JPS59134412A - Combustion of mixed firing burner for ignition of sintering furnace - Google Patents

Combustion of mixed firing burner for ignition of sintering furnace

Info

Publication number
JPS59134412A
JPS59134412A JP58008126A JP812683A JPS59134412A JP S59134412 A JPS59134412 A JP S59134412A JP 58008126 A JP58008126 A JP 58008126A JP 812683 A JP812683 A JP 812683A JP S59134412 A JPS59134412 A JP S59134412A
Authority
JP
Japan
Prior art keywords
air
pulverized coal
amount
primary
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58008126A
Other languages
Japanese (ja)
Other versions
JPH0331964B2 (en
Inventor
Hisashi Hashikawa
橋川 久司
Takeo Kawasawa
川沢 建夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58008126A priority Critical patent/JPS59134412A/en
Publication of JPS59134412A publication Critical patent/JPS59134412A/en
Publication of JPH0331964B2 publication Critical patent/JPH0331964B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/16Controlling secondary air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To contrive to obtain the excellent ignitionality, to reduce the loading quantity of heat, and yet to improve the quality of sintered ore by a method wherein the distribution ratio among primary, secondary and tertiary airs are specified. CONSTITUTION:The amount of primary air, which is blown-in together with pulverized coal, is rendered to be 20-30%, that of secondary air, which is used for mixing gaseous fuel and pulverized coal, is rendered to be 10-20% of theoretical amount of air, and tertiary air, which is added for combustion, is supplied by the amount so as to suffice the realization of a predetermined air fuel ratio. Concretely, the loading quantity of pulverized coal and/or C-gas (or mixed firing ratio) is determined based upon the values measured with thermometers. For example, the loading quantity of heat is set so as to keep the mean ingition surface temperature of sintering raw material within the range 900-1,000 deg.C. If said temperature tends to be higher, the loading quantity of pulverized coal is reduced, while, if lower, the quantity is increased. After that, the theoretical amount of air is calculated based upon the determined quantity of pulverized coal or C-gas so as to determine to distribution ratio among primary, secondary and tertiary airs in order to control the amounts of the primary, secondary and tertiary airs.

Description

【発明の詳細な説明】 本発明は、焼結点火炉に設けられる気体燃料(例エバコ
ークス炉ガス、f口)ぐンガスと高炉ガスとの混合がス
等)と微粉炭との混焼バーナにおける燃焼方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to combustion of a gaseous fuel (e.g., evaporated coke oven gas, f-mouth gas, mixture of blast furnace gas, etc.) and pulverized coal in a co-firing burner provided in a sintering ignition furnace. Regarding the method.

近年、焼結点火炉において微粉炭と気体燃料との混焼バ
ーナを用いることの研究が進められている。この背景に
は安価な微粉炭を可能な限り使用せんとすることがらる
θ この混焼バーナの構造としては、第1図、第2図に示す
ものが最適であるとの知見を本発明者らは得ている。
In recent years, research has been progressing on the use of co-firing burners of pulverized coal and gaseous fuel in sintering ignition furnaces. The background to this is the desire to avoid using cheap pulverized coal as much as possible. are getting it.

第1図、第2図において、1は点火炉の炉壁に取付けら
れるガイド筒で、その内部には同心的にバーナタイル2
が設けられ、その人口2aが点火炉内に臨んでいる。ま
た、バーナタイル2の軸心を同一にして、二次燃料とし
ての気体燃料、例えばコークス炉ガスを吹込むCガス導
管3が炉外位置に設けられている。とのCガス導管3の
外部には、微粉炭・−水空気導管4.2次空気導管5、
および3次空気導管6の順で重合形式で配されている。
In Figures 1 and 2, 1 is a guide tube attached to the wall of the ignition furnace, and there are burner tiles 2 concentrically inside the guide tube.
is provided, and its population 2a faces the inside of the ignition furnace. Further, a C gas conduit 3 is provided at a position outside the furnace so that the axis of the burner tile 2 is the same, and into which gaseous fuel as a secondary fuel, such as coke oven gas, is blown. On the outside of the C gas conduit 3, there are a pulverized coal-water air conduit 4, a secondary air conduit 5,
and tertiary air conduit 6 are arranged in a superposed manner in this order.

導管3,4.5はバーナタイル2と連通しており、また
その先端は狭搾部となっている。さらに導管3内°およ
び導管4,5間の環状空隙部には、それぞれ旋回羽根7
.8が配され、Cガスおよび2次空気が円滑に微粉炭と
混焼するよう工夫されている。また、3次空気導管6は
、バーナタイル2とガイド筒1との間隙9に連通してお
シ、その間隙9の前方部には、周方向に間隔を置いて閉
塞部10が設けられている。この閉塞部10の開き角θ
1は35〜50°、好ましくは約40°、また非閉塞部
11の開き角θ2は15〜25°、好ましくは約20°
とされる。かかる閉塞部10を設けることによって、3
次空気とバーナタイル2の火口から吹出される燃料との
燃焼性が高められる。
The conduits 3, 4.5 communicate with the burner tile 2, and their tips are constricted portions. Further, swirl vanes 7 are provided inside the conduit 3 and in the annular gap between the conduits 4 and 5, respectively.
.. 8 is arranged so that C gas and secondary air are smoothly co-fired with pulverized coal. Further, the tertiary air conduit 6 communicates with a gap 9 between the burner tile 2 and the guide cylinder 1, and in the front part of the gap 9, closing parts 10 are provided at intervals in the circumferential direction. There is. Opening angle θ of this closed portion 10
1 is 35 to 50 degrees, preferably about 40 degrees, and the opening angle θ2 of the unoccluded portion 11 is 15 to 25 degrees, preferably about 20 degrees.
It is said that By providing such a closing part 10, 3
The combustibility of the secondary air and the fuel blown out from the burner tile 2 is enhanced.

ここで、(1)1次空気A1は微粉炭Meの搬送用に、
(2)2次空気A2は旋回羽根で発生する乱流によりC
ガスと微粉炭との円滑な混合を図るために、(3)3次
空気A3は燃焼用空気として、それぞれ用いられる。
Here, (1) primary air A1 is for transporting pulverized coal Me,
(2) The secondary air A2 becomes C due to the turbulence generated by the swirling vanes.
In order to achieve smooth mixing of gas and pulverized coal, (3) tertiary air A3 is used as combustion air.

ところで、この種の混焼バーナそのものが試験的段階の
域を脱していないこともあって、不明な点が多い。また
、微粉炭は例えば、コークス炉ガス(以下Cガスと称す
。)よシコストが安いだめ、可能な限り微粉炭使用量が
多いことが望ましいけれども、微粉炭使用量が多いとそ
れが着火燃焼性が悪いため、ある程度量のCガス使用は
避は得ない−8本発明者らの数多くの試験によれば、C
ガス混焼率、すなわちCガス量(keat)/微粉炭量
(kcal)は、一応10%程度まで下げることができ
ることが判った。まだ、焼結機における焼結原料の層厚
は450〜480mmの範囲内で変動するけれども、そ
の表面とバーナとの間隔は約800叫である。この間隔
で、フレームの先端が原料表面に到達するのが原料の着
火性から重要なことであシ、これより長くとも短くとも
着火性が悪くなる。
By the way, this type of co-firing burner itself is still in the experimental stage, and there are many unknown points. In addition, pulverized coal is cheaper than coke oven gas (hereinafter referred to as C gas), so it is desirable to use as much pulverized coal as possible; 8 According to numerous tests conducted by the present inventors, the use of a certain amount of C gas is unavoidable.
It has been found that the gas co-firing ratio, that is, the amount of C gas (keat)/the amount of pulverized coal (kcal), can be lowered to about 10%. Still, although the layer thickness of the sintering raw material in the sintering machine varies within the range of 450-480 mm, the distance between its surface and the burner is approximately 800 mm. It is important for the ignitability of the raw material that the tip of the flame reaches the surface of the raw material within this interval, and if the distance is longer or shorter than this, the ignitability will deteriorate.

しかるに、上述のように、Cガス混焼率を各種実験から
一応決めることができるけれども、1次〜3次空気量の
配分については仮に決めることができても未知であると
いうのが実情である。そして、経験的に定めだ1次〜3
次空気量の配分比率は常に同一の操業を行っていると種
々の問題があることが判った。すなわち、操業中、焼結
点火炉内の投入熱量を調整すべく、微粉炭およびCガス
使用量が増減(混焼比率の増減)させる場合、常に空気
配分比率を一定にしたままで、所望の空燃比に見合う空
気量を変更したとしても、空燃比の増減によっては、バ
ーナへの1次および2次空気量に過不足が生じ、微粉炭
吐出速度および乱流旋回効果に支障をきたし、バーナの
フレーム形状が不適となり、結局投入熱量の無駄および
焼結鉱品質が不安定となることが明らかとなった。
However, as mentioned above, although the C gas co-combustion rate can be determined through various experiments, the reality is that the distribution of primary to tertiary air amounts is unknown even if it can be determined. And, it is empirically determined that the 1st to 3rd order
It has been found that there are various problems when the distribution ratio of the amount of air is always the same during operation. In other words, when the amount of pulverized coal and C gas used increases or decreases (increases or decreases the mixed combustion ratio) in order to adjust the amount of heat input into the sintering ignition furnace during operation, the air distribution ratio remains constant and the desired air Even if the amount of air is changed to match the fuel ratio, an increase or decrease in the air-fuel ratio will result in excess or deficiency in the amount of primary and secondary air to the burner, which will interfere with the pulverized coal discharge speed and turbulent swirling effect, causing burner failure. It became clear that the frame shape was inappropriate, resulting in wasted heat input and unstable sintered ore quality.

本発明者らは、この問題点に対処するために、さらに多
くの基礎および実機での実験を繰返したところ、1次〜
3次の空気配分率は最適な着火燃焼性を得る上でも、従
来Cガス混焼率として限界とされていた10%よシヘら
に低減させる上等の点で重要であることを見出し、本発
明を完成させるに至った。
In order to deal with this problem, the inventors repeated experiments on many basic and actual machines, and found that
We have discovered that the tertiary air distribution ratio is important in achieving optimal ignition and combustibility, as well as in reducing the C gas co-combustion ratio to 10%, which was previously thought to be the limit, and developed the present invention. was completed.

すなわち、本発明は、焼結点火炉に設けた気体燃料と微
粉炭の混焼バーナーを燃焼させるに当って、理論空気量
に対して、微粉炭と同伴させて吹込む1次空気量を20
〜30チ、気体燃料と微粉炭との混合用2次空気量を1
0〜20%となし、予め定められた空燃比に見合う空気
量を燃焼用3次空気で補充することを特徴とするもので
ある。
That is, in the present invention, when burning a mixed combustion burner of gaseous fuel and pulverized coal installed in a sintering ignition furnace, the amount of primary air to be blown in together with pulverized coal is set to 20% of the theoretical amount of air.
~30 cm, the amount of secondary air for mixing gaseous fuel and pulverized coal is 1
It is characterized in that the air amount corresponding to a predetermined air-fuel ratio is supplemented with tertiary combustion air.

本発明をさらに具体的に説明すると、気体燃料混焼率に
基いて1〜3次空気配分比を適宜選定することができる
To explain the present invention more specifically, the primary to tertiary air distribution ratios can be appropriately selected based on the gaseous fuel co-combustion rate.

この場合、理論空気量A。に対して、1次〜3次空気量
AI  + A2  + A3を水肥の通りとするのが
必要である。
In this case, the theoretical air amount A. In contrast, it is necessary to set the primary to tertiary air amount AI + A2 + A3 as per water fertilizer.

A、=αAo     α=0.2〜0.3   −(
i)A2−βAOβ=0.1〜0.2    =−(2
)A 3 ” mAg  (αAo+βAO)”Ao(
m−α−β)  m:空燃比   ・・・(3)そして
、この1次〜3次空気配分比の範囲内において、微粉炭
およびCガス使用量の変化に応じて、1次〜3次の各空
気量を変え名。
A, = αAo α = 0.2 ~ 0.3 - (
i) A2-βAOβ=0.1~0.2 =-(2
)A 3 ”mAg (αAo+βAO)”Ao(
m-α-β) m: air-fuel ratio (3) Then, within this range of primary to tertiary air distribution ratio, the primary to tertiary air distribution ratio is Change the air volume for each name.

微粉炭のキャリアエアーとしての1次空気は、微粉炭1
kg当り1.2〜4.0 Nm3必要でちる。この数値
よシ多くても、少なくても輸送過程で沈降等によシ流量
が変動し、燃焼が不安定となる。これに対する空気量は
、Cガス混焼率10チの場合、理論空気量(Cガス4.
75 Nm’/’Nm3+微粉炭8Nm3/’に9 )
に対して、15〜45%の使用量になるが、本発明では
バーナ先端での微粉炭吐出速度を25〜37. i5 
ml sec  として、着火燃焼性を改善するために
、1次空気量は理論空気量の20〜30%とされる。
Primary air as carrier air for pulverized coal is
1.2 to 4.0 Nm3 per kg is required. Even if it is more or less than this value, the flow rate will fluctuate due to sedimentation during the transport process, making combustion unstable. The air amount for this is the theoretical air amount (C gas 4.
75 Nm'/'Nm3 + pulverized coal 8Nm3/'9)
However, in the present invention, the pulverized coal discharge speed at the burner tip is set to 25 to 37%. i5
In terms of ml sec, the primary air amount is set to 20 to 30% of the theoretical air amount in order to improve ignition and combustibility.

1次空気量が20チ未満であると、微粉炭吐出速度が2
5m/sec未満となり逆火による爆発の危険性があり
、また30%を超えると、微粉炭吐出速度が37.5 
ml secを超えてしまい、燃焼遅れが発生し、フレ
ームが不安定、失火となる危険性がある。
When the primary air amount is less than 20 inches, the pulverized coal discharge speed is
If it is less than 5m/sec, there is a risk of explosion due to backfire, and if it exceeds 30%, the pulverized coal discharge speed will be 37.5m/sec.
ml sec, a combustion delay occurs, the flame becomes unstable, and there is a risk of misfire.

2次空気量は、理論空気量の10〜20%とされる。こ
の数値範囲は、Cガスと2次空気との濃度比を規定する
もので、20チを超えると、Cガスの着火性が悪くなる
し、また10%未満では旋回効果が低下する。
The secondary air amount is 10 to 20% of the theoretical air amount. This numerical range defines the concentration ratio of C gas and secondary air, and when it exceeds 20%, the ignitability of C gas deteriorates, and when it is less than 10%, the swirling effect decreases.

3次空気量は、予め定める空燃比によって(3)式のよ
うに決定される。
The tertiary air amount is determined by the predetermined air-fuel ratio as shown in equation (3).

なお、第4図、第5図は、第1図、第2図とは別の混焼
バーナを示すもので第4図は、概略断面図、第5図はそ
のV−V線矢視図であり、符号は全て第1図、第2図と
同一のものを示す。
In addition, Fig. 4 and Fig. 5 show a co-firing burner different from Fig. 1 and Fig. 2. Fig. 4 is a schematic sectional view, and Fig. 5 is a view taken along the line V-V. All the symbols are the same as in FIGS. 1 and 2.

第3図に燃焼制御例の一例を示す。混焼バーナ50は点
火炉51の巾方向に間隔を置いて複数たとえば6本並設
され、また焼結原料52に着火燃焼させるに当り、点火
炉51内での着火燃焼状況または炉内巾方向温度分布を
知るだめに、炉巾方向にだと鬼ば放射温度計からなる温
度計53゜53・・・が設′けられる。54はノぐレッ
ト、55はAレットローラ、56はウィンドボックス、
57は側板、58は主演算処理装置である。
FIG. 3 shows an example of combustion control. A plurality of co-combustion burners 50, for example six, are arranged in parallel at intervals in the width direction of the ignition furnace 51, and when igniting and burning the sintered raw material 52, the ignition/combustion state in the ignition furnace 51 or the temperature in the width direction of the furnace is controlled. In order to know the distribution, thermometers 53, 53, etc. consisting of oniba radiation thermometers are installed along the width of the furnace. 54 is a noglet, 55 is an A-let roller, 56 is a wind box,
57 is a side plate, and 58 is a main processing unit.

かかる制御装置を用いての制御に当っては、温度計53
による実測値に基いて微粉炭および/またはCガス投入
量(混焼率)を決定する。たとえば、焼結原料の着火表
面平均温度が900〜1000℃になるように投入熱量
を設定する。この温度が高い傾向の場合には、微粉炭使
用量を減少させ、逆に低い傾向の場合には微粉炭量を増
加させる。
In controlling using such a control device, the thermometer 53
The amount of pulverized coal and/or C gas input (co-combustion rate) is determined based on the actual measured value. For example, the amount of heat input is set so that the average temperature of the ignition surface of the sintering raw material is 900 to 1000°C. If the temperature tends to be high, the amount of pulverized coal used is decreased, and if the temperature tends to be low, the amount of pulverized coal is increased.

次いで、定められた微粉炭またはCガス量に基いて理論
空気量を算出し、1次〜3次空気配分比を決定して、そ
れらの空気量を制御する。この場合、3次空気量は空燃
比に基いて決定する。
Next, the theoretical air amount is calculated based on the determined amount of pulverized coal or C gas, the primary to tertiary air distribution ratios are determined, and the air amounts are controlled. In this case, the tertiary air amount is determined based on the air-fuel ratio.

ちなみに、6本のバーナを用いて、Cガス混焼率を10
%、空燃比を1.1とし、さらに1次〜3次空気配分比
を、1次=25%、2次−15チ、3次−60%とし、
焼結原料着火表面平均温度が900〜1000℃となる
ように制御した本発明例と比較例との比較結果を次表に
示す。
By the way, using 6 burners, the C gas co-firing rate was 10
%, the air-fuel ratio is 1.1, and the primary to tertiary air distribution ratio is 1st = 25%, 2nd - 15%, tertiary - 60%,
The following table shows the comparison results between the present invention example and the comparative example, in which the average temperature of the ignition surface of the sintered raw material was controlled to be 900 to 1000°C.

なお、比較例は、Cガス混焼率10%、空燃比1、1.
1次空気25%、2次25%、3次50%の初期設定状
態で微め炭とCガス量のみ手動で調整したものである。
In addition, the comparative example has a C gas co-combustion rate of 10%, an air-fuel ratio of 1, 1.
The initial settings were 25% for primary air, 25% for secondary air, and 50% for tertiary air, and only the amount of fine charcoal and C gas was manually adjusted.

この結果によれば、投入熱量を減らすことができるとと
もに、成品焼結鉱の品質も向上することが判る。
The results show that the amount of heat input can be reduced and the quality of the finished sintered ore is improved.

以上の通り、本発明によれば、1次〜3次空気配分比が
特定のものであるため、優れた着火燃焼性を示し、投入
熱量を低減でき、さらに焼結鉱品質向上を達成できる。
As described above, according to the present invention, since the primary to tertiary air distribution ratio is specific, excellent ignition combustibility can be exhibited, the amount of input heat can be reduced, and the quality of sintered ore can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は混焼バーナの構造め一例を示す概略断面図、第
2図は■−■線矢視図、第3図は燃焼制御装置の概要図
、第4図は態様を異にする混焼バーナの側面図、第、5
図は概略断面図であるー。 1・・・ガイド筒、し・・バーナタイル、7,8・・・
旋回羽根、50・・・混焼バーナ、51・・・点火炉、
53・・・温度計、Me・・・微粉炭、A1・・・1次
空気、A2・・・2次空気、A3・・・3次空気。
Fig. 1 is a schematic sectional view showing an example of the structure of a co-combustion burner, Fig. 2 is a view taken along the line ■-■, Fig. 3 is a schematic diagram of the combustion control device, and Fig. 4 is a co-combustion burner with different aspects. side view, No. 5
The figure is a schematic cross-sectional view. 1...Guide tube, burner tile, 7, 8...
Swirling vane, 50... Mixed combustion burner, 51... Ignition furnace,
53...Thermometer, Me...Pulverized coal, A1...Primary air, A2...Secondary air, A3...Tertiary air.

Claims (1)

【特許請求の範囲】[Claims] (1)焼結点火炉に設けた気体燃料と微粉炭の混焼バー
ナを燃焼させるに当って、理論空気量に対して、微粉炭
と同伴させて吹込む1次空気量を20〜30%、気体燃
料と微粉炭との混合用2次空気量を10〜20%となし
、予め定められた空燃比に見合う空気量を燃焼用3次空
気で補充することを特徴とする焼結点火炉用混焼バーナ
の燃焼法。
(1) When burning the gaseous fuel and pulverized coal co-fired burner installed in the sintering ignition furnace, the amount of primary air that is blown in together with the pulverized coal is 20 to 30% of the theoretical air amount. A sintering ignition furnace characterized in that the amount of secondary air for mixing gaseous fuel and pulverized coal is 10 to 20%, and the amount of air corresponding to a predetermined air-fuel ratio is supplemented with tertiary air for combustion. Combustion method of mixed combustion burner.
JP58008126A 1983-01-20 1983-01-20 Combustion of mixed firing burner for ignition of sintering furnace Granted JPS59134412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58008126A JPS59134412A (en) 1983-01-20 1983-01-20 Combustion of mixed firing burner for ignition of sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58008126A JPS59134412A (en) 1983-01-20 1983-01-20 Combustion of mixed firing burner for ignition of sintering furnace

Publications (2)

Publication Number Publication Date
JPS59134412A true JPS59134412A (en) 1984-08-02
JPH0331964B2 JPH0331964B2 (en) 1991-05-09

Family

ID=11684593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58008126A Granted JPS59134412A (en) 1983-01-20 1983-01-20 Combustion of mixed firing burner for ignition of sintering furnace

Country Status (1)

Country Link
JP (1) JPS59134412A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071812A (en) * 1983-09-27 1985-04-23 Kawasaki Heavy Ind Ltd Burner utilizing fine powder fuel
JPS61295402A (en) * 1985-06-24 1986-12-26 Sumitomo Metal Ind Ltd Method for combustion of fine powder fuel
JPH01151040U (en) * 1988-03-30 1989-10-18
WO2005043038A3 (en) * 2003-10-30 2006-03-23 Ampelio Lazzarin Method and apparatus for introducing a fuel mixture containing methane and an aggregate of air and coal dust, into a combustion chamber and/or of a kiln

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071812A (en) * 1983-09-27 1985-04-23 Kawasaki Heavy Ind Ltd Burner utilizing fine powder fuel
JPH0133729B2 (en) * 1983-09-27 1989-07-14 Kawasaki Jukogyo Kk
JPS61295402A (en) * 1985-06-24 1986-12-26 Sumitomo Metal Ind Ltd Method for combustion of fine powder fuel
JPH01151040U (en) * 1988-03-30 1989-10-18
WO2005043038A3 (en) * 2003-10-30 2006-03-23 Ampelio Lazzarin Method and apparatus for introducing a fuel mixture containing methane and an aggregate of air and coal dust, into a combustion chamber and/or of a kiln

Also Published As

Publication number Publication date
JPH0331964B2 (en) 1991-05-09

Similar Documents

Publication Publication Date Title
US5131838A (en) Staged superposition burner
EP0038257B2 (en) Oxygen aspirator burner and process for firing a furnace with an oxygen-enriched oxidant gas
US4357134A (en) Fuel combustion method and burner for furnace use
CA2197148C (en) Combustion burner and combustion method thereof in furnace
CN106196056A (en) The burner of the temperature control low indole energy of smoke backflow and Staged Premixed Combustion
US4367686A (en) Method for operating a coal dust furnace and a furnace for carrying out the method
EP0126948B1 (en) Burner for sintering machine
CN106090894A (en) The all-oxygen combustion device of a kind of low NOx and combustion method thereof and application
JPS59134412A (en) Combustion of mixed firing burner for ignition of sintering furnace
JPH0842813A (en) Operating method of furnace
JPS5824706A (en) Multi-fuel combustion with reduced nox content
CN206037015U (en) Low NOx's oxy -fuel combustion device
JPS58224207A (en) Pulverized coal firing equipment
CN205261541U (en) Low NOx gas combustion ware of adjustable isolation flame
JPH01200106A (en) Method and device of feeding combustion air
CN205332221U (en) Steam coal powder and natural gas multifuel combustion combustor
CN114480767B (en) Method for preventing iron ore reduction rotary kiln from forming rings
CN220892253U (en) Kiln head burner
JPS6391412A (en) Combustion in combination burner for sintering ignition furnace
JP6458919B1 (en) Method for producing sintered ore
JPH07159048A (en) Exhaust gas circulation sintering process and exhaust gas circulation equipment
JPH0712879Y2 (en) Windbox sealing device for sintering machine
JPS5921909A (en) Low nox burner
CN117537342A (en) Multi-mode working blast furnace gas oxygen-enriched combustor
JP2520170B2 (en) Low calorie burner for gas fuel