JPS5913462B2 - Type 2 anhydrous gypsum hardening material - Google Patents

Type 2 anhydrous gypsum hardening material

Info

Publication number
JPS5913462B2
JPS5913462B2 JP54173596A JP17359679A JPS5913462B2 JP S5913462 B2 JPS5913462 B2 JP S5913462B2 JP 54173596 A JP54173596 A JP 54173596A JP 17359679 A JP17359679 A JP 17359679A JP S5913462 B2 JPS5913462 B2 JP S5913462B2
Authority
JP
Japan
Prior art keywords
gypsum
water
parts
cement
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54173596A
Other languages
Japanese (ja)
Other versions
JPS5696757A (en
Inventor
和彦 岩谷
健一 加賀屋
悟 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPONKAI KENSETSU KK
Original Assignee
NIPPONKAI KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPONKAI KENSETSU KK filed Critical NIPPONKAI KENSETSU KK
Priority to JP54173596A priority Critical patent/JPS5913462B2/en
Publication of JPS5696757A publication Critical patent/JPS5696757A/en
Publication of JPS5913462B2 publication Critical patent/JPS5913462B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Description

【発明の詳細な説明】 この発明はこの出願の発明者が先きになした昭和53年
特許願第143771号(特開昭55=71654号公
報)、発明の名称■準焦水石こう系硬化材の発明の改良
にかかわる。
DETAILED DESCRIPTION OF THE INVENTION This invention is based on Patent Application No. 143771 (Japanese Unexamined Patent Publication No. 71654) filed in 1973 by the inventor of this application. Involved in the improvement of inventions for materials.

従来から石こう、鉄鋼炉プラグ、セメント系の硬化組成
物があり、この3つの素材を配合すれば容易に硬化組成
物となることが知られている。
Conventionally, there have been hardening compositions based on gypsum, steel furnace plugs, and cement, and it is known that a hardening composition can be easily obtained by blending these three materials.

この場合における配合組成は、石こう(二水石こうを指
す。
The blending composition in this case refers to gypsum (dihydrate gypsum).

)10〜15重量パーセントセメント2〜5重量パーセ
ント、鉄鋼デスラグ85〜90重量パーセントの組成物
か、石こう(二水石こう)約10重量パーセント、セメ
ント30〜50重量パーセント、鉄鋼炉スラグ40〜6
0重量パーセント程度の組成物で石こう(二水石こう)
で30重量パーセント以IP合された硬化組成物は見ら
れない。
) 10-15 weight percent cement, 2-5 weight percent steel death slag, 85-90 weight percent, or about 10 weight percent gypsum (gypsum dihydrate), 30-50 weight percent cement, 40-6 steel furnace slag.
Gypsum (dihydrate gypsum) with a composition of about 0 weight percent
No cured compositions with more than 30 weight percent IP loading were observed.

これは一般的に石こう(二水石こう)が30重量パーセ
ントも配合されると、硬化物の物性が悪くなることが確
認されているためである。
This is because it has generally been confirmed that when 30% by weight of gypsum (gypsum dihydrate) is blended, the physical properties of the cured product deteriorate.

又、従来取り上げられた石こうは二水石こうで、■準焦
水石こうが配合材料として取り扱われたものはあまり見
られない。
In addition, the gypsum that has been used in the past is dihydrate gypsum, and it is rare to see quasi-pyrochlore gypsum used as a compounding material.

この発明に示す■準焦水石こうはフッ酸製造時の副製品
で、通常、膨張セメントの原料などに使用される程度で
あり、現在三水石こうへの転換は経費の点から顧みられ
ない。
① Semi-pyrophoric gypsum shown in this invention is a by-product during the production of hydrofluoric acid, and is usually only used as a raw material for expanded cement, and conversion to trihydrate gypsum is currently not considered due to cost considerations.

■準焦水石こうはα石こうに類似した物硅を持ちすぐれ
た面をも有するので、応用方法によっては、可成り個性
的な実用材料化を期待出来るものであるが、遅い硬化速
度とフッ酸副製品の場合、製造時の夾雑物を含んでいる
品質的な問題で、安価な材料でありながら用途が挟い現
状である又、仮に純品に近く品質を改善出来たとしても
石こうとして致命的な性質である弱い耐水性の問題が残
ることになる。
■ Quasi-pyrolyte gypsum has similar properties to α-gypsum, so depending on the application method, it can be expected to be made into a fairly unique practical material, but it has a slow curing speed and hydrofluoric acid In the case of by-products, there is a quality problem because they contain impurities during manufacturing, and although they are inexpensive materials, their uses are limited.Also, even if the quality could be improved to be close to pure products, they would be fatal as plaster. The problem of weak water resistance, which is a typical characteristic, remains.

本発明はこれらの問題点(特に、硬化速度と耐水性)を
解決し、■準焦水石こうの有する長所をそのまま利用す
る目的で改良検討を重ねた結果、次のような方法で対処
することが出来たすなわち、粉砕した■準焦水石こうに
硬化促進剤を混合し、更に消石灰と水を加えてpH11
〜12のスラIJ−にすると、無水石こうの粉砕粒度の
大小で変動するが割り合い短時間で硬化させることがで
きる。
The present invention solves these problems (especially hardening speed and water resistance), and as a result of repeated improvement studies aimed at utilizing the advantages of quasi-pyrolyte gypsum as is, the following methods are used to solve these problems: In other words, a curing accelerator was mixed with the crushed quasi-pyrolyte gypsum, and slaked lime and water were added to adjust the pH to 11.
-12 slare IJ- can be cured in a relatively short time, although it varies depending on the size of the crushed particles of anhydrous gypsum.

この硬化物の強度は、α石こう並みの比較的高い値を示
すが、耐水性は三水石こう単位の場合に示す結果と変ら
ない位い極めて悪い。
The strength of this cured product is relatively high, comparable to that of alpha gypsum, but the water resistance is extremely poor, comparable to the results shown in the case of trihydrate gypsum units.

そこでこの点の改善を目的として、先出願発明のメカニ
ズムきなった各種硅酸塩物質の効果について、更に検討
を重ねた結果、配合する硅酸塩物質は、迅速な反応性を
内容とした効果目的に合致させるためには、天然産のも
のより人工のものが合理的と考え此等の中より鉄鋼炉ス
ラグ系物質を主として取り上げて実験を行なった。
Therefore, with the aim of improving this point, we further investigated the effects of various silicate substances that differed from the mechanism of the earlier-filed invention. In order to meet the purpose, we thought that it would be more reasonable to use artificial materials than natural materials, and from these materials, we mainly selected iron and steel furnace slag materials for experiments.

鉄鋼炉プラグ系物質に該当するものには鉄鋼炉フラグ、
肥料用硅カル、高炉スラグセメント等を上げることがで
きる。
A steel furnace flag is displayed for substances that correspond to steel furnace plug-related substances.
It can be used for silica for fertilizer, blast furnace slag cement, etc.

この中で入手性、品質に対する信頼性、物性、経済性を
集約すると高炉スラグセメントが最適と考えられるので
これを代表物質として採用した。
Among these, blast furnace slag cement was considered to be the most suitable material in terms of availability, quality reliability, physical properties, and economic efficiency, so this was selected as the representative material.

実験の結果は、副製■準焦水石こうの場合、高炉プラグ
セメントを8.5〜24重量パ重量パーセント台して得
られる硬化体の物性について各種の測定結果決定的なも
のはなく、50重量パーセント程度配合してようやく改
善の糸口が得られた。
The experimental results show that in the case of by-product quasi-scorched gypsum, there are no conclusive results from various measurements regarding the physical properties of the hardened material obtained by adding blast furnace plug cement in the range of 8.5 to 24% by weight. A clue to improvement was finally obtained by adding about a weight percent.

すなわち、24電量パーセント以下の配合で得られる硬
化体は、先ず第一に強度と硬化速度共に不光分であり、
50重量パーセント程度の配合で強度はようやく改善さ
れ、無添加体に比較して曲げ、圧縮共に200パーセン
ト近い強度となることを確認した。
In other words, the cured product obtained by blending with a coulometric content of 24% or less is first of all non-luminous in both strength and curing speed;
It was confirmed that the strength was finally improved when the content was about 50% by weight, and the strength in both bending and compression was nearly 200% compared to the additive-free material.

しかし、硬化速度は依然として遅く、いづれの場合も無
添加体と比較して3倍以上の時間がかかり実用的に問題
のあることが分かった。
However, the curing speed was still slow, and in all cases it took more than three times as long as the additive-free material, which was found to be a practical problem.

又、耐水性も全般に向上したもののまだ不満足の領域に
入っていた。
Furthermore, although the water resistance was generally improved, it was still in the unsatisfactory range.

そこで此等の諸点を改善するため、更に検討した結果、
24電量パーセント以下の配合で発生する強度不足には
普通ポルトランドセメントの添加が効果を示し、全般に
必要な硬化速度の加速改善に対してはアルミナセメント
を2〜4重量重量パーセントナることにより効果のある
ことが分かった。
Therefore, in order to improve these various points, as a result of further consideration,
The addition of ordinary Portland cement is effective for the lack of strength that occurs when the content is less than 24 coulometric percent, and the addition of alumina cement of 2 to 4 percent by weight is generally effective for improving the acceleration of curing speed required. It turns out that there is.

又、耐水性改善は普通ポル十ランドセメントとアルミナ
セメント両者の相乗効果で光分対応することが可能であ
った。
In addition, the water resistance could be improved by the synergistic effect of both ordinary porland cement and alumina cement.

此等の結果を適宜組合わせることにより、強度と硬化速
度と耐水性3点を同時に解決できる。
By appropriately combining these results, the three points of strength, curing speed, and water resistance can be solved at the same time.

又、当然予想された事項であるが硬化促進剤無添加条件
では硬化速度は遅く硬化体の強度は若干低下する結果を
示した。
Furthermore, as expected, the curing speed was slow and the strength of the cured product was slightly lower under conditions in which no curing accelerator was added.

ここで使用する鉄鋼炉プラグ糸吻質としては、先に示し
た高炉プラグセメント及び鉄鋼炉ヌラグ(急冷品、除冷
品)及び転炉プラグが同類物質として挙げられる。
Examples of similar materials for the steel furnace plug material used here include the above-mentioned blast furnace plug cement, steel furnace nug (quenched product, slowly cooled product), and converter plug.

更に溶解を伴なう固体間の反応であるから、仕込む各原
料物質の粒度は出来る限り微粉砕品であることが第1の
要件で、通常、170メツシユ以下の細かさ、好ましく
は200メツシユ以下であることが望ましい結果を示し
た。
Furthermore, since it is a reaction between solids that involves dissolution, the first requirement is that the particle size of each raw material to be charged is as finely pulverized as possible, usually 170 mesh or less, preferably 200 mesh or less. The results showed that it is desirable that

次に、各原料物質の適切な配合範囲を示して見ると、■
地熱水石こうは30〜70重量パーセント(二水石こう
として38〜88.6重量パーセント)で、70重量パ
ーセントを越えると耐水性が悪くなり実用上に問題があ
る。
Next, if we show the appropriate blending range of each raw material, ■
Geothermal water gypsum has a content of 30 to 70% by weight (38 to 88.6% by weight as dihydrate gypsum), and if it exceeds 70% by weight, water resistance deteriorates and there is a problem in practical use.

47〜70重量パーセントの範囲では耐水性がなお完全
でないが、利用する方面として建材、特に内装材として
充分である。
Although water resistance is still not perfect in the range of 47 to 70 weight percent, it is sufficient for use as a building material, especially as an interior material.

30〜47重量パーセントでは、建材や土木資材などに
適する強度と耐水性を示す物性となるが、■地熱水石こ
うの有効利用を主に考えた経済的な観点に立てば45重
量パーセント前後と見られる。
At 30-47% by weight, the physical properties show strength and water resistance suitable for building materials and civil engineering materials, but from an economic point of view mainly considering the effective use of geothermal water gypsum, it is around 45% by weight. Can be seen.

又、30電量パーセント以下の場合、■地熱水石こう系
硬化材と称することは難かしくなる。
Furthermore, if the coulometric content is less than 30 percent, it becomes difficult to call it a geothermal water gypsum hardening material.

■地熱水石こうと対応する鉄鋼炉フラグ系物質として高
炉プラグセメントを取り上げると、適切な範囲として5
5〜20重量パーセントと見られる。
■If we consider blast furnace plug cement as a steel furnace flag substance corresponding to geothermal water gypsum, the appropriate range is 5.
Approximately 5 to 20 weight percent.

55重量パーセント以上配合では■地熱水石こう系硬化
材とは考えにくいし、55〜45重量パーセントでは強
度、耐水性共に問題がなく、配合材料はいづれの方面に
も実用可能なものと見られる。
If it is more than 55% by weight, it is difficult to think of it as a geothermal water gypsum hardening material, and if it is 55 to 45% by weight, there is no problem with both strength and water resistance, and the material is considered to be practical in all directions. .

45〜20重量パーセントの場合は内装用建材として充
分であり、20電量パーセント以下では耐水性が悪く実
用上問題がある。
A content of 45 to 20% by weight is sufficient as an interior building material, while a content of less than 20% by weight results in poor water resistance and is a practical problem.

普通ポルトランドセメントは15重量パーセント程度ま
でが物性向上の限界で、これ以上増加しても物性に効果
は認められなかった。
The limit for improving the physical properties of ordinary Portland cement is about 15% by weight, and no effect on the physical properties was observed even if the increase was more than this.

一方、アルミナセメントは適切な範囲として、1.5〜
5重量パーセントの添加と考えられ1.5重量パーセン
ト以下では硬化速度が無添加品に比較して顕著でなく、
5重量パーセント以上では水利凝結反応が急激に進行し
て硬化体の温度上昇が認められ、結果として、強度はむ
しろ低下することが分かった。
On the other hand, the appropriate range for alumina cement is 1.5~
It is considered that 5% by weight is added, and if it is less than 1.5% by weight, the curing rate is not as noticeable compared to a product without additives.
It was found that when the content exceeds 5% by weight, the water condensation reaction rapidly progresses and the temperature of the cured product increases, and as a result, the strength actually decreases.

■地熱水石こうに添加する消石灰は、中和が主目的なの
で0,5〜1.0重量パーセント程度で充分であり、必
要外の添加は混水量の増大並びに強度の低下が認められ
た。
(2) The main purpose of adding slaked lime to geothermal water gypsum is to neutralize it, so about 0.5 to 1.0 weight percent is sufficient.Additional additions other than necessary increased the amount of mixed water and decreased strength.

水利促進剤の添加量は、硫酸カリ、カリ明ばん合量で1
〜1.5重量パーセント程度で、■地熱水石こうの水利
促進効果は光分て多く加えることは不可溶性成分である
ためと経済性とを考慮すれば少量添加が望ましい。
The amount of water use accelerator added is 1 for the total amount of potassium sulfate and potassium alum.
It is desirable to add a small amount of geothermal water at about 1.5% by weight, considering the fact that it is an insoluble component and economic efficiency.

勿論、硬化材の実用的見地から考えた経済組成としでは
、硬化材の持つ最高物性を維持できる範囲で■準焦水石
こうの最大配合量の点と言うことになる。
Of course, in terms of the economical composition of the hardening material from a practical point of view, the maximum amount of quasi-pyrophoric gypsum should be added within the range that maintains the highest physical properties of the hardening material.

この硬化材の経済組成がどのようなものか集約すると次
のような組成とみられる。
The economic composition of this hardening material can be summarized as follows.

■準焦水石こうとして40〜45重量パーセント、高炉
スラグセメント40〜45重量パーセント、普通ポルト
ランドセメント6〜13重量パーセント、アルミナセメ
ント2〜5重量パーセント、消石灰0.5重量パーセン
ト、硫酸力IJ0.6重量パーセント、カリ明ばん0.
4重量パーセント程度で、短的に言えば、この組成を境
にして、■準焦水石こうが多くなる配合組成は次第に物
性を下降させ、逆に■準焦水石こうが少くなる配合組成
は最適物性を維持して行くことになる。
■40-45% by weight of quasi-scorched gypsum, 40-45% by weight of blast furnace slag cement, 6-13% by weight of ordinary Portland cement, 2-5% by weight of alumina cement, 0.5% by weight of slaked lime, sulfuric acid power IJ 0.6 Weight percent, potash alum 0.
At about 4% by weight, in short, after this composition, a composition in which there is a large amount of quasi-pyrophoric gypsum gradually decreases the physical properties, and conversely, a composition in which there is a small amount of quasi-pyrophoric gypsum is optimal. The physical properties will be maintained.

この発明の硬化材の水利反応を検討して見ると、水利促
進剤である硫酸カリ、カリ明ばんの作用で無水石こうが
溶解すると共に鉄鋼炉フラグ系物質やセメント中のC3
A及び系内の石灰分との三者反応の結果、ポゾラン反応
を経て急速にエトリンジャイ ト(3CaO−A40s
・3CasO4@32H20)等のセメント鉱物組織
に変って行き、硬化し硬化体の強度、耐水性など物性を
向上させるものと見られる。
Examining the water utilization reaction of the hardening material of this invention, it is found that anhydrous gypsum is dissolved by the action of potassium sulfate and potassium alum, which are water utilization promoters, and C3 in steel furnace flag substances and cement is dissolved.
As a result of the three-way reaction with A and lime in the system, ettringite (3CaO-A40s) is rapidly formed through a pozzolanic reaction.
・3CasO4@32H20), etc., which hardens and improves physical properties such as strength and water resistance of the hardened product.

この場合の反応速度はアルミナセメントの添加で一層促
進されるものと判断され、この発明は工) IJンジャ
イトの最適生成ふん囲気を構成するものである。
It has been determined that the reaction rate in this case is further accelerated by the addition of alumina cement, and this invention constitutes an atmosphere for optimal production of IJn gite.

したがって、水和促進剤やアルミナセメントの欠除は硬
化完了の時間遅延となる。
Therefore, the absence of hydration accelerator or alumina cement results in a time delay in completion of cure.

これ等の関係はX線解析結果からも裏付けることができ
た。
These relationships were also supported by the results of X-ray analysis.

実施例に示すように、適性な組成で配合された硬化材は
、混水量30〜33重量パーセント程度の水を加えてか
く拌したスラリーは5時間ないし6時間で硬化した。
As shown in the examples, a curing agent blended with an appropriate composition was cured in 5 to 6 hours by stirring a slurry with water in an amount of about 30 to 33 weight percent.

この硬化体を室温、飽和水蒸気下で7日間養生したもの
は比重1.8〜2.0となり、圧縮強度350〜400
kg/CIIL、抽げ強度80〜90kg/CTLで、
45°C乾燥恒量体の耐水性は室温流水中20日保持(
2cm立方成形体単位表面積(d)当り201の常温水
通過〕で0.2〜0.9重量パーセントの減量にとどま
った。
When this cured product is cured for 7 days at room temperature under saturated steam, the specific gravity is 1.8 to 2.0, and the compressive strength is 350 to 400.
kg/CIIL, bolting strength 80-90kg/CTL,
The water resistance of the constant mass dried at 45°C is maintained in running water at room temperature for 20 days (
The weight loss was only 0.2 to 0.9 percent by weight when water was passed through at room temperature at a rate of 201 times per unit surface area (d) of the 2 cm cubic molded body.

実施例 (第1図参照) フッ酸製造副産物である■準焦水石こうについて32メ
ツシユふるいアンダーサイズ(粗粒)又は200メツシ
ユふるいアンダーサイズ(細粒)を使用した。
Examples (See Figure 1) For semi-scorched gypsum, which is a by-product of hydrofluoric acid production, 32-mesh sieve undersize (coarse particles) or 200-mesh sieve undersize (fine particles) were used.

この32メツシユアンダ一■型無水石こう100部に鉄
鋼炉フラグ系物質として高炉スラグセメント0種9,6
〜32.5部を混合したもの、又は200メツシユアン
ダ一■型無水石こう100部に高炉スラグセメント0種
32.5〜101.6部を混合したものに、消石灰を1
.1〜2.3部更に混合した。
100 parts of this 32 mesh sander type anhydrous gypsum and blast furnace slag cement type 0 9,6 as a steel furnace flag material.
100 parts of 200 mesh anhydrous gypsum and 32.5 to 101.6 parts of type 0 blast furnace slag cement mixed with 1 part of slaked lime.
.. 1 to 2.3 parts were further mixed.

仕込み全量に対して30係の混水量となるよう採取した
水に粉砕した硫酸カリ1,4〜1.6部、カリ明ばん1
.0部を溶解した後、先の無水石こう一高炉スラグセメ
ント混合物と更に混合し充分かく拌した後、砲金製金型
にパイブレーク−を当でながら流し込み硬化させた。
Add 1.4 to 1.6 parts of ground potassium sulfate and 1 part of potassium alum to the collected water so that the amount of water mixed with the total amount is 30 parts.
.. After dissolving 0 parts, the mixture was further mixed with the anhydrous gypsum-blast furnace slag cement mixture and thoroughly stirred, and then poured into a gunmetal mold while applying a pie break and hardened.

スラリーの流動性が不足した場合適宜水を少量加え流動
性を保持した。
When the fluidity of the slurry was insufficient, a small amount of water was appropriately added to maintain fluidity.

これを実験Aとする。This is called Experiment A.

200メツシユアンダ一■型無水石こう100部に高炉
プラグセメント0種32.5〜102.2部及び普通ポ
ルトランドセメント8.7〜27,7部を混合したもの
に消石灰を1.0〜1.2部更に混合した。
1.0 to 1.2 parts of slaked lime to a mixture of 100 parts of 200 Meshunda 1 type anhydrous gypsum, 32.5 to 102.2 parts of Class 0 blast furnace plug cement, and 8.7 to 27.7 parts of ordinary Portland cement. Further mixing was performed.

仕込み全量に対して30係の混水量となるように採取し
た水に粉砕した硫酸カリ1.3〜1.5部、カリ明ばん
0,9〜1.0部を溶解した後、先の無水石こう一高炉
フラグセメントー普通ポルトランドセメント混合物と更
に混合し充分かく拌した後砲金製金型にパイブレーク−
を当てながら流し込み硬化させた。
After dissolving 1.3 to 1.5 parts of crushed potassium sulfate and 0.9 to 1.0 parts of potassium alum in the collected water so that the amount of water mixed is 30 parts to the total amount of preparation, Gypsum and blast furnace flag cement - further mixed with ordinary Portland cement mixture, thoroughly stirred, and then pie-broken into gunmetal molds.
It was poured and hardened while being applied with water.

スラリーの流動性が不足した場合、適宜水を少量加え流
動性を保持した。
When the fluidity of the slurry was insufficient, a small amount of water was appropriately added to maintain fluidity.

これを実験Bとする。This is called Experiment B.

32メツシユアンダー又は200メツシユアンダ一■型
無水石こう100部に高炉スラグセメン)C種32.5
〜101.9部及びアルミナセメント1号3.1〜7,
4部を混合したものに消石灰を1.1〜1.3部更に混
合した。
32 mesh under or 200 mesh under 1 type anhydrous gypsum (100 parts) and blast furnace slag cement) Class C 32.5
~101.9 parts and alumina cement No. 1 3.1~7,
1.1 to 1.3 parts of slaked lime was further mixed into the mixture of 4 parts.

仕込み全量に対して30%の混水量となるよう採取した
水に粉砕した硫酸カリ1.4〜1.5部、カリ明ばん0
.8〜1.0部を溶解した後、先の無水石こう一高炉ス
ラグセメントーアルミナセメント混合物と更に混合し光
分かく拌した後、砲金製金型にバイブレータ−を当てな
がら流し込み硬化させた。
Add 1.4 to 1.5 parts of ground potassium sulfate and 0 parts of potassium alum to the collected water so that the amount of water mixed is 30% of the total amount of water.
.. After dissolving 8 to 1.0 parts, the mixture was further mixed with the anhydrous gypsum-blast furnace slag cement-alumina cement mixture, stirred with light, and then poured into a gunmetal mold while being exposed to a vibrator and hardened.

スラリーの流動性が不足した場合、適宜水を少量加え流
動性を保持した。
When the fluidity of the slurry was insufficient, a small amount of water was appropriately added to maintain fluidity.

この実験をCとする。Let this experiment be C.

200メツシユアンダ一■型無水石こう100部に高炉
スラグセメント0種32.6〜159.7部及び普通ポ
ルトランドセメント8.7〜41.3部とアルミナセメ
ント1号3.0〜95部を混合したものに消石灰を1.
0〜1.6部更に混合した。
A mixture of 32.6 to 159.7 parts of blast furnace slag cement type 0, 8.7 to 41.3 parts of ordinary portland cement, and 3.0 to 95 parts of alumina cement No. 1 to 100 parts of 200 mesh 1 type anhydrous gypsum. Add slaked lime to 1.
0 to 1.6 parts were further mixed.

仕込み全量に対して30%の混水量となるよう採取した
水に粉砕した硫酸カリ1.4〜1.6部、カリ明ばん0
.9〜1.0部を溶解した後、先の無水石こう一高炉フ
ラグセメントー普通ポルトランドセメント−アルミナセ
メント混合物と更に混合し、充分かく拌した後、砲金製
金型にバイブレータ−を当てながら流し込み硬化させた
1.4 to 1.6 parts of ground potassium sulfate and 0 parts of potassium alum are added to the water collected so that the amount of water mixed is 30% of the total amount of water.
.. After dissolving 9 to 1.0 parts, the mixture was further mixed with the anhydrous gypsum-blast furnace flag cement-ordinary Portland cement-alumina cement mixture, thoroughly stirred, and then poured into a gunmetal mold while applying a vibrator to harden. I let it happen.

スラリーの流動性が不足した場合、適宜水を少量加え流
動性を保持したこの実験をDとする。
When the fluidity of the slurry was insufficient, this experiment was designated as D in which a small amount of water was appropriately added to maintain fluidity.

200メツシユアンダ一■型無水石こう100部に高炉
プラグセメント0種101.7部及び普通ポルトランド
セメント27.6部とアルミナセメント1号7.6部を
混合したものに消石灰を1.2部更に混合した。
1.2 parts of slaked lime was further mixed into a mixture of 100 parts of 200 Metsuyuanda 1 type anhydrous gypsum, 101.7 parts of blast furnace plug cement type 0, 27.6 parts of ordinary Portland cement, and 7.6 parts of alumina cement No. 1. .

仕込み全量に対して30%の混水量となるよう採取した
水に先の無水石こう一高炉フラグセメントー普通ポルト
ランドセメント−アルミナセメント混合物を混合し、充
分かく拌した後、砲金製金型にパイブレーク−を当てな
がら流し込み硬化させた。
Mix the sampled water with the anhydrous gypsum, blast furnace flag cement, ordinary Portland cement, and alumina cement mixture so that the amount of mixed water is 30% of the total amount of water mixed, and after stirring thoroughly, pie break into a gunmetal mold. It was poured and cured while applying -.

スラリーの流動性が不足した場合、適宜水を少量カロえ
流動性を保持した。
When the fluidity of the slurry was insufficient, a small amount of water was appropriately added to maintain fluidity.

この実験をEとする。Let this experiment be E.

以上の実験で得られた硬化体の硬化時間(脱型までの時
間)、強度、耐水性についで調査した結果を第1図に併
せで示した。
The results of a subsequent investigation of the curing time (time until demolding), strength, and water resistance of the cured product obtained in the above experiment are also shown in FIG.

強度は島津式万能試験機で測定したもので、テストピー
スは圧縮強度測定用は2c1rL×2cIrL×2cI
rLの立方体5個、曲げ強度測定用は2cIIl×2C
rrL×6crILの直方体3個を使用し、強度はこれ
らの平均値で材令は室温飽和水蒸気圧下7日であった。
The strength was measured using a Shimadzu universal testing machine, and the test piece for measuring compressive strength was 2c1rL x 2cIrL x 2cI.
5 rL cubes, 2cIIl x 2C for bending strength measurement
Three rectangular parallelepipeds of rrL x 6crIL were used, the strength was the average value of these, and the age was 7 days at room temperature and saturated steam pressure.

耐水試験体は2c11′L×2CII′L×2CrrL
の立方体2個を使用し、単位表面積(d)当り5日間テ
ストで5#、200日間テスト21の水道水を流した。
Water resistance test specimen is 2c11'L x 2CII'L x 2CrrL
Two cubes were used, and tap water of 5# in the 5-day test and 21 in the 200-day test was poured per unit surface area (d).

減量は2個の平均値で45℃乾燥恒量後1日室温放置基
準で測定した。
The weight loss was determined based on the average value of two samples, which were left at room temperature for one day after drying at 45° C. to constant weight.

減量測定波圧縮強度を測定した。Weight loss measurement wave compressive strength was measured.

又、試験体は種々の表面状態が観察された。In addition, various surface conditions were observed on the test specimens.

実験19.20は鉄鋼炉フラグ系物質として肥料用硅カ
ル高炉水砕スラグ品を使用し前記最適実験条件で確認し
たものである。
Experiments 19 and 20 were conducted using granulated silica blast furnace slag for fertilizer as the steel furnace flag material and were confirmed under the optimum experimental conditions described above.

実験21,22はA社市販品2種類を当実験と同一条件
で比較したものである。
Experiments 21 and 22 compared two types of commercially available products from Company A under the same conditions as the present experiment.

次に比較例として実験23.24を示すと、30メツシ
ユアンダー又は200メツシユアンダーの■準焦水石こ
うを、30%の混水量となるよう採取した水に硬化促進
剤を溶解した液に混合し、充分かく拌した後、消石灰を
少量づつ投入し混合スラリーのpHを11〜12とした
後金型に流し込み硬化した。
Next, in Experiment 23.24 as a comparative example, 30 mesh under or 200 mesh under ■ semi-scorched gypsum was added to a solution in which a hardening accelerator was dissolved in collected water so that the water content was 30%. After mixing and stirring thoroughly, slaked lime was added little by little to adjust the pH of the mixed slurry to 11-12, and then poured into a mold and hardened.

投入した消石灰は無水石こう100部に対し1.6〜1
.9部、硫酸カリは1.6部、カリ明はんば1.0部で
あった。
The amount of slaked lime added is 1.6 to 1 per 100 parts of anhydrous gypsum.
.. The amount of potassium sulfate was 1.6 parts, and the amount of potassium sulfate was 1.0 parts.

硬化体は前と同様に物性を調査した。The physical properties of the cured product were investigated in the same manner as before.

本実施例の如き配合によって得られた硬化体は、比較例
において得られた硬化体に比較して表1で認められると
おりに、向上した強度と耐水性を有し、硬化時間も大巾
に短縮可能にしたものであって建材及び土質改良材とし
て光分な適性を有するものである。
As seen in Table 1, the cured product obtained by the formulation as in this example has improved strength and water resistance compared to the cured product obtained in the comparative example, and the curing time is also greatly reduced. It can be shortened and is extremely suitable as a building material and soil improvement material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実験数値を示す。 Figure 1 shows experimental values.

Claims (1)

【特許請求の範囲】[Claims] 1 ■準焦水石こう30〜70%と鉄鋼炉プラグ系物質
55〜20%とに、普通ポルトランドセメント0〜15
%、アルミナセメント1.5〜5%、消石灰05〜0゜
7%、無水石こう水和促進剤若干%を添加混合すること
により水利硬化体の硬化時間を短縮することを特徴とす
る■準焦水石こう系硬化材。
1 ■ 30-70% quasi-pyrolyte gypsum, 55-20% steel furnace plug material, and 0-15% ordinary Portland cement.
%, alumina cement 1.5 to 5%, slaked lime 05 to 0.7%, and anhydrous gypsum hydration accelerator slightly %. Water-gypsum hardening material.
JP54173596A 1979-12-29 1979-12-29 Type 2 anhydrous gypsum hardening material Expired JPS5913462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54173596A JPS5913462B2 (en) 1979-12-29 1979-12-29 Type 2 anhydrous gypsum hardening material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54173596A JPS5913462B2 (en) 1979-12-29 1979-12-29 Type 2 anhydrous gypsum hardening material

Publications (2)

Publication Number Publication Date
JPS5696757A JPS5696757A (en) 1981-08-05
JPS5913462B2 true JPS5913462B2 (en) 1984-03-29

Family

ID=15963521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54173596A Expired JPS5913462B2 (en) 1979-12-29 1979-12-29 Type 2 anhydrous gypsum hardening material

Country Status (1)

Country Link
JP (1) JPS5913462B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860648A (en) * 1981-10-07 1983-04-11 日東化学工業株式会社 Anhydrous gypsum composition
JP3407854B2 (en) * 1997-07-25 2003-05-19 三菱マテリアル株式会社 Rapid hardening soil improvement material

Also Published As

Publication number Publication date
JPS5696757A (en) 1981-08-05

Similar Documents

Publication Publication Date Title
CN102910852A (en) Coagulant for super sulfate cement
CH624915A5 (en) Method of producing cement conglomerates of high strength
JPH1179818A (en) Cement admixture, cement composition, spraying material and spraying process using the same
CN113105149A (en) Concrete glue reducing agent and preparation method and application method thereof
JP4181224B2 (en) Cement composition and concrete and concrete product manufacturing method using the same
CN112521099A (en) Production process of quick-setting concrete
CN109095802B (en) Expansive agent for concrete, concrete and preparation method thereof
JPS5913462B2 (en) Type 2 anhydrous gypsum hardening material
JP3813374B2 (en) Construction method of sprayed cement concrete using setting modifier slurry
JP2618366B2 (en) Method for producing hydraulically cured product
JPH0421551A (en) Quick hardenable ae concrete composition
CN109160762B (en) Cement quick-hardening additive and application thereof
JPH09249440A (en) Spraying material and spray working using the same
US2360517A (en) Cement composition and method of making the same
CN112062486A (en) Low-temperature cement and preparation method thereof
JP4075967B2 (en) Cement admixture and cement composition
JP3536931B2 (en) Soft soil strength improving additive and method for improving soft soil strength
JPS5926963A (en) Hydraulic composition
CN115259729B (en) Sulfurized phosphogypsum-slag cementing material modifier, application thereof and composition of same
RU2385302C1 (en) Complex addition and method of obtaining thereof
JPH0797248A (en) Slurry of cement admixture and mortar or concrete compounded with the slurry
JP2019059651A (en) Hydraulic powder composition
CN102557508A (en) Composite activating agent for calcium raw material-high-silicon-aluminum industrial residue system
JPH07207264A (en) Grout
JP3087940B2 (en) High-strength wet spray concrete