JPS59132566A - Forming method of cathode plate for alkaline battery - Google Patents

Forming method of cathode plate for alkaline battery

Info

Publication number
JPS59132566A
JPS59132566A JP58008209A JP820983A JPS59132566A JP S59132566 A JPS59132566 A JP S59132566A JP 58008209 A JP58008209 A JP 58008209A JP 820983 A JP820983 A JP 820983A JP S59132566 A JPS59132566 A JP S59132566A
Authority
JP
Japan
Prior art keywords
amount
formation
forming
charging
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58008209A
Other languages
Japanese (ja)
Other versions
JPH0416906B2 (en
Inventor
Kensuke Nakatani
中谷 謙助
Takahisa Awajiya
淡路谷 隆久
Susumu Tanimoto
谷本 進
Mitsuo Hasegawa
光男 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58008209A priority Critical patent/JPS59132566A/en
Publication of JPS59132566A publication Critical patent/JPS59132566A/en
Publication of JPH0416906B2 publication Critical patent/JPH0416906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To decrease forming time by controlling the amount of NO3<-> ions in a plate before formation, forming current, and the amount of charging electricity for fomation in formation of a cathode plate filled with an active material by chemical impregnation. CONSTITUTION:A cathode plate 10 for an alkaline battery, which is filled with nickel hydroxide in a sintered nickel substrate by chemical impregnation, is formed with a charging bath 1 and a discharging bath 2 which are filled with an electrolyte, and equipment having a set of counter electrodes 8 and 9, rotating rollers 6 and 7, and electricity supply rollers 4 and 5. In formation, NO3<-> ions in the plate before formation is limited to 300ppm or less, forming current to 4-15C, and the amount of charging electricity for forming to 20-60% of the capacity of the plate. When forming current is large, the amount of charging electricity for forming is decreased and tension is applied to the plate. Therefore, gassing is suppressed even by increasing forming current and forming time is decreased.

Description

【発明の詳細な説明】 −(イ)産業上の利用分野 本発明は、化学含浸法で活物質を充填したアルカリ電池
用陽極板の化成法に関する。
DETAILED DESCRIPTION OF THE INVENTION - (A) Field of Industrial Application The present invention relates to a method for chemically forming an anode plate for an alkaline battery filled with an active material by a chemical impregnation method.

く口)従  来  技  術 従来よりアルカリ蓄電池用焼結式陽極板の製法として、
ニッケル焼結基体に硝酸二・ンケルの水溶液あるいは溶
融塩を含浸し、次いでアル汝り中で中和し、焼結基体内
に活物質としてニッケルの水酸化物を沈着せしめる化学
含浸法が用いられている。化学含浸法は、その製法より
極板上の硝酸根を完全に除去することは困難であり、こ
の含浸工程で残留した硝酸根を除却するため、活物質を
活性化すしめ充電効率を高めて適当な範囲に調節するこ
とにより電池の密閉後の陽陰極板の充電バランスをとる
ため、及び焼結基体の孔中の水酸化物を収縮さけ、極板
を巻回する作業を容易にするために化成が行なわれてい
る。
Conventional technology As a manufacturing method for sintered anode plates for alkaline storage batteries,
A chemical impregnation method is used in which a nickel sintered substrate is impregnated with an aqueous solution or molten salt of dinitrate, then neutralized in alkaline solution, and nickel hydroxide is deposited as an active material within the sintered substrate. ing. With the chemical impregnation method, it is difficult to completely remove the nitrate radicals on the electrode plate compared to the manufacturing method.In order to remove the nitrate radicals remaining in this impregnation process, the active material is activated and the charging efficiency is increased. In order to balance the charging of the anode and cathode plates after the battery is sealed by adjusting the charge within a certain range, and to avoid shrinkage of hydroxide in the pores of the sintered substrate and to facilitate the work of winding the electrode plates. Chemical formation is being carried out.

化成法にはハツチ式化成法及び連続化成法が知  ゛ら
れているが、作業性の面から連続化成法が用いられる。
The Hutch type chemical conversion method and the continuous chemical conversion method are known as chemical conversion methods, but the continuous chemical conversion method is used from the viewpoint of workability.

この連続化成法は、第1図に示す化成装置を用いて行な
われる。この図面において、り1)、(2)は充電槽及
び放電槽であり、これら各種(1)、〈2)は電解液(
3)で満たされ、と方に夫々給電ローラ(4)及び(5
)を、内部に夫々回転ローラ(6)及び<7)と、一対
の対極(8)及び(9)とを具備しており、各給電ロー
ラ(4)(5)及び対極(8)(9)は夫々電源に接続
されている。極板(10)は巻出部(11)から出て巻
取部(12)で巻き取られる間に、充電槽(1)及び放
電槽(2)を通り各槽内で対極(8)及び(9)と対向
する際に電解きれ、放TL槽(2)を出たところで極板
(10)の化或は終了する。この時、極板(1o)がニ
ック゛ル陽極であれは、充電槽(1)の給電ローラ(4
)は電源の正極に、対極(8)は電源の負極に接続きれ
、放電槽(2)では給電ローラ(5)及び対極(9)は
この逆に電源と接続きれる。
This continuous chemical conversion method is carried out using a chemical conversion apparatus shown in FIG. In this drawing, 1) and (2) are a charging tank and a discharging tank, and these various types (1) and 2 are electrolytes (
3), and the power supply rollers (4) and (5) are
) is equipped with rotating rollers (6) and <7) and a pair of counter electrodes (8) and (9), respectively, and each power supply roller (4) (5) and counter electrode (8) (9) ) are each connected to a power supply. While the electrode plate (10) comes out of the unwinding part (11) and is wound up in the winding part (12), it passes through a charging tank (1) and a discharging tank (2), and a counter electrode (8) and a counter electrode (8) are formed in each tank. (9), the electrolysis is completed and the electrode plate (10) is formed or completed when it exits the discharge TL tank (2). At this time, if the electrode plate (1o) is a nickel anode, the power supply roller (4) of the charging tank (1)
) can be connected to the positive electrode of the power source, and the counter electrode (8) can be connected to the negative electrode of the power source.In the discharge tank (2), the power supply roller (5) and the counter electrode (9) can be connected to the power source in the opposite way.

次に満充電の極板を1時間で完全放電させる電流量、す
なわち100A Hの容量をもつ極板に対する100A
の電流をICとすると(以下Cはこの電流量として用い
る)、一般的な化成条件は、充電を01〜0.5Cで極
板容量の150〜250%に相当する時間待ない、放電
も同一電流で行なうものであり、充放電に12〜24時
間が必要ときれている。化成充電電流が比較的小きいの
は、IC以上の大電流で充電を行なった場合、発生する
ガスにより焼結板の一部が極板より剥離するためである
。また化成時間を短縮するために、充電時間を短くして
満充電に至らせない部分化成も考えられるが、硝酸根の
除去が不完全、極板の柔軟性が不充分、及び活性度が低
い等の問題点があった。
Next, the amount of current to completely discharge a fully charged plate in one hour, that is, 100A for a plate with a capacity of 100A H.
Assuming that the current is IC (hereinafter C will be used as this current amount), the general chemical formation conditions are charging at 01 to 0.5 C, waiting for a time equivalent to 150 to 250% of the plate capacity, and discharging at the same rate. It uses electric current and requires 12 to 24 hours to charge and discharge. The reason why the chemical charging current is relatively small is that when charging is performed with a large current higher than that of the IC, a part of the sintered plate is peeled off from the electrode plate due to the generated gas. In order to shorten the formation time, it is possible to shorten the charging time and perform partial formation without reaching full charge, but the removal of nitrate radicals is incomplete, the flexibility of the electrode plate is insufficient, and the activity is low. There were problems such as.

(ハ)発 明 の 目 的 本発明は係る点に鑑み発明されたものにして、化成電流
を4〜15Cと従来例に比し太きくして化成時間を短縮
し、又その化成電流によるガス発生を抑止するへく化成
充電電気量、を規制した新規な化成法を提供せんとする
ものである。
(c) Purpose of the Invention The present invention was invented in view of the above points, and the formation current is increased to 4 to 15C compared to the conventional example, shortening the formation time, and gas generation due to the formation current. The purpose of this project is to provide a new chemical conversion method that regulates the amount of electricity charged in chemical conversion in order to suppress this.

(ニ)発明の構成 本発明は、化学含浸法で活物質を充填したアルカリ電池
用陽極板の化成工程において、化成前の極板中の硝酸根
を300ppm以下とし、化成電流を4〜15C及び化
成充電電気量を極板容量の20〜60%の範囲で、化成
電流が大きいときに化成充電電気量を小ヒくシ、極板に
引張りテンションをかけて充放電を行なうものである (ホ)実   施   例 焼結式ニッケル基板に化学含浸法を用いて水酸化ニッケ
ルを含浸し、水洗により硝酸根量が38ppmである極
板を、従来技術で記載した化成装置で化成を行なった。
(D) Structure of the Invention The present invention provides that, in the chemical formation process of an anode plate for an alkaline battery filled with an active material by a chemical impregnation method, the content of nitrate radicals in the electrode plate before formation is set to 300 ppm or less, and the formation current is set at 4 to 15C. In this method, charging and discharging is performed by setting the amount of electricity for chemical charging in the range of 20 to 60% of the capacity of the electrode plate, reducing the amount of electricity for chemical charging when the chemical current is large, and applying tensile tension to the electrode plate. ) EXAMPLE A sintered nickel substrate was impregnated with nickel hydroxide using a chemical impregnation method, and after washing with water, an electrode plate containing 38 ppm of nitrate radicals was chemically formed using the chemical conversion apparatus described in the prior art.

尚、この極板の容量は1m当り&0AH1充電槽(1)
中の対tilli(8)の総長きは2m、放電槽(2)
中の対極(9)の総長さは1.2m 、電解液は比重1
23の力性カリ水溶液、総充電電流は960A(6C相
当)、総放電電流は570A(6C相当)、ラインスピ
ードは40cm/min、及び充放電槽(1)(2)に
おける化成中の引張りテンションは33±2Kg/3Q
CITl巾とし、化成充電電気量は極板容量の50%に
和尚する。こうして作成された極板は前記化成装置を用
いて化成電流0.2C2化成充電電気は150%として
作成された極板に比較して、柔軟性及び充電効率におい
て同様あるいはそれ以上の効果を得た。
In addition, the capacity of this electrode plate is 0AH1 charging tank (1) per 1m.
The length of the inner tilli (8) is 2m, the discharge tank (2)
The total length of the counter electrode (9) inside is 1.2 m, and the electrolyte has a specific gravity of 1.
No. 23 strength potassium aqueous solution, total charging current of 960 A (equivalent to 6C), total discharge current of 570 A (equivalent to 6C), line speed of 40 cm/min, and tensile tension during formation in charging and discharging tanks (1) and (2). is 33±2Kg/3Q
CIT1 width, and the chemical charge electricity amount is set to 50% of the electrode plate capacity. The electrode plate thus prepared obtained the same or better effects in terms of flexibility and charging efficiency than the electrode plate prepared using the above-mentioned chemical conversion device and with a chemical conversion current of 0.2C2 and a chemical charging electricity of 150%. .

前述の本発明の極板を、従来の極板との比較のため図面
を用いて説明する。第2図は前述の化成の条件のうち、
化成電流を0.2C14C16C及び15C゛とし、ま
たラインスピードを変えることにより化成充電電気量を
変化きせ化成を行なったときの化成充電電気量と化成後
の陽極板の充電効率との関係を示した図面である。尚、
充電効率は比重1.23の力性カリ水曜液中で0.2C
で2.5時間充電し、0,2Cで放電し次式で算出した
The above-mentioned electrode plate of the present invention will be explained using the drawings for comparison with a conventional electrode plate. Figure 2 shows the chemical formation conditions mentioned above.
The relationship between the amount of electricity charged during formation and the charging efficiency of the anode plate after formation was shown when the formation current was set to 0.2C, 14C, 16C and 15C, and the amount of electricity charged for formation was changed by changing the line speed. It is a drawing. still,
Charging efficiency is 0.2C in aqueous potassium solution with a specific gravity of 1.23.
The charge was charged for 2.5 hours at 0.2C, then discharged at 0.2C, and calculated using the following formula.

この図面より、部分化成であっても現行の化成で用いら
れる0、20の10倍以上の電流で充放電を行なうと、
充電効率は現行の極板と同等の性能が得られ、化成型d
Lが大きくなれはなるほと充電効率は高くなることがわ
かる。これは充放電電流が大きくなるほと充電状態の活
物質が化成終了後に残留し易いからであり、すなわち、
大電流放電時には活物質が完全に放電上ずに比較的安定
した形で残留リーるからと考えられる。また現行の化成
以上の充電効率り85%以上)を得るには15Cで約2
0%、6Cで約40%、4cで約60%以上の化成充電
電気量が必要であり、15Cで約40%、6cで約55
%、4Cで約70%の化成充電電気量でカス発生が開始
されるため、前記範囲内の充電電気量で化成を行なう必
要がある。次に15c以上の充電を行なうと、充電開始
後すぐにガス発生か開始きれ、30%程度の部分化成で
も極板表面の剥離が見られ最大化成充電型?jCとして
は15Cが限度と考えられる。40以下の充電について
は、必要な充電効率を得るためには、ガス発生が開始き
れても充電を続ける必要が生じ、40以下の電流での部
分化成は不適当と考ンられる。
From this drawing, even in partial chemical formation, if charging and discharging is performed at a current more than 10 times the current of 0 and 20 used in current chemical formation,
The charging efficiency is equivalent to that of the current electrode plate, and the chemically molded d
It can be seen that the larger L becomes, the higher the charging efficiency becomes. This is because as the charging/discharging current increases, the active material in the charged state tends to remain after the completion of chemical formation.
This is thought to be because the active material does not completely discharge during large current discharge, but remains in a relatively stable form. In addition, in order to obtain a charging efficiency of 85% or more, which is higher than that of the current chemical, it is approximately 2 at 15C.
0%, approximately 40% at 6C, approximately 60% or more at 4C, and approximately 40% at 15C, approximately 55% at 6C.
%, 4C, the generation of scum starts at about 70% of the charging electricity amount for formation, so it is necessary to carry out the formation with the charging electricity amount within the above range. Next, when charging at 15c or more, gas generation started immediately after charging started, and peeling of the electrode plate surface was observed even with partial conversion of about 30%, indicating that it was a maximum conversion charging type? 15C is considered to be the limit for jC. For charging at a current of 40 or less, in order to obtain the necessary charging efficiency, it is necessary to continue charging even after gas generation has started, and partial chemical formation at a current of 40 or less is considered inappropriate.

第3図は前述の化成条件の内、化成前の硝酸根量−を変
化させ化成を行なった極板、及び化成電流を0.2Cと
し充電電気量150%で化成前の硝酸根量を変化きせ化
成を行なった極板の化成前のIIS極板中の硝酸根量と
充電、効率のバラツキとの関係を示した図面である。こ
の図面により、化成充電電流が増大すると充電効率のバ
ラツキが生し、極板中の硝酸根量が多ければ明らかにバ
ラツキが大きくなっていることがわかる。明確な解明は
できないが、硝酸根の分解にいくらかの電流が消費され
、これが部分化成の場合は大きく影響すると考えられ、
従来の化成法では過充電をかげていることから、少しは
かりの副反応が起きても満充電になり充電効率も一定と
なると考えられる。このように従来では化成工程で硝酸
根の大部分が除去きれるため、含浸工程での水洗に特に
厳密な管理を必要としなかったか、部分化成を行なうた
めには図面より硝酸根量は300 p p m以下、好
ましくは1100pp以下に押さえる必要がある。
Figure 3 shows an electrode plate that was chemically formed by changing the amount of nitrate roots before chemical formation under the above-mentioned chemical formation conditions, and the amount of nitrate roots before chemical formation was changed with a chemical formation current of 0.2C and a charging electricity amount of 150%. 2 is a drawing showing the relationship between the amount of nitrate radicals in the IIS electrode plate before chemical formation and the variation in charging and efficiency of the electrode plate which has been subjected to chemical formation. It can be seen from this drawing that as the chemical charging current increases, variations in charging efficiency occur, and that the variations clearly become larger as the amount of nitrate radicals in the electrode plate increases. Although it cannot be clearly elucidated, some current is consumed in the decomposition of nitrate roots, and this is thought to have a large effect in the case of partial metamorphosis.
Since conventional chemical conversion methods avoid overcharging, it is thought that even if a small amount of side reactions occur, the battery will be fully charged and the charging efficiency will remain constant. In this way, in the past, most of the nitrate radicals could be removed in the chemical conversion process, so there was no need for particularly strict management of water washing in the impregnation process, or in order to perform partial chemical conversion, the amount of nitrate radicals was 300 ppm as shown in the drawing. m or less, preferably 1100 pp or less.

次に極板の柔軟性のテストを行なった。第4図(a)は
極板の柔軟性の411定方法を示す図面であり、4欽性
測定装置はコ字型の固定治具(12)、該固定治具を下
方より支持するロードセル(15)、前記固定治具(1
2)の両端部に取付けられた回転ローラ(13)(13
)及Cト固定治其の上方に位置し、定速で回転1コーラ
(13)(13,)の間に下降する折曲加圧用治具(1
4)からなり、極板(10)は回転ローラ(13)(1
3)と新曲加圧用治具(14)の間に挾持され、折曲加
圧用治具(14)が下降することにより、折曲され柔軟
性が測定きれる。第4図(ロードセル(15))は一定
変位まで極板を新曲したときのロードセル(15)の荷
重と新曲加圧用治具(14)の下降距離との関係を示し
た図であり、この図面におけるロードセル(15〉の最
大荷重をA、このときの折曲加圧用冶具(14)の下降
距離をC1また、新曲加圧用治具(14)の下降限界に
おける新曲加圧用治具(14)の下降距離がD(固定値
)になるときのロードセル荷重をBと設定し、前記A、
B、Cの値により次式で柔軟性指数を算出した。
Next, we tested the flexibility of the electrode plates. FIG. 4(a) is a drawing showing a method for determining the flexibility of an electrode plate, and the four-way stiffness measuring device includes a U-shaped fixing jig (12), a load cell (12) that supports the fixing jig from below ( 15), the fixing jig (1
2) Rotating rollers (13) attached to both ends of (13
) and C fixed jig, which is located above the bending and pressing jig (13,) and descends during one rotation at a constant speed (13,
4), the electrode plate (10) is composed of rotating rollers (13) (1
3) and the new curve pressing jig (14), and the bending pressing jig (14) is lowered to bend and measure the flexibility. Figure 4 (load cell (15)) is a diagram showing the relationship between the load on the load cell (15) and the descending distance of the new curve pressing jig (14) when the electrode plate is newly bent to a certain displacement. The maximum load of the load cell (15>) at this time is A, the descending distance of the bending pressurizing jig (14) at this time is C1, and the new song pressurizing jig (14) at the lowering limit of the new song pressurizing jig (14). The load cell load when the descending distance becomes D (fixed value) is set as B, and the above A,
The flexibility index was calculated from the values of B and C using the following formula.

ハ 第5区は前述の化成条件で引張りテンションのかかった
状態で化成したものをW、化成後回様の引張りテンショ
ンをかけたものをX、引張りテンションを加えなかった
ものをY2及び化成電流0゜2C1充電電気量を150
%で引張りテンションを加えなかったものをZとし、第
4図で示す装置で柔軟性を測定したときの化成充電電気
量と柔軟性指数との関係を示す図面である。第5図より
、化成量が多いはと柔軟性が増加し、化成量が80%以
上になれは柔軟性がほぼ一定となり、また化成電流の大
小は柔軟性にあまり関与しないことがわかる。そして極
板に引張りテンションをかけた状態で化成を行なλは著
しく柔軟性が増加することがわかった。当初これは極板
が伸びたためと考えたか、化成後の極板に同しテンショ
ンをかけてもあまり柔軟性が増加しないことから、極板
が伸びたためたけてはないようである。これにより部分
化成であっても、テンションをかけた状態で化成をイボ
なえは、従来の化成法と同様あるいはそれ以上の柔軟性
を有する極板を得ることができた。
Section 5 is W for the product formed under tensile tension under the above-mentioned formation conditions,゜2C1 charging electricity amount is 150
5 is a drawing showing the relationship between the amount of charge electricity and the flexibility index when the flexibility is measured using the apparatus shown in FIG. 4, where Z is the material to which no tensile tension was applied. From FIG. 5, it can be seen that when the amount of conversion is large, the flexibility increases, and when the amount of conversion is 80% or more, the flexibility becomes almost constant, and the magnitude of the conversion current does not have much effect on flexibility. It was also found that the flexibility of λ was significantly increased when chemical conversion was performed with the electrode plate under tension. Initially, this was thought to be due to the electrode plate elongating, but since the flexibility did not increase much even if the same tension was applied to the electrode plate after chemical formation, it seems that the electrode plate was not elongated and folded. As a result, even with partial chemical formation, it was possible to obtain an electrode plate that had flexibility equal to or greater than that of conventional chemical formation methods, even if the formation was not performed under tension.

(へ〉発明の効果 本発明により、4〜15Cと従来に比し大きい化成電流
で化成充電電気量を調節して化成を行なうことにより、
−化成時間を大幅に短縮すると共にガス発生を抑止して
極板剥離を防止し、lっ従来と一同等あるいはそれ以上
の充電効率を得、また引張リテンションをかけて化成を
行なう場合には、さらに従来以上の柔軟性を有する極板
が得られる効果がある。
(F) Effects of the Invention According to the present invention, by controlling the amount of charge electricity for formation at a formation current of 4 to 15C, which is larger than that of conventional methods,
- In addition to significantly shortening the formation time, gas generation is suppressed to prevent electrode plate peeling, and charging efficiency is equal to or higher than that of conventional methods, and when performing formation with tensile retention, Furthermore, there is an effect that an electrode plate having more flexibility than before can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1区は連続化成装置の概略図、第2区は化成電流を変
化才せたときの化成充電電気量と充電効率との関係を示
す図面、第3図は硝酸根量を変化さけたときの硝酸根量
と充電効率バラツキとの関係を示した図面、第4図(a
>は極板の柔軟性の測定方法を示す図面、第4図(b)
はロードセルの荷重と折曲治具の下降距離との関係を示
した図面、第5図は引張りテンションの有無による充電
電気量と柔軟性指数との関係を丞ず図面である。
Section 1 is a schematic diagram of the continuous chemical conversion equipment, Section 2 is a drawing showing the relationship between the amount of charge electricity for chemical conversion and charging efficiency when the chemical conversion current is varied, and Figure 3 is a diagram showing the relationship between the amount of charging electricity for chemical conversion and charging efficiency when the amount of nitrate radicals is varied. Figure 4 (a) is a drawing showing the relationship between the amount of nitrate roots and the variation in charging efficiency.
> is a drawing showing the method for measuring the flexibility of the electrode plate, Fig. 4(b)
5 is a diagram showing the relationship between the load of the load cell and the descending distance of the bending jig, and FIG. 5 is a diagram showing the relationship between the amount of charged electricity and the flexibility index depending on the presence or absence of tensile tension.

Claims (1)

【特許請求の範囲】 く1)化学含浸法で活物質を充填したアルカ11電池用
陽極板の化成工程において、化成前の極板中の硝酸仮置
を300ppm以下とし、化成電流を4〜15C及び化
成充電電気量を極板存置の20〜60%の範囲で、化成
電流が大きいときに化成充電電気量を小キくシて化成を
行なうこと庖特徴とするアルカリ電池用陽極板の化成法
。 (2)面記化成工程において、極板に引張りテンション
をか(すて化成を行なう特許請求第1項記載のアルカリ
電池用陽極板の化成法。
[Claims] 1) In the chemical formation process of an anode plate for an Alka-11 battery filled with an active material by a chemical impregnation method, the temporary nitric acid concentration in the electrode plate before chemical formation is 300 ppm or less, and the chemical formation current is 4 to 15C. and a method for chemically forming an anode plate for an alkaline battery, which is characterized in that the amount of electricity charged in the forming charge is reduced in the range of 20 to 60% of the amount left on the electrode plate, and the amount of electricity charged in the forming charge is reduced when the forming current is large. . (2) A method for chemically forming an anode plate for an alkaline battery according to claim 1, wherein the chemically forming process is performed by applying tensile tension to the electrode plate in the surface forming process.
JP58008209A 1983-01-20 1983-01-20 Forming method of cathode plate for alkaline battery Granted JPS59132566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58008209A JPS59132566A (en) 1983-01-20 1983-01-20 Forming method of cathode plate for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58008209A JPS59132566A (en) 1983-01-20 1983-01-20 Forming method of cathode plate for alkaline battery

Publications (2)

Publication Number Publication Date
JPS59132566A true JPS59132566A (en) 1984-07-30
JPH0416906B2 JPH0416906B2 (en) 1992-03-25

Family

ID=11686848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58008209A Granted JPS59132566A (en) 1983-01-20 1983-01-20 Forming method of cathode plate for alkaline battery

Country Status (1)

Country Link
JP (1) JPS59132566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162000A1 (en) * 2019-02-08 2020-08-13 三洋電機株式会社 Method for manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162000A1 (en) * 2019-02-08 2020-08-13 三洋電機株式会社 Method for manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2020162000A1 (en) * 2019-02-08 2021-12-09 三洋電機株式会社 Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH0416906B2 (en) 1992-03-25

Similar Documents

Publication Publication Date Title
JPH10308212A (en) Electrode plate processing device for secondary battery
US6899978B2 (en) Electrochemical cell
Dodson The Composition and Performance of Positive Plate Material in the Lead‐Acid Battery
JPH0756798B2 (en) Lead acid battery manufacturing method
JPS59132566A (en) Forming method of cathode plate for alkaline battery
JPWO2005041342A1 (en) Lead-acid battery and method for manufacturing the same
US3909292A (en) Lead storage battery
CN210576212U (en) Lithium ion battery silicon-based negative electrode plate prelithiation device
US4046642A (en) Method of making electric storage batteries
JPS58115775A (en) Lead-acid battery
JP2000243456A (en) Method for charging lead-acid battery
JPH0850925A (en) Charging method for lead-acid battery
JP3010691B2 (en) Battery forming method for sealed lead-acid batteries
JP2001126771A (en) Charging method of sealed lead-acid battery
JPS5942948B2 (en) Manufacturing method of sintered anode plate
JPS60148061A (en) Manufacture of sealed lead-acid battery
JPS62145664A (en) Manufacture of sealed lead storage battery
JPS61147455A (en) Manufacture of cadmium negative electrode plate for alkaline storage battery
JPH067568Y2 (en) Sealed lead acid battery
JPH0729594A (en) Retainer type sealed lead-acid battery
JPH08130009A (en) Forming method for clad type positive plate
JPS61168867A (en) Formation of electrode plate for alkaline storage battery
JPH041466B2 (en)
JPS607069A (en) Manufacture of sealed lead-acid battery
JPH1125990A (en) Lead-acid battery