JPS59133345A - Neutron absorber - Google Patents

Neutron absorber

Info

Publication number
JPS59133345A
JPS59133345A JP58232831A JP23283183A JPS59133345A JP S59133345 A JPS59133345 A JP S59133345A JP 58232831 A JP58232831 A JP 58232831A JP 23283183 A JP23283183 A JP 23283183A JP S59133345 A JPS59133345 A JP S59133345A
Authority
JP
Japan
Prior art keywords
neutron
absorbing material
neutron absorbing
neutron absorber
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58232831A
Other languages
Japanese (ja)
Other versions
JPS6144144B2 (en
Inventor
Koichiro Inomata
浩一郎 猪俣
Tatsuyoshi Aisaka
逢坂 達吉
Emiko Higashinakagaha
東中川 恵美子
Tomonobu Sakuranaga
桜永 友信
Yoshinori Kuwae
桑江 良昇
Kanemitsu Sato
佐藤 金光
Hisashi Yoshino
芳野 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58232831A priority Critical patent/JPS59133345A/en
Publication of JPS59133345A publication Critical patent/JPS59133345A/en
Publication of JPS6144144B2 publication Critical patent/JPS6144144B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To obtain a neutron absorber made of a uniformly dispersed amorphous alloy which causes no transfer during use by mixing a specified percentage of Fe and/or Ni with a specified percentage of at least one among Sm, Gd, Er, Eu and Dy. CONSTITUTION:This invention relates to a neutron absorber for a water-cooled nuclear reactor, and the neutron absorber is made of an amorphous alloy represented by a formula TM100-aREa (where TM is Fe and/or Ni, RE is at least one among Sm, Gd, Er, Eu and Dy, and a is 40-70atomic%). A mixture 4 of said elements is put in a quartz vessel 1 and melted by heating to about 1,250 deg.C with a heater 2. The molten alloy is extruded from a nozzle and fed between rotating rolls 3 for rolling to form a neutron absorber 5 made of a ribbonlike amorphous alloy. The absorber 5 is filled into a tube and used.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は中性子吸収材の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to improvements in neutron absorbers.

[発明の技術的背景とその問題点] 水冷却型原子炉における従来の中性子吸収材料としては
ボロンカーバイト(B4C)が特に用いられていること
がよく知られている。このボロンカーバイトは粉末であ
ることから密閉容器内に約70−の密度を保って充填さ
れていることが普通である。
[Technical background of the invention and its problems] It is well known that boron carbide (B4C) is particularly used as a conventional neutron absorbing material in water-cooled nuclear reactors. Since this boron carbide is a powder, it is normally filled in a closed container with a density of about 70-.

この密閉容器は通常ポイズンチューブと称されるステン
レス製の細長いチューブより成りこの中にボロンカーバ
イトが充填される。すなわち第1図に示すように断面が
ほぼ円筒形にステンレス鋼で形成されると共に、その内
部4二は平均粒径的100μのボロンカーバイトより成
る中性子吸収材粉体O呻が充填密封されている。この中
性子吸収材(1B)は上記したように密度的70%で充
填されているのでその円筒内での粉体の移動は少ないが
、この移動を押えるために上記ポイズンチューブ0→内
の中間部の各所にボール状の中性子吸収相移動防止体α
0をポイズンチューブ壁の一部を変形させて固定しであ
る。
This airtight container is usually made of a long, thin stainless steel tube called a poison tube, into which boron carbide is filled. That is, as shown in Fig. 1, it is made of stainless steel and has a substantially cylindrical cross section, and its interior is filled and sealed with neutron absorbing powder made of boron carbide with an average particle size of 100 μm. There is. As described above, this neutron absorbing material (1B) is filled with a density of 70%, so there is little movement of powder within the cylinder, but in order to suppress this movement, the middle part inside the poison tube 0→ There are ball-shaped neutron-absorbing phase transfer preventers α in various places.
0 was fixed by deforming a part of the poison tube wall.

さて上記ボロンカーバイトは粉体であることからその飛
散を防止するためにも上記ポイズンチューブ(14)は
その端部な封着体(11)によって完全に封着する必要
がある。
Since the boron carbide is a powder, the poison tube (14) must be completely sealed with the sealing body (11) at its end in order to prevent it from scattering.

ところが封有された中性子吸収材(1B)’Id制御棒
に取り付けられて駆動した場合には上記ポイズンチュー
ブC1→内で移動が始まり上記移動防止体(tQの上方
近辺にのみ集中してしまい、同図に示すように空間(鴫
が形成され易く極端な場合には中性子吸収体θつの下方
には吸収体の存在がなくなり、この部分での中性子吸収
能力が失なわれてしまい第2図卯線Aに示すように中性
子吸収特性が不均一となる場合があり中性子制御特性を
劣化させる一つの原因を作っている。
However, when the enclosed neutron absorber (1B) is attached to the 'Id control rod and driven, it begins to move within the poison tube C1→ and is concentrated only near the upper part of the movement preventer (tQ). As shown in the figure, a space (drink) is likely to be formed, and in extreme cases, there is no absorber below the neutron absorber θ, and the neutron absorption ability in this area is lost, as shown in Figure 2. As shown by line A, the neutron absorption characteristics may become non-uniform, which is one of the causes of deterioration of the neutron control characteristics.

また、上記中性子吸収体QB)であるボロンカーバイト
は中性子吸収断面積が大きいので吸収材としては有利で
あるが、中性子と反応する( n、α)反ボロンカーバ
イトはその発熱による温度上昇とヘリウムガス発生によ
り膨潤しポイズンチューブ内で上記の通り粉体の不所望
の移動を起したり、チューブ内の内圧を高くしたりして
場合によってはチューブの破壊も発生する場合がある。
In addition, boron carbide, which is the above-mentioned neutron absorber QB), has a large neutron absorption cross section, so it is advantageous as an absorbing material, but (n, α) anti-boron carbide, which reacts with neutrons, causes a temperature increase due to the heat generated. The swelling caused by the generation of helium gas may cause undesired movement of the powder within the poison tube as described above, or may increase the internal pressure within the tube, leading to destruction of the tube in some cases.

従って上記中性子吸収材(9)を有するボイズンナユー
プではその寿命が短かいという柄ト点がある。またポイ
ズンチューブはチューブ本体と中性子吸収材と移動防止
体とで形成されているので構成が複雑であると共に粉体
をチューブ本体内に充填しなければならないということ
及び移動防止体をカシメ等の手段を用いて嵌挿固定する
必要があること等から作業性が悪くなり易いという欠点
もある。
Therefore, the disadvantage of the Voysen Nayup having the above-mentioned neutron absorbing material (9) is that its lifespan is short. In addition, since the poison tube is made up of a tube body, a neutron absorbing material, and a movement prevention body, the structure is complicated, and the powder must be filled into the tube body, and the movement prevention body must be crimped or other means. There is also the drawback that workability tends to deteriorate because it is necessary to insert and fix the device using a screw.

本発明は上記種々の難点を除去するように改良したもの
である。
The present invention has been improved to eliminate the various drawbacks mentioned above.

[発明の目的] 本発明の目的は中性子吸収元素が使用中に移動しなく、
かつ均一に分散するようにした中性子吸収材を提供する
ことである。
[Object of the invention] The object of the invention is to prevent the neutron absorbing element from moving during use;
Moreover, it is an object of the present invention to provide a neutron absorbing material which is uniformly dispersed.

本発明の他の目的は構造が簡単である中性子吸収材を提
供することである。
Another object of the present invention is to provide a neutron absorber having a simple structure.

本発明の更に他の目的は軽量化された中性子吸収材を提
供することである。
Still another object of the present invention is to provide a neutron absorbing material that is lightweight.

本発明の更に他の目的は製造が容易で作業性のよい中性
子吸収材を提供することである。
Still another object of the present invention is to provide a neutron absorbing material that is easy to manufacture and has good workability.

本発明の更に他の目的は寿命の長い中性子吸収材を提供
することである。
Yet another object of the present invention is to provide a neutron absorber with a long lifetime.

[発明の概要] 本発明はTMloo−a RB’B もしくは TMloo−a−bADb REa 双千余白 で示される非晶質合金からなる事を特徴とする中性子吸
収材である。
[Summary of the Invention] The present invention is a neutron absorbing material characterized by being made of an amorphous alloy represented by TMloo-a RB'B or TMloo-a-bADb REa.

つまり本発明は中性子吸収断面積の大きい金属を含む非
晶質合金で中性子吸収材を形成したものである。すなわ
ち結晶質では存在できない中性子吸収断面積の大きい金
属の成分比を非晶質にすることによって数倍から数十倍
に添加することが可能となり、しかもリボン状の箔片が
得られることから軽量化が達成出来た。
That is, in the present invention, a neutron absorbing material is formed of an amorphous alloy containing a metal having a large neutron absorption cross section. In other words, by making the component ratio of a metal with a large neutron absorption cross section, which cannot exist in a crystalline state, by making it amorphous, it becomes possible to add several times to several tens of times more, and since ribbon-shaped foil pieces can be obtained, it is lightweight. was achieved.

また都合のよいことに箔状を呈し、かつ機械的性質にも
優れた中性子吸収材に形成出来ることも判明した。上記
を確認するために中性子吸収元素市18 ノ大@ イ元
h テ”ei ル8m、 Gd 、B r 、Bu *
 Dy等のf6土類元素を第2成分として5〜30%(
原子比)(二第1成分である鉄(Fe) sニッケル(
N1)または鉄ニツケル元素を混合して非晶質合金を作
った。この非晶質曾金は巾約10(lsu+JjJさ約
20〜80μmの均一なリボン状に形成され、かつ中性
子吸収元素である上記希土類元素も均一に分散さオして
tIAる中性子吸収材が得られる。
It has also been found that it can conveniently be formed into a neutron absorbing material that is foil-like and has excellent mechanical properties. In order to confirm the above, the neutron absorbing element city 18 no. 8 m, Gd, B r, Bu *
5 to 30% of f6 earth elements such as Dy as the second component (
Atomic ratio) (2nd 1st component iron (Fe) s Nickel (
An amorphous alloy was made by mixing N1) or iron-nickel elements. This amorphous metal is formed into a uniform ribbon shape with a width of about 10 (lsu+JjJ) of about 20 to 80 μm, and the above-mentioned rare earth elements, which are neutron absorbing elements, are also uniformly dispersed to obtain a neutron absorbing material. It will be done.

なお上記希土類元素の添加量°は原子比で40%未満で
は中性子吸収能力が期待出来なX11ので中性子吸収材
を多数重ね合わせて用いなければならな1.zので不経
済である。また70%を越えると機械的性質にも優れ且
つ均一に上記希土類元素の分散した非晶質薄板を得るこ
とは現在の技術力では困難である。
Note that if the amount of the rare earth element added is less than 40% in terms of atomic ratio, neutron absorption ability cannot be expected. z, so it is uneconomical. Moreover, if it exceeds 70%, it is difficult with current technology to obtain an amorphous thin plate with excellent mechanical properties and in which the rare earth element is uniformly dispersed.

上記希土類元素のam、 Gd、 Er、 Eu、 D
yはl/1ずれも中性子吸収能の高い元素であり、添加
量の上限は非晶質として存在できる最高値であり、下限
は最低値である。
The rare earth elements am, Gd, Er, Eu, D
y is an element that has a high neutron absorption ability with a deviation of 1/1, and the upper limit of the amount added is the maximum value that can exist as an amorphous state, and the lower limit is the minimum value.

また添加成分(AD)としてBを約10%以下、Crを
20%以下、Rh、 Re、 Ir、 Ag、 Auの
少なくとも1種を10%以下を加えて非晶質合金性中性
子吸収材を形成することが出来る。この場合これらの徐
加成分の合計が約40%を越えないように監視する必要
がある。
In addition, as additional components (AD), an amorphous alloy neutron absorbing material is formed by adding approximately 10% or less of B, 20% or less of Cr, and 10% or less of at least one of Rh, Re, Ir, Ag, and Au. You can. In this case, it is necessary to monitor so that the total of these gradually added components does not exceed about 40%.

C「は耐蝕性向上の為に添加するものであり、Rh。C" is added to improve corrosion resistance, and Rh.

Re、 Ir、 Ag、 Auは中性子吸収能の高い元
素である為に添加するものである。それぞれの上限は非
晶質として安定性良く存在し得る最高添加量である。
Re, Ir, Ag, and Au are added because they are elements with high neutron absorption ability. The upper limit of each is the maximum amount that can be added in a stable amorphous state.

上記はいずれも中性子吸収能力が全体的に均一であると
共に箔状リボンとなって軽量化が計られ中性子吸収元素
の不所望な移動もないこと、あるいは非晶質合金化する
のみで中性子吸収元素を分散配置することが出来るので
製造が容易であることが確認された0また中性子吸収元
素は非晶質にすると上記のように結晶質の場合と比較し
て数十倍も多量に入れられるがこれにも限度があるが、
更に能力を増大するために他の元素を入れることによっ
て従来と比較にならないほど多量に分散出来るという特
徴を有する。
In all of the above, the neutron absorption capacity is uniform throughout, the weight is reduced by forming a foil-like ribbon, and there is no undesirable movement of the neutron-absorbing element, or the neutron-absorbing element is simply made into an amorphous alloy. It has been confirmed that manufacturing is easy because the elements can be dispersed and arranged.0Also, when the neutron-absorbing element is made amorphous, it can be contained in an amount several tens of times larger than when it is crystalline, as mentioned above. There are limits to this, but
Furthermore, by adding other elements to increase the ability, it has the characteristic that it can be dispersed in an incomparably large amount.

[発明の実施例] 次に実施例について説明する。[Embodiments of the invention] Next, an example will be described.

実施例 1 中性子吸収断面積の大きい元素としてサマリウム(am
)を原子比で40%、ニッケル(Nl)を同40チ及び
鉄(Fe)を同じ< 20 %を混合してこれを第1図
の如く石英製容器(1)で1250℃に加熱装置(2)
によって加熱溶融する。この溶融合金を直径0.4闘の
ノズル(5)から0.2気圧の圧力を押し出すと共に直
径200Mの回転圧延ローラ(81(81の間に挿入し
て200Qrpmの高速回転で急冷し巾3腑、厚さ40
μmのリボン状非晶質合金製中性子吸収材(5)を形成
した0 これはサマリウムの中性子吸収断面積が大きいのでこれ
が中性子吸収材に均一に分散しているので、原子炉の制
御棒に用いられて中性子の吸収能力を能率よく発揮する
と共に中性子による反応においても不所望な移動がない
ので寿命も長いという特徴がある。又第1図のポイズン
チューブと同様の長さのリボンを形成し中性子吸収能を
測定した結果、第2図曲lVBに示す如く極めて均一な
吸収能力を有する事が確認された。
Example 1 Samarium (am
) in an atomic ratio of 40%, 40% nickel (Nl), and <20% iron (Fe), and heated the mixture to 1250°C in a quartz container (1) as shown in Figure 1. 2)
Melt by heating. This molten alloy is extruded from a nozzle (5) with a diameter of 0.4 atm under a pressure of 0.2 atm, and is inserted between rotating rolling rollers (81) with a diameter of 200 M and rapidly cooled at a high speed of 200 Qrpm. , thickness 40
A ribbon-shaped amorphous alloy neutron absorbing material (5) of 0 μm was formed. This is because samarium has a large neutron absorption cross section and is uniformly dispersed in the neutron absorbing material, so it is used in control rods of nuclear reactors. It is characterized by its ability to absorb neutrons efficiently and has a long lifespan because there is no undesirable movement during reactions with neutrons. Further, as a result of forming a ribbon having the same length as the poison tube shown in FIG. 1 and measuring its neutron absorption capacity, it was confirmed that the ribbon had an extremely uniform absorption capacity as shown in curve 1VB of FIG. 2.

実施例 2 原子比でボロy (B) 10%、クロム(Cr)15
%、ジスプロシウム(Dy) 3 % s残りが鉄(F
e)として第2実施例と同様な方法で非晶質合金化して
非晶質合金性中性子吸収材を形成した。この場合はクロ
ムの作用により耐蝕安定性もよく中性子の吸収が出来る
という特徴を有する。
Example 2 Boro y (B) 10%, chromium (Cr) 15 in atomic ratio
%, dysprosium (Dy) 3% sThe remainder is iron (F
As e), amorphous alloying was performed in the same manner as in the second example to form an amorphous alloyed neutron absorbing material. In this case, due to the action of chromium, it has good corrosion resistance and stability and is able to absorb neutrons.

実施例 3 原子比でボロン(B)5%、クロム(Cr) 10%、
ユウロピュウム(Eu) 10 % 、レニウム(Re
)596mニッケル(Nl) 20%、残りが鉄(P’
e)から成る合金を上記のように非晶質合金化して非晶
質合金製中性子吸収材を作った。この場合も上記同様の
効果を得た。
Example 3 Boron (B) 5%, chromium (Cr) 10%, in atomic ratio
Europium (Eu) 10%, rhenium (Re)
) 596m Nickel (Nl) 20%, remaining iron (P'
The alloy consisting of e) was made into an amorphous alloy as described above to produce a neutron absorbing material made of an amorphous alloy. In this case as well, the same effect as above was obtained.

次に上記実施例を含め、各種組成の非晶質合金の中性子
吸収断面積を従来のB4C及び近年使用の検討されてい
るHfとの比でM1表に示す。
Next, Table M1 shows the neutron absorption cross sections of amorphous alloys of various compositions, including the above examples, in comparison with conventional B4C and Hf, which has been considered for use in recent years.

第1表 この結果から明らかな如< Bie自体の中性子吸収能
よりは劣る場合もあるが、前記第2図に示した如く済め
て均一な吸収能が得られ実用上は有効なものと言える。
As is clear from the results in Table 1, although the neutron absorption ability of Bie itself may be inferior in some cases, it can be said that it is practically effective as it can obtain a uniform absorption ability as shown in FIG. 2 above.

[発明の効果] 本発明中性子吸収材は上記で明らかなように中性子吸収
断面積の大きい元素を十分に合金化し得る非晶具合金で
形成することによって非晶質の特徴を生かして中性子吸
収能力の高い中性子吸収材を得ることが出来た。すなわ
ち従来合金になりにくい中性子吸収断面積の大きい金属
の成分混合比を結晶質では成形不可能とされていた混合
比まで添加することが非晶質にすることによって始めて
得られた。そしてさらに上記中性子吸収材は20〜80
μmの厚であって箔状でしかも機械的強度が強く、加工
性がよく任意形状に成形出来る。更に上記中性子吸収元
素は非晶質合金中に均一に分散しているので中性子吸収
能力が均一化されていズしかも中性子との反応等によっ
て移動することがなく長期にわたって所期の特性を維持
出来るので長寿命化が可能となった。
[Effects of the Invention] As is clear from the above, the neutron absorbing material of the present invention is made of an amorphous alloy that can sufficiently alloy elements with a large neutron absorption cross section, thereby taking advantage of its amorphous characteristics to increase its neutron absorption ability. We were able to obtain a neutron absorbing material with high That is, it was only possible to add a metal with a large neutron absorption cross section, which is difficult to form into an alloy, to a mixing ratio that was considered impossible to form in a crystalline material by making it amorphous. Furthermore, the above neutron absorbing material has a 20 to 80
It is micrometer thick, foil-like, has strong mechanical strength, and has good workability and can be molded into any shape. Furthermore, since the above-mentioned neutron-absorbing elements are uniformly dispersed in the amorphous alloy, the neutron-absorbing ability is uniform, and the desired characteristics can be maintained over a long period of time without being transferred due to reactions with neutrons. Longer life is now possible.

また20〜80μmという極めて薄い箔状となっている
ので中性子吸収材としても重量がポイズンチューブ等に
対し格段に相違して軽量化されるという特徴がある。
Furthermore, since it is in the form of an extremely thin foil of 20 to 80 μm, it has the characteristic that it can be used as a neutron absorbing material in terms of weight, which is significantly different from that of poison tubes and the like.

上記本発明中性子吸収材は次のように用いて好適な結果
が得られる。
The above-mentioned neutron absorbing material of the present invention can be used in the following manner to obtain suitable results.

先ず制御棒の中性子吸収材として用いることが出来る。First, it can be used as a neutron absorber in control rods.

この場合種々の点で極めて有利である。This case is extremely advantageous in various respects.

従来のボロンカーバイト入りポイズンチューブに代えて
本発明中性子吸収材を用いると、その構造が一変して極
めて簡略化され、ポイズンチューブ、ブレード等を不用
とし、一つの支持枠だけでたりる。また必夕2に応じて
上記中性子吸収材を積層して、その能力を調整すること
が出来る。これは中性子吸収材の厚さが極めて薄い箔状
である点を巧みに利用することが出来る。更にその能力
を部分的に変化したい場合には中性子吸収材の積層を部
分的に夏化させることによって容易に祷られるという特
徴もある。このように積層しても軽量であるから制御棒
が大型化するおそれは全くない。
When the neutron absorbing material of the present invention is used in place of the conventional boron carbide-containing poison tube, the structure is completely changed and extremely simplified, eliminating the need for poison tubes, blades, etc., and requiring only one support frame. In addition, the ability of the neutron absorbing material can be adjusted by laminating the neutron absorbing materials according to the requirements. This can be done by taking advantage of the fact that the neutron absorbing material is extremely thin in the form of a foil. Furthermore, if it is desired to partially change the ability, this can be easily done by partially summerizing the laminated layers of the neutron absorbing material. Even if they are stacked in this way, there is no risk of the control rod becoming larger because it is lightweight.

また軽量化された制御棒は駆動が容易となり小動機構が
簡略されると共にスピードリミッタを省くことが可能と
なる。この場合の使用温度は約280℃であり、上記中
性子吸収材の結晶化温度は約400℃以上もあるので、
中性子吸収元素の不所望な作用低下にはとんどない。
In addition, the lighter control rod is easier to drive, the small movement mechanism is simplified, and a speed limiter can be omitted. The operating temperature in this case is about 280°C, and the crystallization temperature of the neutron absorbing material is about 400°C or higher, so
There is no limit to the undesirable decrease in the effectiveness of neutron-absorbing elements.

また臨床の中性子吸収材としても使用することが出来る
。すなわち、上記中性子吸収材は箔状であるということ
機械的強度がすぐれていること、及び加工性に極めて優
れていることの利を生かして例えは中性子吸収材を30
0〜400 mの巾の広いもので作り、この一部にプレ
ス等で透孔を設け、この透孔を介して中性子を疾患部に
照射する場合に他の部分を中性子から保護する場合に利
用出来る0 すなわち、例えばガン治療に中性子を患部に照射して使
用する場合である。この場合に患部のみに照射してガン
細胞を絶滅させる等を行っているがこのガン細胞以外の
正常組織が中性子照射を受けない様に遮蔽体として用い
ることが出来る。。この場合、上記中性子吸収材は薄い
ので照射部に密接保持出来るから患部以外の部分を能率
よく保護し得るという特徴を有する。
It can also be used as a clinical neutron absorber. In other words, by taking advantage of the fact that the above-mentioned neutron absorbing material is in the form of foil, has excellent mechanical strength, and is extremely easy to process, for example, the neutron absorbing material can be
It is made of a wide material with a width of 0 to 400 m, and a hole is formed in a part using a press, etc., and when neutrons are irradiated to a diseased area through this hole, it is used to protect other parts from the neutrons. Possible 0 That is, for example, when neutrons are used to irradiate an affected area for cancer treatment. In this case, neutrons are irradiated only to the affected area to exterminate cancer cells, but neutrons can be used as a shield to prevent normal tissues other than cancer cells from receiving neutron irradiation. . In this case, since the neutron absorbing material is thin, it can be held closely to the irradiated area, so that it can efficiently protect areas other than the affected area.

なお鉛を含むr線遮蔽材と本発明上記中性子吸収材とを
併用した中性子及びr線遮蔽体を作ることが出来る。こ
の場合も非晶質の柔軟性を生かして紹み込みして極めて
効果がある。
Note that it is possible to make a neutron and r-ray shielding body using a combination of an r-ray shielding material containing lead and the above-mentioned neutron absorbing material of the present invention. In this case as well, it is extremely effective to utilize the flexibility of amorphous materials.

現用の原子炉使用済燃料は、放射能が高く廃棄物として
処理あるいは再使用の為に回収するまでに数年間使用済
燃料ラックの水槽の中に保管し放射能低減を待つ。その
際、燃料集合体の型で水槽の中に保管し、集合体と集合
体の間にはボロン入アルミニウムが間仕切りとして挿入
されており、飛び出して来た中性子を吸収し核反応が起
こらない様にしている。集合体と集合体の間仕切りに本
発明の非晶質中性子吸収材のうち中性子吸収断面積の大
きい元素を添加した吸収判な使用すると集合体と集合体
の距離を短縮することが出来る0これは益々需要の高ま
る原子力発電に伴なう使用済燃料の保管に使用済燃料ラ
ック容積拡大に対して経済的に貢献する。
Spent fuel from current nuclear reactors is highly radioactive and is stored in a water tank in a spent fuel rack for several years, waiting for its radioactivity to reduce before it can be treated as waste or recovered for reuse. At that time, they are stored in a water tank in the form of fuel assemblies, and boron-containing aluminum is inserted between the assemblies as a partition to absorb the neutrons that fly out and prevent nuclear reactions from occurring. I have to. If the amorphous neutron absorbing material of the present invention containing an element with a large neutron absorption cross section is used as a partition between the aggregates, the distance between the aggregates can be shortened. This contributes economically to expanding the capacity of spent fuel racks for storing spent fuel as demand for nuclear power generation increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の中性子吸収材であるポイズンチューブの
一部を断面して内部を示す側面図、第2図はその中性子
吸収能力特性図、第3図は本発明に係る中性子吸収材の
製造装置の一部を示す側面図である。 代理人弁理士 則 近 憲 佑(龜か1名)第1図  
第2図 第8図 川崎市幸区小向東芝町1東京芝 浦電気株式会社総合研究所内
Fig. 1 is a side view showing the inside of a poison tube, which is a conventional neutron absorbing material, with a part cut away, Fig. 2 is a characteristic diagram of its neutron absorption capacity, and Fig. 3 is a production of the neutron absorbing material according to the present invention. FIG. 2 is a side view showing a part of the device. Representative Patent Attorney Noriyuki Chika (one person) Figure 1
Figure 2 Figure 8 Inside the Tokyo Shibaura Electric Co., Ltd. Research Center, 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki City

Claims (1)

【特許請求の範囲】 1)  TMloo−a REa で示される非晶質合金からなる事を特徴とする中性子吸
収材。 2)  TMloo−a−bADb RBaで示される
非晶質合金からなる事を特徴とする中性子吸収拐。
[Claims] 1) A neutron absorbing material comprising an amorphous alloy represented by TMloo-a REa. 2) A neutron absorption absorber characterized by being made of an amorphous alloy represented by TMloo-a-bADb RBa.
JP58232831A 1983-12-12 1983-12-12 Neutron absorber Granted JPS59133345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58232831A JPS59133345A (en) 1983-12-12 1983-12-12 Neutron absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58232831A JPS59133345A (en) 1983-12-12 1983-12-12 Neutron absorber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55185100A Division JPS5952225B2 (en) 1980-12-27 1980-12-27 Neutron absorber

Publications (2)

Publication Number Publication Date
JPS59133345A true JPS59133345A (en) 1984-07-31
JPS6144144B2 JPS6144144B2 (en) 1986-10-01

Family

ID=16945468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58232831A Granted JPS59133345A (en) 1983-12-12 1983-12-12 Neutron absorber

Country Status (1)

Country Link
JP (1) JPS59133345A (en)

Also Published As

Publication number Publication date
JPS6144144B2 (en) 1986-10-01

Similar Documents

Publication Publication Date Title
JP2543973B2 (en) Fuel element with oxidation resistant coating
JP3094778B2 (en) Fuel assembly for light water reactor, parts and alloys used therefor, and manufacturing method
CN106489180B (en) Shielding material for fusion reactor
EP0055371A1 (en) Neutron absorber, neutron absorber assembly utilizing the same, and other uses thereof
KR101754754B1 (en) Storage container for spent nuclear fuel
JPH0371078B2 (en)
EP0399222B1 (en) Corrosion resistant zirconium alloys containing copper, nickel and iron
JPS603584A (en) Control rod for nuclear reactor
JP2001066390A (en) Cladding for nuclear reactor with improved crack resistance and corrosion resistance
JPH033917B2 (en)
US3663366A (en) Shroud for a fuel assembly in a nuclear reactor
JPH11202072A (en) Nuclear fuel particle for reactor, nuclear fuel pellet and element
US2872401A (en) Jacketed fuel element
JPS59133345A (en) Neutron absorber
JPS5952225B2 (en) Neutron absorber
JPH0827388B2 (en) Heat resistant radiation shielding material
JPS59133348A (en) Neutron absorber
Sundaram et al. Nuclear fuels and development of nuclear fuel elements
US3725663A (en) Internally moderated heat sources and method of production
Risovany et al. Next generation control rods for fast neutron nuclear reactors
JPS6362716B2 (en)
JP3501106B2 (en) Fuel assembly for light water reactor, parts and alloys used therefor, and manufacturing method
US2910418A (en) Neutronic reactor
JPH11352272A (en) Reactor core and fuel assembly and fuel element used for the core
JPH08285975A (en) Fuel assembly for light-water reactor