JPS5913202A - Method for forming antireflection film on plastic lens - Google Patents

Method for forming antireflection film on plastic lens

Info

Publication number
JPS5913202A
JPS5913202A JP57121993A JP12199382A JPS5913202A JP S5913202 A JPS5913202 A JP S5913202A JP 57121993 A JP57121993 A JP 57121993A JP 12199382 A JP12199382 A JP 12199382A JP S5913202 A JPS5913202 A JP S5913202A
Authority
JP
Japan
Prior art keywords
lens
coating
plastic lens
thickness
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57121993A
Other languages
Japanese (ja)
Inventor
Nobuhiro Tokuyado
徳宿 伸弘
Norio Yatsuda
則夫 谷津田
Masayuki Muranaka
昌幸 村中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57121993A priority Critical patent/JPS5913202A/en
Publication of JPS5913202A publication Critical patent/JPS5913202A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To form uniformly an organopolysiloxane resin film on a plastic lens by dip-coating twice said resin on said lens. CONSTITUTION:An organopolysiloxane resin soln. is coated on a plastic lens by subjecting the lens to at least one time of a stage consisting of coating the soln. first on the lens then curing the coating by heating then turning over the lens and coating the soln. thereon for the second time and curing the coating by heating. The pulling speed is kept at 100mm./min. The viscosity of the organopolysiloxane soln. in which the lens is dipped is set at 1-100cp.

Description

【発明の詳細な説明】 本発明は、プラスチックレンズに反射防止被膜を形成す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming an antireflection coating on a plastic lens.

従来、プラスチックレンズに反射防止被膜を、設けるに
は、まずプラスチックレンズにオルガノポリシロキサン
系樹脂膜明図塗りあるいはスピンコード等の方法で塗布
し、加熱硬化した後、NgF2. ZrO,、A/、0
.l SiO等から成る本来の無機質反射防止膜を施し
ていた。
Conventionally, in order to provide an antireflection coating on a plastic lens, first, an organopolysiloxane resin film is coated on the plastic lens by a method such as pattern coating or spin cording, and after curing by heating, NgF2. ZrO,,A/,0
.. l The original inorganic antireflection coating made of SiO, etc. was applied.

上記オルガノポリシロキサン系樹脂膜の主な目的は、プ
ラスチックと無機質反射防止膜間の付着力の向上、プラ
スチック表面の傷付き防止、硬度向、上、プラスチック
の耐衝撃性の向上管である。また、プラスチックの傷付
き防止、表面硬度および耐衝撃性をさらに向上さ・せる
には、オルガノポリシロキサン系樹脂膜と本来の反射防
止膜との間に更に厚さ1〜5 /Inの8i0.あるい
はガラス等の層を設けることも提案されている。
The main purpose of the organopolysiloxane resin film is to improve the adhesion between the plastic and the inorganic antireflection film, prevent scratches on the plastic surface, improve hardness, and improve the impact resistance of the plastic. In addition, to further improve the scratch prevention, surface hardness, and impact resistance of plastics, an additional layer of 8i0.0.5 in thickness is added between the organopolysiloxane resin film and the original antireflection film. Alternatively, it has also been proposed to provide a layer of glass or the like.

しかし、プラスチックレンズは曲率な有するために、オ
ルガノボリシロキザンをレンズ表面に均一の厚さに塗布
することが困難である。このため、塗布膜厚分布が2倍
〜4倍となるのは常識とされており、□メガネレンズ等
においてはレンズの中央部しか使用しないこと、また表
面精度をさほど要求されていなかったこと等のために、
上記膜厚分布のもとでも十分使用に耐え得るものであっ
た。
However, since plastic lenses have curvature, it is difficult to apply organoborisiloxane to the lens surface to a uniform thickness. For this reason, it is common knowledge that the coating film thickness distribution is 2 to 4 times as large, and □In eyeglass lenses, etc., only the central part of the lens is used, and surface precision is not required as much. for,
Even under the above film thickness distribution, it was sufficiently usable.

しかし、プラスチックレンズをカメラレンズ等の光学機
器に使用する場合には、上記の塗布膜厚分布はレンズの
表面精度を劣化させる原因となり、使用可能なプラスチ
ックレンズを得ることが困難であった。
However, when a plastic lens is used in an optical device such as a camera lens, the above coating film thickness distribution causes deterioration of the surface precision of the lens, making it difficult to obtain a usable plastic lens.

このため、レンズ曲率に合わせて引上速度をコントロー
ルし、浸漬塗布により均一な膜厚を得る方法が提案され
ているが、この方法では膜厚のコントロールがむずかし
く、また両凹、両凸レンズにしか適用できない等の欠点
を有していた。
For this reason, a method has been proposed in which the pulling speed is controlled according to the lens curvature and a uniform film thickness is obtained by dip coating, but this method is difficult to control the film thickness and is only suitable for biconcave and biconvex lenses. It had drawbacks such as not being applicable.

本発明の目的は、プラスチックレンズにオルガノポリシ
ロキサン系樹脂膜を均一に形成する方法を提供するにあ
る。
An object of the present invention is to provide a method for uniformly forming an organopolysiloxane resin film on a plastic lens.

本発明は、プラスチックレンズにオルガノポリシロ今サ
ン系樹脂を浸漬塗布する際、二度塗りすることを特徴と
している。
The present invention is characterized in that when dip-coating the organopolysilomylene resin on a plastic lens, it is coated twice.

さら忙詳しくは、−回目塗布後加熱硬化処理を施し、二
回目塗布時に上記プラスチックレンズの上下を1回目塗
布時と反対にし、10 owVmi n以下の同一速度
で引き上げることを特徴としている。
More specifically, after the first application, a heat curing treatment is performed, and during the second application, the top and bottom of the plastic lens are reversed from those during the first application, and the lens is pulled up at the same speed of 10 owVmin or less.

本発明を完成するにあたり、次のような実験を行った。In completing the present invention, the following experiments were conducted.

第1図のように、容器3にニックコート(勝田化工製の
オルガノポリシロキサン系樹脂溶液の商品名)をイング
ロビルアルコールで25チ希駅した溶液1を用い、アク
リル板2と上記溶液面との角度θを変えてアクリル板2
を溶液1に浸漬し、引き上げ速度20ff+%名nin
で溶液より引き上げ、これを加熱硬化して塗膜厚さを測
定した。塗布する。ここで、アクリル板2上面と溶液面
の角度を(+)、下面との角度を(−)にとっている。
As shown in Fig. 1, in a container 3, a solution 1 prepared by diluting 25 times Nick Coat (trade name of an organopolysiloxane resin solution manufactured by Katsuta Kako) with Inglobil alcohol is used, and the acrylic plate 2 and the above solution surface are coated. Acrylic plate 2 by changing the angle θ of
is immersed in solution 1, and the pulling speed is 20ff + % nin.
The film was removed from the solution, cured by heating, and the thickness of the coating film was measured. Apply. Here, the angle between the upper surface of the acrylic plate 2 and the solution surface is set as (+), and the angle between the lower surface and the lower surface is set as (-).

8F!2図は上記のようにしてアクリル板上に設けた焼
き付は塗膜厚さの測定結果である。角度−17度付近で
焼き付は塗膜厚さが最低となり、角度0度で焼き付は塗
膜厚さは0.7μmであった。
8F! Figure 2 shows the results of measuring the thickness of the baked-in film formed on the acrylic board as described above. At an angle of -17 degrees, the coating film thickness was the lowest, and at an angle of 0 degrees, the coating film thickness was 0.7 μm.

また、塗膜厚さは引き上げ速度および粘度によって変化
するが、実用範囲内では、角度と焼き付は塗膜厚の関係
は第2図のような傾向になることもわかった。
It was also found that although the coating thickness varies depending on the pulling speed and viscosity, within a practical range, the relationship between the angle and the coating thickness tends to be as shown in FIG. 2.

したがって、第3図のようにレンズ4を5の−に塗布す
ることはできない。たとえば、レンズと液面の最大角度
が20度のレンズの門膜厚さの分布は最大2倍となり一
40度の時は5Flfti:にも達する。
Therefore, it is not possible to coat the lens 4 on the negative side of 5 as shown in FIG. For example, the distribution of the portal membrane thickness of a lens whose maximum angle between the lens and the liquid surface is 20 degrees is at most twice as large, reaching 5Flfti: when the maximum angle between the lens and the liquid surface is 140 degrees.

オリガノポリシロ今サン系樹脂の塗布厚さは少なくとも
1μm以上必要であるため、この時膜厚分布は、最大角
度20度のレンズで1〜2μ咀40度のレンズでは1〜
3,5μmとなりレンズ表・面精度は著しく劣化する。
The coating thickness of the origanopolysilone-based resin must be at least 1 μm, so the film thickness distribution is 1 to 2 μm for a lens with a maximum angle of 20 degrees and 1 to 2 μm for a lens with a maximum angle of 40 degrees.
It becomes 3.5 μm, and the lens surface/surface precision deteriorates significantly.

     □ 本発明は、上記の定量的な実験に基すいた上すなわち、
本発明はレンズをオルガノポリシロキサン溶液に浸漬す
る場合、先ず第3図の−から浸漬し、その次は第3図の
bかも浸漬して二回塗布する。このようにす、ればプラ
スチックレンズ表面に付着したオルガノポリシロ今サン
の塗布膜厚さの分布精度が向上する。第4図は、この様
子を定量的に示したものである。同図において、曲線7
は一回目の塗布でプラスチックレンズ各所に付着した塗
膜厚さを示し、曲線8は、二回目の塗布でプラスチック
レンズ各所に付着した塗□膜厚さケ示し、曲線9は二回
の塗布でプラスチックレンズ各所に付着した全塗膜厚さ
を示したものである。この方法によれば、塗布膜厚さは
いちぢるしく均一となり、レンズ表面と液面の最大角度
が20度のレンズで最大膜厚分布が、従来の2倍から1
.2倍と7(ることがわかる。
□ The present invention is based on the above quantitative experiment, namely:
In the present invention, when a lens is immersed in an organopolysiloxane solution, it is first dipped from - in Fig. 3, and then immersed in b in Fig. 3, and coated twice. In this way, the accuracy of the distribution of the thickness of the organopolysilomylene film adhered to the surface of the plastic lens is improved. FIG. 4 quantitatively shows this situation. In the same figure, curve 7
Curve 8 shows the thickness of the coating that adhered to various parts of the plastic lens after the first application, curve 8 shows the thickness of the coating that adhered to various parts of the plastic lens after the second application, and curve 9 shows the thickness of the coating that adhered to various parts of the plastic lens after the second application. This shows the total thickness of the coating film attached to various parts of the plastic lens. According to this method, the coating film thickness becomes extremely uniform, and the maximum film thickness distribution for a lens where the maximum angle between the lens surface and the liquid level is 20 degrees is increased from twice that of the conventional method to 1.
.. You can see that it is 2 times and 7.

以上述べたように、本発明によれば、レンズ表面に簡単
に塗布膜厚さが均一なオルガノポリシロキサン系樹脂膜
が得られた。
As described above, according to the present invention, an organopolysiloxane resin film having a uniform coating thickness was easily obtained on the lens surface.

以下、本発明を実施例により更に説明する。The present invention will be further explained below with reference to Examples.

上記オルガノポリシロキサン系樹脂溶液にアクリルレン
ズ(レンズ表面と液面の最大角度20度)を浸漬し、こ
のレンズを引き上げ速度20Wymi nで塗布した。
An acrylic lens (the maximum angle between the lens surface and the liquid level was 20 degrees) was immersed in the organopolysiloxane resin solution, and the lens was coated at a lifting speed of 20 Wymin.

その後、このレンズを80゜Cで3′時間加熱してオル
ガノポリシロ今ザンな硬化させた。次に、このアクリル
レンズを第5図に示すように前回塗布した時に対し上下
を反対にセットし、上記と同一条件で溶液に浸漬し、引
き上げ、熱硬化させた。レンズ表面に形成された焼き付
は塗膜厚さ分布を干渉計で測定し、表面精度の変化を0
.3μm以内にできることを確認した。塗布膜厚を第4
図より推定すると1.4μU〜17岬 であった。  
             4本発明の重要なポイント
は、(1)−回目の塗布後、加熱硬化させ、ついでレン
ズを反転し二回目の塗布後、加熱硬化させる工程を少な
くとも一回行なうこと、(2)引き上げ速度を10 D
wny’rm i n以下、好ましくは100 m$n
in 〜10 BAnin  とすること、(3)レン
ズを浸漬するオルガノボリシロキザン溶液粘度を・1〜
100 epとすることであももし、−回目塗布後に加
熱硬化処理を施さずに二回目塗布すると、−回目塗布層
が溶剤中に逆に溶は出してしまい所望の塗布厚を得るこ
とができない。
The lens was then heated at 80° C. for 3' hours to harden the organopolysiloxane. Next, as shown in FIG. 5, this acrylic lens was set upside down compared to the previous application, immersed in the solution under the same conditions as above, pulled out, and heat cured. To detect burn-in formed on the lens surface, the coating thickness distribution is measured with an interferometer, and changes in surface accuracy are zeroed out.
.. It was confirmed that it could be formed within 3 μm. 4th coating film thickness
Estimated from the figure, it was 1.4 μU ~ 17 capes.
4 Important points of the present invention are (1) performing the step of heating and curing after the second coating, then inverting the lens and heating and curing after the second coating, and (2) increasing the pulling speed. 10D
less than wny'rm i n, preferably 100 m$n
(3) The viscosity of the organoborisiloxane solution in which the lens is immersed is 1 to 1.
If 100 ep is applied, if a second coating is applied without heat curing after the second coating, the second coated layer will dissolve into the solvent and the desired coating thickness will not be obtained. .

また、溶液からレンズを引き上げる速度は、I D o
yVmi n  より速く引き上げると、レンズ表面で
塗布溶液が流れ、塗膜厚さ分布が悪くなる。
Also, the speed at which the lens is pulled up from the solution is I D o
If it is pulled up faster than yVmin, the coating solution will flow on the lens surface and the coating thickness distribution will deteriorate.

以上述べたように本発明によれば、プラスチックレンズ
表面のオルガノポリシロ今ザン系樹脂膜さ分布が改善さ
れる。さらに本発明の方法は、両凹、両凸レンズばかり
でなく、いかなる曲率な有するレンズにもつ馴できる。
As described above, according to the present invention, the distribution of the organopolysilomyzan resin film on the surface of the plastic lens is improved. Furthermore, the method of the present invention is applicable not only to biconcave and biconvex lenses but also to lenses having any curvature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は引上角度の説明図、第2図は引上角度と膜厚の
関係な示す図、第6図と第5図はレンズを溶液に浸漬し
引き上げる状態を説明する図、第4図は本発明の詳細な
説明する図である。 1・・・溶液     6・・容器 4・・・レンズ 矛1己 ケ2凶 A度o(cALt) 第5図 オ斗口 flls、O(d+) 第5図
Figure 1 is an explanatory diagram of the pulling angle, Figure 2 is a diagram showing the relationship between the pulling angle and film thickness, Figures 6 and 5 are diagrams explaining the state in which a lens is immersed in a solution and pulled up, and Figure 4 is a diagram showing the relationship between the pulling angle and film thickness. The figure is a diagram for explaining the present invention in detail. 1... Solution 6... Container 4... Lenticular 1 self ke 2 A degree o (cALt) Fig. 5 Opening fulls, O (d+) Fig. 5

Claims (1)

【特許請求の範囲】[Claims] プラスチックレンズをオルガノポリシロキサン溶液に浸
漬してから引き上げ、加熱硬化処理を行ない、ついでこ
のレンズを反転させ再びオルガノポリシロキサン溶液に
浸漬してから引き上げ、再度加熱硬化処理を行なう工程
を少なくとも一回行なうことを特徴とするプラスチック
レンズに反射防止膜を形成する方法。
The process of immersing a plastic lens in an organopolysiloxane solution, pulling it out, heat-curing it, then inverting the lens, immersing it in the organopolysiloxane solution again, pulling it out, and heat-curing it again is performed at least once. A method for forming an antireflection film on a plastic lens, characterized in that:
JP57121993A 1982-07-15 1982-07-15 Method for forming antireflection film on plastic lens Pending JPS5913202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57121993A JPS5913202A (en) 1982-07-15 1982-07-15 Method for forming antireflection film on plastic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57121993A JPS5913202A (en) 1982-07-15 1982-07-15 Method for forming antireflection film on plastic lens

Publications (1)

Publication Number Publication Date
JPS5913202A true JPS5913202A (en) 1984-01-24

Family

ID=14824901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57121993A Pending JPS5913202A (en) 1982-07-15 1982-07-15 Method for forming antireflection film on plastic lens

Country Status (1)

Country Link
JP (1) JPS5913202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944962A (en) * 1987-10-24 1990-07-31 Ito Optical Industrial Co., Ltd. Method for dirtproofing treatment for plastic lens
JP2009106370A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Hair care apparatus
WO2011123132A1 (en) * 2010-04-02 2011-10-06 Essilor International (Compagnie Generale D' Optique) Method of dip-coating a lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944962A (en) * 1987-10-24 1990-07-31 Ito Optical Industrial Co., Ltd. Method for dirtproofing treatment for plastic lens
JP2009106370A (en) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Hair care apparatus
WO2011123132A1 (en) * 2010-04-02 2011-10-06 Essilor International (Compagnie Generale D' Optique) Method of dip-coating a lens
CN102858521A (en) * 2010-04-02 2013-01-02 埃西勒国际通用光学公司 Method of dip-coating a lens

Similar Documents

Publication Publication Date Title
US4438160A (en) Method of making a rotary ball display device
US3708225A (en) Coated synthetic plastic lens
JP3051084B2 (en) Sol-gel method
US3732620A (en) Method of treating plastic and elastomeric materials and articles produced thereby
US6753064B1 (en) Multi-layered coated substrate and method of production thereof
US9360595B2 (en) Antifog optical article and manufacturing method thereof
TWI449943B (en) Programmable wetting controller
JPH05215905A (en) Optical member with water repellent thin film and its manufacture
ATE257070T1 (en) METHOD FOR PRODUCING A COATED OPTICAL ELEMENT AND PRODUCT PRODUCED IN THIS WAY
US20090278269A1 (en) Method for manufacturing mold
JPS5913202A (en) Method for forming antireflection film on plastic lens
TW201437671A (en) Antiglare polarizing plate and image display device
Kwok et al. Low-rate dynamic contact angles on poly (methyl methacrylate/n-butyl methacrylate) and the determination of solid surface tensions
JPS5913201A (en) Method for providing antireflection film on synthetic resin lens
CN110383112A (en) The manufacturing method of lens and lens
US20040096577A1 (en) Dip coating process for optical elements
JPH0519121B2 (en)
EP0038281A2 (en) Process for modifying reflexion properties of surfaces
US6875467B2 (en) Crack resistant sol-gel wafer coatings for integrated optics
JP2004070033A (en) Optical fiber on which anti-reflective film is formed, and method of manufacturing the same
JP6826285B2 (en) Manufacturing method of base material with coating film and base material with coating film
JPS6133267A (en) Manufacture of aspheric body
JP3709088B2 (en) Optical waveguide
US2575998A (en) Optical element of polymerized methacrylate resin coated with thin film of thermoset resin
JPS63250601A (en) Thin film coating method for optical parts