JPS5942948B2 - Manufacturing method of sintered anode plate - Google Patents

Manufacturing method of sintered anode plate

Info

Publication number
JPS5942948B2
JPS5942948B2 JP51107033A JP10703376A JPS5942948B2 JP S5942948 B2 JPS5942948 B2 JP S5942948B2 JP 51107033 A JP51107033 A JP 51107033A JP 10703376 A JP10703376 A JP 10703376A JP S5942948 B2 JPS5942948 B2 JP S5942948B2
Authority
JP
Japan
Prior art keywords
nickel
substrate
corrosion
anode plate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51107033A
Other languages
Japanese (ja)
Other versions
JPS5332348A (en
Inventor
友浩 下川
雅和 竹村
謙介 中谷
俊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP51107033A priority Critical patent/JPS5942948B2/en
Publication of JPS5332348A publication Critical patent/JPS5332348A/en
Publication of JPS5942948B2 publication Critical patent/JPS5942948B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 亭発明、◆よ;ツケルカドミウム電池に於ける焼結式□
極板の製造法に関するものである。
[Detailed description of the invention] Invention: ◆; Sintering method in cadmium batteries□
This invention relates to a method for manufacturing electrode plates.

この種電極板は見掛比重の小さいニッケル粉末、を焼結
してなるニッケル焼結基板を硝酸ニッケル溶液よりなる
含浸量に浸漬して基板多孔部に活物−質塩を含浸せしめ
、ついでcの基板をアルカリ処理して硝酸ニッケルを水
1ヒ干ツケルに、書換し牛る後、水洗・乾燥するという
一連の含浸工程を繰返し、その後化成処理して供される
ものである。
This type of electrode plate is made by immersing a nickel sintered substrate made by sintering nickel powder with a small apparent specific gravity in an impregnation amount of nickel nitrate solution to impregnate the porous parts of the substrate with active material salt, and then c. The substrate is treated with an alkali, the nickel nitrate is rewritten in one kelp of water, and the series of impregnating steps of washing and drying is repeated, followed by a chemical conversion treatment.

上述せる製造工程において、特に含浸工程は電池容量を
決定するものであり極めて重要なるものである。而して
含浸に際してニッケル焼結基板・・は硝酸塩よりなる含
浸量で容易に腐蝕される。
In the above-mentioned manufacturing process, the impregnation process in particular determines the battery capacity and is extremely important. During impregnation, the nickel sintered substrate is easily corroded by the amount of nitrate impregnated.

この場合腐蝕により水酸化ニッケルが形成され、これは
取りもなおさず活物質の形体であるため体積効率・重量
効率の増大が期待できるが、反面腐蝕のバラツキによつ
て容量のバラツキが大きくなり含浸量を所定量に制御す
ることが困難であると共に腐蝕により極板が脆弱化され
るという不都合を有していた。そのため従来ではこのよ
・うな腐蝕を防止するために含浸量に亜硝酸ソーダ或い
は亜硫酸ソーダを添加することが提案されているが腐蝕
反応は含浸量の聞、温度、流れ速度及び不純物等により
左右され十分な抑制が困難でありその安定化は極めて難
しいものであつた。
In this case, nickel hydroxide is formed due to corrosion, and since it is in the form of an active material, it can be expected to increase the volumetric efficiency and weight efficiency, but on the other hand, the variation in capacity increases due to the variation in corrosion. It is difficult to control the amount to a predetermined amount, and there are disadvantages in that the electrode plates become brittle due to corrosion. Therefore, it has been proposed in the past to add sodium nitrite or sodium sulfite to the amount of impregnation in order to prevent such corrosion, but the corrosion reaction depends on the amount of impregnation, temperature, flow rate, impurities, etc. Sufficient suppression was difficult, and stabilization was extremely difficult.

本発明は斯る点に鑑み、腐蝕反応を電気化学的見地より
考案し硝酸中におけるニツーケノーには腐蝕反応が進行
する活性状態の電位域と腐蝕反応が進行し難い不活性状
態の電位域とが存在するCl止1こ着目してなされたも
のであり、その要旨とするとζろは硝酸塩よりなる含浸
量にニッケル焼結基板を浸漬して含浸するに際して、ニ
ッケル焼結基板を含浸量に対して腐蝕が生じ難い不活性
状態の電位域に保持せしめる点にあり、それによりニッ
ケル焼結基板の腐蝕を抑制して電池容量の制御を可能な
らしめると共に極板の脆弱化を防止せしめるものである
In view of this, the present invention devised a corrosion reaction from an electrochemical viewpoint, and discovered that Nitsukeno in nitric acid has an active potential range in which the corrosion reaction progresses and an inactive potential range in which the corrosion reaction does not proceed easily. This was done by focusing on the amount of Cl that exists, and its gist is that when a sintered nickel substrate is immersed in the amount of nitrate impregnated, the sintered nickel substrate is The purpose is to maintain the potential in an inactive state where corrosion is unlikely to occur, thereby suppressing corrosion of the nickel sintered substrate, making it possible to control battery capacity, and preventing weakening of the electrode plates.

一般に硝酸中でのニッケルの電流−電圧曲線は第1図の
如く示され□〜[F]の電位域に区別される。
Generally, the current-voltage curve of nickel in nitric acid is shown in FIG. 1, and is divided into potential ranges from □ to [F].

図において4及び[F]の電位域は夫々水素ガス発生及
び酸素ガス発生領域、8は腐蝕反応、即ちNi→Ni2
+なる溶解反応及びNi2゛→Ni→Ni(OH)2な
る反応が進行し、−見掛上はNi2+Ni(OH)2な
る析出反応を生じる活性状態の電位域、Oは平衡状態に
あつて腐蝕が生じ難い不活性状態の電位域、Oは過不活
性状態の電位域を夫夫示す。尚、上記第1図に示すニツ
ケルの電流一電圧曲線は硝酸溶液の濃度、温度等により
若干変動する。
In the figure, potential regions 4 and [F] are hydrogen gas generation and oxygen gas generation regions, respectively, and 8 is a corrosion reaction, that is, Ni→Ni2
In the active state potential range, a dissolution reaction of + and a reaction of Ni2゛→Ni→Ni(OH)2 proceed, and -an apparent precipitation reaction of Ni2+Ni(OH)2 occurs, while O is in an equilibrium state and corrodes. O indicates the potential range of an inactive state in which it is difficult to occur, and O indicates the potential range of an over-inactive state. Incidentally, the current-voltage curve of Nickel shown in FIG. 1 above varies slightly depending on the concentration of the nitric acid solution, temperature, etc.

次に一実験例について詳述するに比重1.701液温8
0℃の硝酸ニツケル塩中にニツケル基板を浸漬し、ニツ
ケル基板を含浸浴に対して種々の電圧に保持した状態で
夫々90分間含浸燥作を行いその後基板を含浸浴より取
出し、直ちに水洗・乾燥して含浸した硝酸ニツケルを除
去したる後、ニツケル基板の重量変化を測定したところ
、第1表に示す結果が得られた。尚、第1表において0
電位″″は含浸浴に対するニツケル基板の電位、゛重量
変化量”は含浸終了後におけるニツケル基板の重量に対
する含浸前のそれとの比率を示し、負符号はニツケルの
溶解反応のみ生じ重量の減少を示すものであり、正符号
は水酸化ニツケルの生成及びニツケルの電析による重量
の増加を示す。
Next, we will explain in detail one experimental example.Specific gravity: 1.701 Liquid temperature: 8
A nickel substrate was immersed in nickel nitrate salt at 0°C, and impregnated and dried for 90 minutes while holding the nickel substrate at various voltages with respect to the impregnation bath.Then, the substrate was removed from the impregnation bath and immediately washed with water and dried. After removing the impregnated nickel nitrate, the weight change of the nickel substrate was measured, and the results shown in Table 1 were obtained. In addition, in Table 1, 0
``Potential'' indicates the potential of the nickel substrate relative to the impregnation bath, ``weight change amount'' indicates the ratio of the weight of the nickel substrate after impregnation to that before impregnation, and the negative sign indicates that only the dissolution reaction of nickel occurs and the weight decreases. The positive sign indicates the increase in weight due to the formation of nickel hydroxide and the electrodeposition of nickel.

上記表よりニツケル基板を+0.5V近傍に保持すれば
腐蝕反応が生じ難い所謂不活性状態にあることが推察さ
れる。
From the above table, it can be inferred that if the nickel substrate is maintained near +0.5V, it will be in a so-called inactive state in which corrosion reactions are unlikely to occur.

以下本発明の一実施例を第2図に基づき説明するに公知
の方法で作製せるニツケル焼結基板1を比重1.70、
液温80℃の硝酸ニツケル溶液2中に9.0分浸漬する
An embodiment of the present invention will be described below with reference to FIG. 2. A nickel sintered substrate 1 manufactured by a known method has a specific gravity of 1.70,
Immerse for 9.0 minutes in nickel nitrate solution 2 at a liquid temperature of 80°C.

尚、基板1はニツケルよりなる対極3と平行して配され
参照電極4に対する基板1の電位が+0.5Vになるよ
うに両極1,3間に電圧が印加されている。
The substrate 1 is arranged in parallel with a counter electrode 3 made of nickel, and a voltage is applied between the two electrodes 1 and 3 so that the potential of the substrate 1 with respect to the reference electrode 4 is +0.5V.

そして所定時間経過後、基板1を含浸槽5より取出し水
酸化ナトリウム溶液中に浸漬して活物質である水酸化ニ
ツケルを析出せしめた後、水洗・乾燥するという一連の
含浸工程を所定回数繰返した後、化成工程を経て陽極板
を得る。
After a predetermined period of time had elapsed, the substrate 1 was taken out from the impregnation tank 5 and immersed in a sodium hydroxide solution to precipitate nickel hydroxide as an active material, followed by washing and drying, which were repeated a predetermined number of times. After that, an anode plate is obtained through a chemical formation process.

第3図はこうして得られた陽極板を用いて作製されたK
R−SCタイプ(公称容量1200mAH)の本発明法
によるニツケルーカドミウム電池と、前述の陽極板製造
方法に於いて含浸操作の際に基板の電位を調整せずに作
製した陽極板を用いた従来法によるニツケルーカドミウ
ム電池を夫々100個ずつ用い1200mAの電流で放
電して放電容量を測定したときの電池容量分布図であり
、縦軸は電池の個数、横軸は放電容量を夫々示している
Figure 3 shows the K made using the anode plate thus obtained.
An R-SC type (nominal capacity 1200 mAH) Nickel-cadmium battery manufactured by the method of the present invention and a conventional anode plate manufactured using the above-mentioned anode plate manufacturing method without adjusting the potential of the substrate during the impregnation operation. This is a battery capacity distribution diagram when the discharge capacity was measured by discharging at a current of 1200 mA using 100 of each Nickel-cadmium battery according to the method, the vertical axis shows the number of batteries, and the horizontal axis shows the discharge capacity, respectively. .

この図面から本発明法による電池は従来法による電池に
比し電池容量のバラツキが少ないことがわかる。この電
池容量のバラツキは陽極に於けるニツケル基板への活物
質の含浸量のバラツキ及びニツケル基板の腐蝕による活
物質化によるバラツキに起因するものであり、従来法に
よる電池ではニツケル基板の耐腐蝕性及び含浸液の状態
等により含浸時の基板の電位が腐蝕の生じない+0.5
Vから10%以上の腐蝕が生じる−0.4V位の間で変
化するため電池容量のバラツキが大きいのに対し、本発
明法による電池ではこの腐蝕によつて生じる水酸化ニツ
ケルがほとんどないため、電池容量のバラツキは通常の
ニツケル基板への活物質含浸量のバラツキである5%程
度に抑えることができる。上述せる如く、本発明は焼結
式陽極板の製造法に係り、ニツケル焼結基板を硝酸ニツ
ケル含浸浴に浸漬して基板多孔部にニツケル塩を含浸す
るに際して、ニツケル焼結基板を含浸浴に対して腐蝕が
生じ難い不活性な状態の電位に保持することを特徴とし
、腐蝕による極板の脆弱化及び電池容量のバラツキを防
止でき、この種陽極板の製造法において極めて有益なる
ものである。
It can be seen from this drawing that the battery produced by the method of the present invention has less variation in battery capacity than the battery produced by the conventional method. This variation in battery capacity is due to variation in the amount of active material impregnated into the nickel substrate in the anode and variation in the active material due to corrosion of the nickel substrate.In conventional batteries, the corrosion resistance of the nickel substrate Depending on the condition of the impregnating liquid, etc., the potential of the substrate during impregnation may be +0.5 without corrosion.
The variation in battery capacity is large because the voltage varies from V to about -0.4V, where corrosion of 10% or more occurs, whereas in the battery according to the method of the present invention, there is almost no nickel hydroxide produced by this corrosion. The variation in battery capacity can be suppressed to about 5%, which is the variation in the amount of active material impregnated into a normal nickel substrate. As described above, the present invention relates to a method for manufacturing a sintered anode plate, and includes immersing a nickel sintered substrate in a nickel nitrate impregnation bath to impregnate the porous portions of the substrate with nickel salt. It is characterized by maintaining the potential in an inactive state where corrosion is unlikely to occur, and it is possible to prevent the weakening of the electrode plate and variation in battery capacity due to corrosion, which is extremely useful in the manufacturing method of this type of anode plate. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硝酸中におけるニツケルの電流一電圧曲線図、
第2図は本発明による含浸工程時の装置概略図、第3図
は本発明法及び従来法により作製された陽極板を用いた
電池の電池容量分布図を示すものである。 1・・・・・・ニツケル焼結基板、2・・・・・・硝酸
ニツケル含浸浴、3・・・・・・対極、4・・・・・・
参照電極。
Figure 1 is a current-voltage curve diagram of Nickel in nitric acid.
FIG. 2 is a schematic diagram of an apparatus during an impregnation process according to the present invention, and FIG. 3 is a diagram showing battery capacity distribution of batteries using anode plates produced by the method of the present invention and the conventional method. 1... Nickel sintered substrate, 2... Nickel nitrate impregnated bath, 3... Counter electrode, 4...
Reference electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 ニッケル焼結基板を硝酸ニッケル含浸浴中に浸漬し
てその基板多孔部にニッケル塩を含浸するに際して、ニ
ッケル焼結基板を前記含浸浴に対して腐蝕が生じ難い不
活性な状態の電位に保持せしめることを特徴とする焼結
式陽極板の製造方法。
1. When immersing a nickel sintered substrate in a nickel nitrate impregnation bath to impregnate the porous portions of the substrate with nickel salt, the nickel sintered substrate is held at an inert potential that is unlikely to cause corrosion with respect to the impregnation bath. A method for manufacturing a sintered anode plate, characterized by:
JP51107033A 1976-09-06 1976-09-06 Manufacturing method of sintered anode plate Expired JPS5942948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51107033A JPS5942948B2 (en) 1976-09-06 1976-09-06 Manufacturing method of sintered anode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51107033A JPS5942948B2 (en) 1976-09-06 1976-09-06 Manufacturing method of sintered anode plate

Publications (2)

Publication Number Publication Date
JPS5332348A JPS5332348A (en) 1978-03-27
JPS5942948B2 true JPS5942948B2 (en) 1984-10-18

Family

ID=14448803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51107033A Expired JPS5942948B2 (en) 1976-09-06 1976-09-06 Manufacturing method of sintered anode plate

Country Status (1)

Country Link
JP (1) JPS5942948B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123164A (en) * 1982-12-29 1984-07-16 Sanyo Electric Co Ltd Manufacture of sintered positive plate

Also Published As

Publication number Publication date
JPS5332348A (en) 1978-03-27

Similar Documents

Publication Publication Date Title
US3335033A (en) Method of making electric battery electrodes
US3600227A (en) Method of impregnating flexible metallic battery plaques
US3964927A (en) Lead dioxide-zinc rechargeable-type cell and battery and electrolyte therefor
US4337124A (en) Non-pulsed electrochemical impregnation of flexible metallic battery plaques
JPS5942948B2 (en) Manufacturing method of sintered anode plate
US3779810A (en) Method of making a nickel positive electrode for an alkaline battery
JPS6051780B2 (en) Mercury-free alkaline secondary battery and negative intermediate separator for the battery
US3433672A (en) Electrical battery
Amlie et al. Adsorption of Hydrogen and Oxygen on Electrode Surfaces
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
US3418166A (en) Alkaline storage cell having silicate dissolved in the electrolyte
JP2000311680A (en) Sintered type positive electrode plate for nickel- hydrogen battery, its manufacture and nickel-hydrogen battery
US2952726A (en) Storage batteries
JPS58115775A (en) Lead-acid battery
US1021990A (en) Binder for peroxid active material and process of making it.
JPS5838459A (en) Manufacture of plate for enclosed alkaline battery
JPS6286661A (en) Manufacture of nickel positive electrode for alkaline battery
JP3625681B2 (en) Method for producing nickel electrode for alkaline storage battery
JPS63138655A (en) Manufacture of sintered type cadmium negative electrode plate for alkaline cell
JPH1131505A (en) Alkaline storage battery electrode and its manufacture, and alkaline storage battery
JPS586275B2 (en) lead acid battery
JPH03147262A (en) Collector for lead-acid battery
JPH0410176B2 (en)
JP2008091189A (en) Sealed lead acid storage battery
JPS61176064A (en) Manufacture of negative electrode plate for sintered nickel-cadmium cell