JPS59132922A - Removal of dust and sox in exhaust gas - Google Patents

Removal of dust and sox in exhaust gas

Info

Publication number
JPS59132922A
JPS59132922A JP58006648A JP664883A JPS59132922A JP S59132922 A JPS59132922 A JP S59132922A JP 58006648 A JP58006648 A JP 58006648A JP 664883 A JP664883 A JP 664883A JP S59132922 A JPS59132922 A JP S59132922A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
dust
heater
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58006648A
Other languages
Japanese (ja)
Other versions
JPH0148050B2 (en
Inventor
Naoharu Shinoda
篠田 直晴
Atsushi Tatani
多谷 淳
Naohiko Ugawa
直彦 鵜川
Takayoshi Hamada
浜田 高義
Hiroshi Takeda
竹田 紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58006648A priority Critical patent/JPS59132922A/en
Publication of JPS59132922A publication Critical patent/JPS59132922A/en
Publication of JPH0148050B2 publication Critical patent/JPH0148050B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To enable the sufficient rising in the temp. of exhaust gas after wet desulfurization while avoiding acid smut or the corrosion of an apparatus caused by H2SO4 mist, by fixing and removing SO3 in exhaust gas by spraying an alkali liquid to the exhaust gas after dust removal. CONSTITUTION:Exhaust gas containing dust such as the exhaust gas of a coal firing boiler is guided to a first dust collecting apparatus 4 through a denitration apparatus 2 and an air heater 3 while the removed dust (a) is favorably utilized in cement. In the next step, an alkaline aqueous solution or suspension (b) containing NaOH is sprayed to the exhaust gas to fix SO3 in the gas and, thereafter, the treated exhaust gas is guided to a second dust collecting apparatus 5 to collect and remove solid substance (c) such as Na2SO4. The exhaust gas from which dust and SO3 are removed is lowered in temp. by a gas/gas heater 6 and, after SO2 is removed in a wet desulfurization apparatus 7, the treated gas is exhausted while the temp. thereof is raised by the gas/gas heater 6. By this method, the temp. of the exhaust gas at the outlet of the air heater 3 can be set high and the temp. rising of the exhaust gas after desulfurization is sufficiently performed.

Description

【発明の詳細な説明】 本発明は、例えば石炭焚きボイラ排ガスのようなダス)
入びSO2と503(以下両者をSOxと称する。)を
含む排ガスの処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to
The present invention relates to a method for treating exhaust gas containing incoming SO2 and 503 (hereinafter both referred to as SOx).

高温排ガス例えば石炭燃焼ボイラ排ガスのようなダスト
、窒素酸化物(NOxl +硫黄酸化物(SOx)のよ
うに、大気汚染物質を含む排ガスは、一般に次のとおり
、総合的に処理される。
High-temperature exhaust gas, such as coal-fired boiler exhaust gas, containing air pollutants such as dust, nitrogen oxides (NOxl + sulfur oxides (SOx)), is generally treated comprehensively as follows.

ボイラより排出された排ガスにまずアンモニア(NH3
1が注入され、触媒を充填した脱硝反応器で、窒素酸化
物は水と窒素に還元無害化される。
First, ammonia (NH3) is added to the exhaust gas discharged from the boiler.
In a denitrification reactor filled with a catalyst, nitrogen oxides are reduced to water and nitrogen and rendered harmless.

次にエアーヒータでその熱を経済的に回収可能な温度、
一般的には、150〜180cまで熱回収したのち、電
気集塵器又はサイクロン集塵器でダストを除去した後、
湿式脱硫処理される。
Next, set the temperature at which the heat can be economically recovered using an air heater.
Generally, after recovering heat to 150~180c and removing dust with an electric precipitator or cyclone precipitator,
Wet desulfurization treatment.

湿式石灰・石膏法等の湿式脱硫方法では、処理後のガス
が45〜70’Cの水分飽和ガスとなり、そのまま煙突
から排出すると大気と混合して白煙となり、且つ低温の
ために拡散しにくい問題が生じるので、低温排ガスを再
加熱する方法が実用化されている。
In wet desulfurization methods such as the wet lime/gypsum method, the gas after treatment becomes a moisture-saturated gas with a temperature of 45 to 70'C, and if it is discharged from the chimney as it is, it mixes with the atmosphere and becomes white smoke, and is difficult to diffuse due to the low temperature. Since this problem arises, a method of reheating the low temperature exhaust gas has been put into practical use.

再加熱方法としては、流水、油、スチーム等の熱媒によ
る間接加熱方法と、ユングストローム型の熱交換器のよ
うな蓄熱体により直接加熱する方法とがあるが、省エネ
ルギーの観点から後者が最近実用化されるようになり、
中でもガス・ガス・ヒーティング方式と呼称されている
方法が最も望ましいといわれている。〔瀬尾他。
Reheating methods include indirect heating using a heat medium such as running water, oil, or steam, and direct heating using a heat storage body such as a Ljungström heat exchanger, but the latter has recently become popular from the perspective of energy conservation. It has come to be put into practical use,
Among these, a method called the gas-gas heating method is said to be the most desirable. [Seo et al.

「人力原子力発電j Vat、50 、N[L2 + 
P 29〜55(+9791.入び「三菱重工技報」■
ot、17.凪2゜P217〜222(19801〕 このガス・ガス・ヒーティング方式は、湿式脱硫装置入
口の高温ガス(150〜+5OC)と出口の低温ガス(
45〜70℃)とを蓄熱体を循環(回転)することによ
って熱交換し湿式で処理する直前の排ガス温度を下け、
増湿冷却回り用水供給量を減少させて湿式排ガス処理に
伴なう温度降下量を小さく、あわせて湿式脱硫装置を出
たガスを昇温させるいわゆる省エネルギー。
``Man-powered nuclear power generation j Vat, 50, N [L2 +
P 29-55 (+9791. "Mitsubishi Heavy Industries Technical Report" ■
ot, 17. Nagi 2゜P217-222 (19801) This gas-gas heating system uses high-temperature gas (150 to +5OC) at the inlet of the wet desulfurization equipment and low-temperature gas (150 to +5OC) at the outlet.
45 to 70℃) by circulating (rotating) the heat storage body to lower the exhaust gas temperature just before wet treatment.
This is a so-called energy saving method that reduces the amount of water supplied for humidification and cooling to reduce the amount of temperature drop associated with wet exhaust gas treatment, and at the same time raises the temperature of the gas exiting the wet desulfurization equipment.

しかしながらこの方法は、脱硫装置入口の高温ガスを熱
源としているため、熱交換量が高温ガスの温度に左右さ
れる。すなわち、入口ガス温度が低い場合には、湿式排
脱処理後の排ガスの昇温か不充分となり、煙突から排出
された排ガスが所定の温度に達せず、従って白煙が消失
しないこととなる。これを防止するためガス・ガス・°
ヒーティング方式に加えて、スチーム加熱器を設置し湿
式処理後の排ガスを所定温度まで昇温させる方法が提案
゛されているが、省エネルギーの観点からは好ましくな
い。
However, since this method uses the high-temperature gas at the inlet of the desulfurization equipment as a heat source, the amount of heat exchanged depends on the temperature of the high-temperature gas. That is, when the inlet gas temperature is low, the temperature of the exhaust gas after the wet exhaust treatment is insufficient, and the exhaust gas discharged from the chimney does not reach a predetermined temperature, so that the white smoke does not disappear. To prevent this, gas
In addition to the heating method, a method has been proposed in which a steam heater is installed to raise the temperature of the exhaust gas after wet treatment to a predetermined temperature, but this method is not preferred from the viewpoint of energy saving.

また、湿式脱硫装置入口の排ガス温度すなわち前段のエ
アー・ヒータの出口温度を上げることが考えられるが、
これは次の点で問題を生じる。
It is also possible to raise the exhaust gas temperature at the inlet of the wet desulfurization equipment, that is, the temperature at the outlet of the air heater in the previous stage.
This causes problems in the following points.

即ち、一般に火炉から排出されるガスは、燃料中に含ま
れるイオウ分の一部が燃焼の際酸化されて生成した三酸
化イオウガス(SO31を含むっさらに最近のように、
脱硝装置が設置される場合には、脱硝反応に付随して、
二酸化イオウ(SO2)の05〜4%が酸化されてSO
8を生成し火炉で生成したS03に上乗せされる。従っ
て1エアー・ピータ人口に到達するS03は、燃料中の
イオウ分により5〜50 ppmに達することとなる。
In other words, the gas discharged from the furnace is generally sulfur trioxide gas (including SO31, which has recently been produced by oxidizing a portion of the sulfur contained in the fuel during combustion).
When a denitrification device is installed, accompanying the denitrification reaction,
05-4% of sulfur dioxide (SO2) is oxidized to SO
8 is generated and added to S03 generated in the furnace. Therefore, S03 reaching 1 air-peta population will reach 5 to 50 ppm depending on the sulfur content in the fuel.

到達したS03は、エアー・ヒータを通過時排ガス温度
が下がり露点以下となるため、一部は下記凝縮反応によ
り硫酸ミス) (H2So4+に転化 so3+ H2O−U2S○4 し、さらに同伴されるダストに付着し、後段の集塵器で
捕集される。平衡条件より、エアー・ヒータ出口の温度
の高い場合には、上記凝縮反応による[(2So4凝縮
量が少ないためエアーヒータ出口ガス中に残存するS0
3ガス量が多くなる。
When the reached S03 passes through the air heater, the exhaust gas temperature decreases and becomes below the dew point, so some of it is converted to H2So4+ (so3+ H2O-U2S○4) and is attached to the entrained dust. When the temperature at the air heater outlet is higher than the equilibrium condition, the condensation reaction [(2So4 is small, so the amount of S0 remaining in the air heater outlet gas is
3 The amount of gas increases.

エアー・ヒータ出口SO3ガスは、排ガス中の温度の降
下がないため、はとんどが前記脱硫装置人口に到達する
。S03ガスはガス・ガス・ヒータでの温度降下により
H2SO,ミストとなるが、生成したH、So4ミスト
は微粒子であるため一部が脱硫装置を通過し煙突より排
出されることとなり、アシントスマットや白煙等の原因
となることが懸念される。又、ガス・ガス・ヒータ入び
脱硫装置の材料がH2SO4により腐食される恐れが高
い。
Since there is no temperature drop in the exhaust gas, most of the air heater outlet SO3 gas reaches the desulfurization device population. S03 gas turns into H2SO and mist due to the temperature drop in the gas-gas heater, but since the generated H and So4 mist are fine particles, a portion passes through the desulfurization equipment and is discharged from the chimney, resulting in asyntosmut. There is a concern that it may cause white smoke, etc. Furthermore, there is a high possibility that the material of the desulfurization equipment containing the gas heater will be corroded by H2SO4.

従来こうした問題を防止する方法として、石油焚きエア
ーヒータ出口排ガス中にNH3を注入して、酸性硫酸ア
ンモニウム(NH4F(So、 l又は硫酸アンモニウ
ム((NH,l、、 SO4+などのSO3とNH,の
反応物(以下M3.− so、反応物とする)とし1こ
れを後段の集塵器で捕集する方法が実用化されている。
Conventionally, as a method to prevent these problems, NH3 is injected into the exhaust gas at the outlet of an oil-fired air heater to produce a reaction product of SO3 and NH, such as acidic ammonium sulfate (NH4F(So, 1) or ammonium sulfate ((NH, 1, SO4+)). (hereinafter referred to as M3.-so, reactant) 1 A method of collecting this in a subsequent dust collector has been put into practical use.

「三菱重工技報J voz、+ 0 、随5.P2+1
〜P21B(1975) しかし、この方法を石炭焚きボイラーのようにダストを
多量に含心排ガス中のS03除去対策として適用す/る
と次の点で不都合である。
“Mitsubishi Heavy Industries Technical Report J voz, + 0, Sui 5.P2+1
~P21B (1975) However, if this method is applied as a measure to remove S03 from core-containing exhaust gas in a large amount of dust, such as in a coal-fired boiler, there are the following disadvantages.

すなわち、を集塵器で、N[(3−So3 反応物とダ
ストの両者が捕集されることにより、大量のNH3−S
o3反応物混入ダス[の処理が問題になる。
That is, by collecting both the N[(3-So3 reactant and dust) in the dust collector, a large amount of NH3-S
Treatment of o3 reactant-contaminated waste becomes a problem.

従来、石炭焚きボイラーのダストは、フライアンシュセ
メント用として有効利用あるいは埋立て投棄されている
が、前者の場合は混水時のNH,臭の発生、強度の低下
、後者は、 NH3臭及び地下水等への漏えい等が問題
とされている。
Conventionally, dust from coal-fired boilers has been effectively used for frying cement or disposed of in landfills, but the former produces NH3 and odor when mixed with water and reduces strength, while the latter produces NH3 odor and Leakage into groundwater, etc. is a problem.

従来、実用化されている重油焚きの場臼には、ダスト量
が石炭焚きの場合に比較して極端に少なく、N[(3−
SO5反応物が混入したダスト処理量が少ないため、処
理は比較的容易であるが、前述のとおりダスト量が多い
場合には、大量のダストを処理することになり問題にな
る。
Conventionally, the amount of dust in heavy oil-fired mills that have been put into practical use is extremely small compared to coal-fired mills, and N
Since the amount of dust mixed with the SO5 reactant to be treated is small, the treatment is relatively easy, but as described above, if the amount of dust is large, a large amount of dust must be treated, which poses a problem.

以上のようにダス)JびSOx k含む排ガスの処理に
あってVi合理的な処理方法がまだ確立されるに至って
いなかった。
As described above, a reasonable method for treating exhaust gas containing SOx and SOx has not yet been established.

本発明は、このような問題点を解消すべく鋭意検討した
結果見い出した方法であり、排ガスを第1の集塵装置を
通してダストを除去した後、排ガス中にアルカリ性の懸
濁液父は水溶液を噴霧して排ガス中のSO3を固定し、
乾燥固形物を第2集塵装置で捕集し、更に排ガスを熱交
換してから湿式排煙脱硫装置に導いてS02を吸収する
ことを特徴とする排ガス中のダスト人びSOxの除去方
法である。
The present invention is a method discovered as a result of intensive studies to solve these problems. After removing dust from exhaust gas through a first dust collector, the alkaline suspension in the exhaust gas is replaced with an aqueous solution. Fixes SO3 in exhaust gas by spraying,
A method for removing dust and SOx in exhaust gas, which comprises collecting dry solids in a second dust collector, and further heat-exchanging the exhaust gas before guiding it to a wet flue gas desulfurization device to absorb SO2. be.

本発明方法の採用によって、従来法よりもエアーヒータ
ー出口の排ガス温度を高くしてガス・ガスヒーターでの
熱交換効率の向上を計っても、  [(2So4 ミス
トによるアシッドスマットや白煙の問題がなくなり、更
にガス・ガス・ヒーター及び脱硫装置の材料腐食も回避
できると共に、湿式排脱処理後の排ガスの昇温が充分と
なり、煙突からの排ガス拡散も良好となる効果が得られ
る。
By adopting the method of the present invention, even if the temperature of the exhaust gas at the outlet of the air heater is made higher than that of the conventional method to improve the heat exchange efficiency between gas and gas heaters, the problems of acid smut and white smoke caused by 2So4 mist will not be solved. Furthermore, material corrosion of the gas heater and desulfurization equipment can be avoided, and the temperature of the exhaust gas after the wet exhaust treatment is sufficiently increased, and the exhaust gas diffusion from the chimney is also improved.

本発明方法の最も特徴的とする点け、排ガスを第1の集
塵装置を通してダスト処理量した後。
The most characteristic feature of the method of the present invention is after the exhaust gas has been subjected to dust treatment through the first dust collector.

排ガス中にアルカリ性の懸濁液又は水溶液を噴霧する点
にある。
The point is to spray an alkaline suspension or aqueous solution into the exhaust gas.

今までにスプレードライヤ一方式で排煙脱硫する方法が
知られている。例えば、特公昭57−25522号に示
されているように、苛性ソーダ水溶液をスプレードライ
してSO2を吸収する方法などが公知である。
Until now, a method of exhaust gas desulfurization using a spray dryer is known. For example, as shown in Japanese Patent Publication No. 57-25522, a method is known in which SO2 is absorbed by spray drying a caustic soda aqueous solution.

そこで5本発明者らは、この苛性ソーダ水溶液のスプレ
ードライでSOxを処理する研究に於いて、スプレード
ライ後の排ガス温度が15DC以上の範囲にあればS0
3だけが選択的に固定され、SO□は全く固定されない
ことを確認した。
Therefore, in our research on treating SOx by spray drying this caustic soda aqueous solution, we found that if the exhaust gas temperature after spray drying is in the range of 15 DC or higher, SO
It was confirmed that only SO□ was selectively fixed, and SO□ was not fixed at all.

即ち、スプレードライ後の排ガスを第2の集塵装置に通
すと、第2の集塵装置で捕集される固形物にはCOD原
因となる亜硫酸塩は含まれず1固形物処理に都合の良い
結果が得られる利点がある。
In other words, when the exhaust gas after spray drying is passed through the second dust collector, the solids collected by the second dust collector do not contain sulfites, which cause COD, and are convenient for solids treatment. It has the advantage of yielding results.

更に、So、除去の為にスプレーする液量は僅かでも効
果があるため、スプレードライによる温度降下は10℃
以内の範囲でSO8の固定効果が得られる。従って、排
ガス後流側にあるカス・ガス・ヒーターでの熱交換によ
る湿式脱硫後の排ガス再加熱時の熱効果も充分なものが
得られる利点がある。
Furthermore, since even a small amount of liquid is sprayed to remove So, it is effective, so the temperature drop due to spray drying is only 10℃.
A fixed effect of SO8 can be obtained within the range of Therefore, there is an advantage that a sufficient thermal effect can be obtained when the exhaust gas is reheated after wet desulfurization by heat exchange with the waste gas heater located on the downstream side of the exhaust gas.

このような利点を有する本発明方法を石炭燃焼ボイラ排
ガスの脱硝、除塵、脱硫、熱回収の各システムを合理的
に組み合せた排煙総合処理システムで採用すれば、エア
ーヒーター出口の排ガス温度を下げることなく、即ちガ
ス・ガス・ヒーターの後段にスチームガスヒータ等を追
加設置することなく、煙突入口の排ガス温度を所定温度
暉まで昇温することができる。そして、第1の集塵装置
で捕集したダストはフライアンシーセメントなどに14
利用し、SO2は湿式石灰石膏法排煙脱硫装置で吸収し
て石膏として回収すると共に、S03はスプレードライ
ヤーで選択的に固定されて第2の集塵装置で捕集する。
If the method of the present invention, which has these advantages, is adopted in a comprehensive flue gas treatment system that rationally combines denitrification, dust removal, desulfurization, and heat recovery systems for coal-fired boiler flue gas, the temperature of the flue gas at the outlet of the air heater can be lowered. In other words, the exhaust gas temperature at the smoke inlet can be raised to a predetermined temperature without additionally installing a steam gas heater or the like after the gas heater. The dust collected by the first dust collector is then placed on frying cement etc.
The SO2 is absorbed by a wet lime plaster method flue gas desulfurization device and recovered as gypsum, while the S03 is selectively fixed by a spray dryer and collected by a second dust collector.

この第2の集塵装置で捕集された120D原囚となる亜
硫酸塩を含まない固形物は容易に処理し得るものである
。もちろん、ガス・ガス・ヒーター及び脱硫装置でのE
(2So4ミストによるトラブルも解消できる。
The sulfite-free solid matter, which becomes the 120D original prisoner, collected by the second dust collector can be easily disposed of. Of course, E
(Trouble caused by 2So4 mist can also be resolved.

以下、本発明方法の一実施態様例を図っで基づいて説明
する0 第1図において、石炭焚きボイラ1から排出される排ガ
スは、脱硝装置2でNOxが除去されit 7M、エア
ーヒータ5に供給される。脱硝装置2ではS02の一部
が酸化されて5o3vc転化するため、エアーピーク5
人口に到達するS03量は比較的大とナル。例えば、5
02a度1000 r、pm、ボイラ1人び脱硝装置2
での酸化率をそれぞれ1%及び2条と仮定すれば2工ア
ーヒータ5人口のSO3濃度は50 ppmと′なる。
Hereinafter, one embodiment of the method of the present invention will be explained based on the diagram. In FIG. 1, exhaust gas discharged from a coal-fired boiler 1 is subjected to NOx removal in a denitrification device 2, and is then supplied to an air heater 5. be done. In the denitration equipment 2, a part of S02 is oxidized and converted to 5o3vc, so the air peak 5
The amount of S03 reaching the population is relatively large. For example, 5
02a degree 1000r, pm, boiler 1 person denitration equipment 2
Assuming that the oxidation rates are 1% and 2, respectively, the SO3 concentration in the 2-construction Arheater 5 population will be 50 ppm.

エア−ヒータ5出口の排ガス温度は一般に150〜18
0Cであるが、硫酸露点とSO3濃度の関係を示す第2
図から明らかなように、ガス温度が高い場合にはSO3
濃度が大であっても露点温度に達せず、従ってエア−ヒ
ータ5出口には大部分S03ガスが残存することになる
The exhaust gas temperature at the outlet of the air heater 5 is generally 150 to 18
0C, but the second one showing the relationship between sulfuric acid dew point and SO3 concentration
As is clear from the figure, when the gas temperature is high, SO3
Even if the concentration is high, the dew point temperature is not reached, and therefore most of the S03 gas remains at the outlet of the air heater 5.

次に、エア−ヒータ5出口の排ガスは、まず第1の集塵
装置4に供給され、ここでダスtの大部分が除去される
。このダスト中には、脱硝装置2から僅かに排出される
NH3が付着しているものの、その量は極く僅かである
ため、従来どおりラインaより糸外にとりだしセメント
への有効利用、投棄等ができるものである。次に、大部
分のダストを除去された排ガスへ、ラインbよりNaO
H水溶液をスプレーし、ガス中のS03を固定化せしめ
た後、排ガスは第2の集塵装置5へ供給される。Na0
E(の注入量は通常SO8量の1倍(モル比)以上が注
入されてし)る。注入されたNaOHij SO3と反
応し、Na2804を生成する。
Next, the exhaust gas at the outlet of the air heater 5 is first supplied to the first dust collector 4, where most of the dust is removed. Although this dust has a small amount of NH3 discharged from the denitrification device 2 attached to it, the amount is very small, so it cannot be taken out from line a as before and used effectively for cement or dumped. It is possible. Next, NaO is introduced from line b into the exhaust gas from which most of the dust has been removed.
After spraying the H aqueous solution to fix S03 in the gas, the exhaust gas is supplied to the second dust collector 5. Na0
E (the amount of injection is usually more than one times (molar ratio) the amount of SO8). Reacts with the injected NaOHij SO3 to generate Na2804.

また、スプレードライによる排ガス温度降下は100以
内である。
Further, the exhaust gas temperature drop due to spray drying is within 100%.

第2の集塵装置5ではNa2804を捕集し、これはラ
インCにより排出される。
The second dust collector 5 collects Na2804, which is discharged through line C.

ダスト、S○、を除去された排ガスは、さらにガス・ガ
ス・ヒータ6(未処理側)に供給され、排ガス温度を7
0〜90Cまで降下させたのち、脱硫装置7へ供給され
る。ガス・ガス・ヒータ6(未処理側)に供給されるガ
ス中には、SO8が含まれていないため、ガス・ガス・
ヒータ6内での排ガス温度降下によるH2SO4ミス)
が生成せず、従って煙突8から白煙が排出されることも
なく、又ガス・ガス・ヒータ6及び脱流装置7の材料の
硫酸腐食も回避できることとなる。
The exhaust gas from which dust and S○ have been removed is further supplied to the gas heater 6 (untreated side), and the exhaust gas temperature is lowered to 7
After lowering the temperature to 0 to 90C, it is supplied to the desulfurizer 7. The gas supplied to the gas heater 6 (untreated side) does not contain SO8, so the gas
(H2SO4 mistake due to exhaust gas temperature drop in heater 6)
Therefore, white smoke is not discharged from the chimney 8, and corrosion of the materials of the gas heater 6 and deflow device 7 by sulfuric acid can be avoided.

さらに、脱硫装置7でSO□を除去された排ガスば、再
びガス・ガス・ヒータ6(処理側)で昇温されて煙突8
より排出されるが、本発明方法によればガス・ガス・ヒ
ータ6(未処理側)に供給される排ガス温度は、前述の
とおり最高180C程度まで温度を上げて設定すること
が可能であるので、ガス・ガス・ヒータ6(処理側)に
脱硫装置7より供給される排ガスの昇温か充分にできる
ため1.特にスチームガスヒータ等の追カロ設置を必要
としない。
Furthermore, the exhaust gas from which SO□ has been removed by the desulfurization device 7 is heated again by the gas heater 6 (processing side) and is heated to the chimney 8.
However, according to the method of the present invention, the temperature of the exhaust gas supplied to the gas heater 6 (untreated side) can be set to a maximum of about 180C as described above. 1. Because the temperature of the exhaust gas supplied from the desulfurization device 7 to the gas heater 6 (processing side) can be sufficiently increased. In particular, there is no need to install additional equipment such as a steam gas heater.

以上のとおり本発明方法を適用することにより、排ガス
中のSO3を比較的高温のままで除去できるため、ガス
・ガス・ヒータ汲び脱硫装置での52so、 ミストに
起因する材料間食を回避しつつ、煙突人口温度を所定温
度迄昇温できることとなる。
As described above, by applying the method of the present invention, SO3 in exhaust gas can be removed at a relatively high temperature, while avoiding material snacking caused by 52so and mist in gas/gas heater pumping desulfurization equipment. , the chimney population temperature can be raised to a predetermined temperature.

実施例 第1図に示したフロー・シートで構成される排煙処理試
験装置に石炭焚きボイラ排ガス4000m3N/Hを供
給し、各装置前後のガス性状を測定したところ、第1表
の結果を得た。
Example 4,000 m3N/H of coal-fired boiler exhaust gas was supplied to the flue gas treatment test equipment consisting of the flow sheet shown in Figure 1, and the gas properties before and after each equipment were measured, and the results shown in Table 1 were obtained. Ta.

なお、第2電気集塵器5人ロダクトには0.74mol
/lのNaOH水溶液をスプレーノズルから21t/h
で注入したが、このNa0E(水溶液は湿式石灰石膏法
排煙脱硫装置7からの排水にNaOHを溶解させて調整
したものを使用した。これに、−よって排水処理も不要
になるという効果が得られた。
In addition, 0.74 mol is added to the second electrostatic precipitator 5-man robot.
/l of NaOH aqueous solution from a spray nozzle at 21t/h.
This Na0E (aqueous solution was prepared by dissolving NaOH in the waste water from the wet lime plaster method flue gas desulfurization equipment 7) was used. It was done.

またガス・ガス・ヒータ6(未処理側)出口煙道に設置
した5S−41テストピースの重量減量から推算した腐
食量は0.0107年以下であり、目視結果からも腐食
の傾向はほとんど認められなかった。
In addition, the amount of corrosion estimated from the weight loss of the 5S-41 test piece installed at the outlet flue of gas heater 6 (untreated side) was less than 0.0107 years, and almost no corrosion tendency was observed from the visual results. I couldn't.

比較例 第2集塵器5人口にNaOH水溶液を注入するのを停止
し、他は実施例と同一条件とした場合について各装置@
後のガス性状を測定し第2表の結果を得た。
Comparative Example When the injection of NaOH aqueous solution into the second dust collector 5 was stopped and the other conditions were the same as in the example, each device @
The subsequent gas properties were measured and the results shown in Table 2 were obtained.

またガス・ガス・ヒータ6(未処理側)出口煙道に設置
した5S−41テストピースの重量減から推算した腐食
量は1.6 yar/年となり、目視による観察からも
腐食が認められた。
In addition, the amount of corrosion estimated from the weight loss of the 5S-41 test piece installed at the outlet flue of gas heater 6 (untreated side) was 1.6 yar/year, and corrosion was also confirmed by visual observation. .

以上の実施例及び比較例から第2集塵装置5人口へのN
aOH水溶液の注入効果が認められた。
From the above examples and comparative examples, N to the second dust collector 5 population
The injection effect of aOH aqueous solution was observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様例を示す図であり、第2図は
H2S O,の露点とSO2濃度を示す平衡図である。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is an equilibrium diagram showing the dew point of H2SO2 and the SO2 concentration.

Claims (1)

【特許請求の範囲】 (11 ダスト入びSOXを含む燃焼排ガスを浄化する排ガス処
理方法に於いて、排ガスを第1の集塵装置を通してダス
トを除去した後、排ガス中にアルカリ性の懸濁液又は水
溶液を噴霧して排ガス中のS03を固定し、乾燥固形物
を第2の集塵装置で捕集した後、排ガスを湿式排煙脱硫
装置に導いてS02を吸収することを特徴とする排ガス
中のダスト入びSOxの除去方法。 (2) 排ガス中に噴霧するアルカリ性の懸濁液又は水溶液に湿
式排煙脱硫装置から出る排水を利用することを特徴とす
る特許請求の範囲(1)に記載の方法。
[Claims] (11) In an exhaust gas treatment method for purifying combustion exhaust gas containing dust-containing SOX, after dust is removed from the exhaust gas through a first dust collector, an alkaline suspension or After fixing S03 in the exhaust gas by spraying an aqueous solution and collecting dry solids in a second dust collector, the exhaust gas is guided to a wet flue gas desulfurization device to absorb S02 in the exhaust gas. (2) A method for removing SOx contained in dust. (2) A method according to claim (1), characterized in that wastewater discharged from a wet flue gas desulfurization device is used as an alkaline suspension or aqueous solution to be sprayed into the exhaust gas. the method of.
JP58006648A 1983-01-20 1983-01-20 Removal of dust and sox in exhaust gas Granted JPS59132922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58006648A JPS59132922A (en) 1983-01-20 1983-01-20 Removal of dust and sox in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58006648A JPS59132922A (en) 1983-01-20 1983-01-20 Removal of dust and sox in exhaust gas

Publications (2)

Publication Number Publication Date
JPS59132922A true JPS59132922A (en) 1984-07-31
JPH0148050B2 JPH0148050B2 (en) 1989-10-17

Family

ID=11644194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006648A Granted JPS59132922A (en) 1983-01-20 1983-01-20 Removal of dust and sox in exhaust gas

Country Status (1)

Country Link
JP (1) JPS59132922A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197130A (en) * 1986-02-24 1987-08-31 Kansai Electric Power Co Inc:The Method for treating exhaust gas
CN102423594A (en) * 2011-09-01 2012-04-25 湖南湘达环保工程有限公司 Method and equipment for dedusting and desulphurization of flue gas in bagasse coal powder boiler
CN106422706A (en) * 2016-11-28 2017-02-22 秦皇岛玻璃工业研究设计院 Atomizing nozzle, desulfurization system and desulfurization method of glass melting furnace flue gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197130A (en) * 1986-02-24 1987-08-31 Kansai Electric Power Co Inc:The Method for treating exhaust gas
CN102423594A (en) * 2011-09-01 2012-04-25 湖南湘达环保工程有限公司 Method and equipment for dedusting and desulphurization of flue gas in bagasse coal powder boiler
CN106422706A (en) * 2016-11-28 2017-02-22 秦皇岛玻璃工业研究设计院 Atomizing nozzle, desulfurization system and desulfurization method of glass melting furnace flue gas

Also Published As

Publication number Publication date
JPH0148050B2 (en) 1989-10-17

Similar Documents

Publication Publication Date Title
US8877152B2 (en) Oxidation system and method for cleaning waste combustion flue gas
JP3676032B2 (en) Smoke exhaust treatment facility and smoke exhaust treatment method
CN110860196A (en) Desulfurization and denitrification system for cement flue gas
CN110075681B (en) Dry desulfurization and denitrification device and method suitable for cement kiln flue gas
WO2014103682A1 (en) Exhaust gas processing equipment and gas turbine power generation system using same
CN109731472B (en) Energy-saving boiler flue gas purification system and method
US20110308436A1 (en) System and Method for Improved Heat Recovery from Flue Gases with High SO3 Concentrations
CN212440707U (en) Development of desulfurization, denitrification and dust removal integrated technology
CN109876623B (en) Zero release of coal-fired steam power plant flue gas pollutant and filth recovery system
US6096279A (en) Flue gas treating process and system
JPS59132922A (en) Removal of dust and sox in exhaust gas
CN111054201A (en) Development of desulfurization, denitrification and dust removal integrated technology
JPS5990617A (en) Treatment of waste gas
CN106582226B (en) It is a kind of using ammonia-contaminated gas as the Denitration in Boiler technique of denitrfying agent
JP3846942B2 (en) Method and apparatus for recovering sulfuric acid from waste sulfuric acid
JP2000325744A (en) Exhaust gas treatment apparatus
JP3358904B2 (en) Exhaust gas treatment method
CN208968298U (en) A kind of industrial furnace low-temperature flue gas waste heat utilizes and desulfurization nitre eliminating white smoke integral system
CN113144848A (en) Method for treating tail gas from acid production by low-temperature SCR (selective catalytic reduction) process by using conversion heat of acid production
GB2157191A (en) Removing SO2 and SO3 from waste gas
JPS58174222A (en) Treatment of waste gas
CN111686560A (en) Sintering machine head smoke whitening technology
JP2725784B2 (en) Flue gas desulfurization method
JP2000053980A (en) Purification of gas
PL144352B1 (en) Method of cooling combustion gases before desulfurizing them at low temperature