surface circulation apparatus

Similar Documents

Publication Publication Date Title
US4683773A (en) Robotic device
Rozen-Levy et al. The design and development of branch bot: a branch-crawling, caterpillar-inspired, soft robot
Dowling Limbless locomotion: learning to crawl with a snake robot
Silver On the equivalence of Lagrangian and Newton-Euler dynamics for manipulators
Tietz et al. Tetraspine: Robust terrain handling on a tensegrity robot using central pattern generators
US7047835B2 (en) Articulated bending mechanism for legged mobile robot and the legged mobile robot
McAree et al. An explanation of never-special assembly changing motions for 3–3 parallel manipulators
JPS59134687A (en) Multi-joint mechanism
Lumelsky Sensing, intelligence, motion: how robots and humans move in an unstructured world
Furet et al. Kinetostatic analysis and actuation strategy of a planar tensegrity 2-X manipulator
CN112936287B (en) Flexible robot control method and device based on dynamics iterative learning
JPS59110588A (en) Robot limb
CN108583720A (en) Four-footed bionic robot with eight-rod metamorphic mechanism at waist and driving method
Liu et al. A cable length invariant robotic tail using a circular shape universal joint mechanism
Merlet Geometrical determination of the workspace of a constrained parallel manipulator
Martínez-García et al. Robot fish caudal propulsive mechanisms: A mini-review
Gravagne et al. Kinematics for constrained continuum robots using wavelet decomposition
US4927402A (en) Reconfigurable loop apparatus
KR100909457B1 (en) Modular walking robot leg with variable degrees of freedom
Hwang et al. Translational joints in flexible multibody dynamics
Dalu et al. Design and development of modular snake robot and implementation of locomotive gaits
Kanayama et al. It's time to make mobile robots programmable
Lumelsky Continuous robot motion planning in unknown environment
Ko et al. An approach to robot motion planning for time-varying obstacle avoidance using the view-time concept
Waarsing et al. Introducing robots into a human-centred environment-the behaviour-based approach