JPS59131203A - Microwave antenna - Google Patents

Microwave antenna

Info

Publication number
JPS59131203A
JPS59131203A JP58164889A JP16488983A JPS59131203A JP S59131203 A JPS59131203 A JP S59131203A JP 58164889 A JP58164889 A JP 58164889A JP 16488983 A JP16488983 A JP 16488983A JP S59131203 A JPS59131203 A JP S59131203A
Authority
JP
Japan
Prior art keywords
reflector
auxiliary
microwave antenna
feed horn
auxiliary reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58164889A
Other languages
Japanese (ja)
Inventor
チヤ−ルス・エム・ノツプ
エドワ−ド・エル・オスタ−タツグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commscope Technologies LLC
Original Assignee
Andrew LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andrew LLC filed Critical Andrew LLC
Publication of JPS59131203A publication Critical patent/JPS59131203A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/193Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with feed supported subreflector

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 技術分野 本% HA uマイクロ波用アンテナ、より詳細には二
重反射式(dual−reflector )のマイク
ロ波用アンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a microwave antenna, and more particularly to a dual-reflector microwave antenna.

目的 本発明の目的に比較的低コストで効率良く経済的に製造
することができ、しかもこの柚のアンテナとともに通常
使用される無^数装置(radio−frequenc
y  equipmenj)の大部分を反射板の住方に
位置させるようにしたマイクロ波アンテナを提供するこ
とにある。これに関連した目的はアンテナの開口(ap
erture )の非稼働部分(blockage  
)@最小限にとどめ、アンテナの整合を容易にし、信号
にさらした状態での稼働(exposing  5er
vice)  の必要性及びアンテナによって送信及び
/又は受信される信号の電磁エネルギーに直接さらされ
ることによって生じる様々な危険(5afety  b
azards)に直面する保守要員(maintena
ns  personnel)の必要性も実質上無くす
ようにしたマイクロ波用アンテナしたマイクロ波用アン
テナ全提供することにある。
Purpose The purpose of the present invention is to provide a radio-frequency device which can be manufactured efficiently and economically at relatively low cost and which is commonly used in conjunction with this Yuzu antenna.
An object of the present invention is to provide a microwave antenna in which most of the equipment is located where the reflector resides. A related objective is the antenna aperture (ap
The non-working part (blockage) of
) @ Minimize, facilitate antenna matching, and operate exposed to signals (exposing 5er
vice) and the various hazards posed by direct exposure to the electromagnetic energy of the signals transmitted and/or received by the antenna.
maintenance personnel (maintena) facing
An object of the present invention is to provide a complete microwave antenna that substantially eliminates the need for a microwave antenna.

本発明の補助的な目的は小さく滑らかな壁面を有するフ
ィードホーン全使用し得るようにしたマイクロ波用アン
テナを提供することにある0本発明のさらに補助的な目
1fiは1又は複数の周波数帯域において、それぞれの
周波数帯域で直交偏波信号(orthogonally
  polarizedsignals)とともに、あ
るいはそれとは別にマイクロ波信号の送信及び/又は受
信に用いることができるマイクロ波信号全提供すること
にある。
A further object of the invention is to provide a microwave antenna which can be used for all feedhorns with small smooth walls. In each frequency band, orthogonally polarized signals (orthogonally
The object of the present invention is to provide a complete set of microwave signals that can be used for transmitting and/or receiving microwave signals with or without polarized signals.

本発明のさらに補助的な目的はVSWR(電圧定在波比
〕、指向性利得及びRPE(放射線パターン包絡線)を
様々な異なった′所望の組合せに形成(t4i1or)
することのできる良好な機能(ρcr−formanc
c)特性全供給するマイクロ波用アンテナを提供するこ
とにある。これに関連する目的は比較的高い冶効性を持
つマイクロ波用アンテナ全提供することにある。
A further auxiliary object of the present invention is to create various desired combinations of VSWR (voltage standing wave ratio), directional gain and RPE (radiation pattern envelope) (t4i1or).
A good function that can be used (ρcr-formanc
c) To provide a microwave antenna that provides all the characteristics. A related object is to provide an overall microwave antenna with relatively high effectiveness.

本発明のさらに別の補助的な目的は地上局アンテナのた
めのアメリカ合衆国連邦通信安員会(U。
Yet another subsidiary object of the present invention is the United States Federal Communications Commission (U.S.C.) for ground station antennas.

S、Federtrl  Communication
  Com1−ssion)から提出された最近のRP
E説明書(specil’1cation)(i−充足
させるコトノテきるマイクロ波用アンテナを提供するこ
とにある。
S,Federtrl Communication
Recent RP submitted by Com1-session)
The purpose of the present invention is to provide a microwave antenna that satisfies the requirements of E-specification.

構成 本発明ハ、ハラボラ式反射板の組合せからなるマイクロ
波用アンテナにおいて、反射板と同反射板の焦点との間
に位置し、かつ自身の中心全中心として対称形状全なす
反射面全形成する補助反射板と、同反射面の中央部が前
記反射板から順向する方向へ軸心に沿って傾斜し、その
傾斜の度合が補助反射板の半径の増加に伴って減少して
いることと、前記補助反射板の半径方向外方部が反射板
側へ軸心に沿って傾斜し、その傾斜度合は補助反射板の
半径の増加に伴って増加していることと、前記補助反射
板からのマイクロ波信号全受信して、同マイクロ波信号
全補助反射板に送信するためのフィー ドホーンと、補
助反射板の反射面がフィードホーンを通して送られたり
、又は反射板によって反射されるエネルギーのほぼ全部
+S断するような位置と大きさとを与えられているもの
である。
Structure of the present invention C. In a microwave antenna consisting of a combination of Halabola type reflectors, the entire reflecting surface is located between the reflector and the focal point of the reflector and has a symmetrical shape with respect to its own center. The auxiliary reflector and the central portion of the reflecting surface are inclined along the axis in a direction facing forward from the reflector, and the degree of the inclination decreases as the radius of the auxiliary reflector increases. , the radially outer part of the auxiliary reflector is inclined toward the reflector side along the axis, and the degree of inclination increases as the radius of the auxiliary reflector increases; A feed horn for receiving all of the microwave signals and transmitting the microwave signals to the auxiliary reflector, and a reflecting surface of the auxiliary reflector to receive almost all of the energy sent through the feed horn or reflected by the reflector. It is given a position and size that cuts all +S.

実施例 以下、この発明を具体化したアンテナの一実施例を第1
−3図に従って詳述する。
Embodiment The following is a first embodiment of an antenna embodying the present invention.
- Detailed explanation according to Figure 3.

第1図に示す二重反射式アンテナは反射板10と、同反
射板10の軸心に沿って延びる日向状導波管12に連結
されかつ同導波管12によって支持されるフィードホー
ン((’eed  horn  )l 1゜と、補助反
射1fL13とからなっている。
The double reflector antenna shown in FIG. 1 includes a reflector 10 and a feed horn (( 'eed horn)l 1° and an auxiliary reflection 1fL13.

送信モードにおいてフィードホーン11は導波管12全
通してマイクロ波信号を受信し、このマイクロ波信月全
袖助反射板13へと送るものである。そして補助反射板
13はマイクロ波信号を反射&10へと反射し、同反射
板10が放物面によって、はぼ平面波の状態でマイクロ
波信−Qf反射するものである。
In the transmission mode, the feed horn 11 receives a microwave signal through the entire waveguide 12, and sends it to the microwave signal reflecting plate 13. The auxiliary reflecting plate 13 reflects the microwave signal to the reflection &10, and the reflecting plate 10 reflects the microwave signal -Qf in a substantially plane wave state due to its parabolic surface.

受信モードではパラホラ式の反射板10には入ッテくル
平面波カ当*り(’illuminate)、同反射板
10はこのエネルキーを反射して球面波として補助反射
板13に送る。そして、?I朽助反抱1板13は、入っ
てくるエネルギーをフン−1ζホーン11に反射して円
筒状の導波管12全経て受イ言装置へと送るものである
In the receiving mode, the paraholographic reflector 10 is illuminated by a plane wave, and the reflector 10 reflects this energy and sends it to the auxiliary reflector 13 as a spherical wave. and,? The first support plate 13 reflects the incoming energy onto the horn 11 and sends it through the entire cylindrical waveguide 12 to the receiver.

従来の二重反射式アンテナと同様に、補助反射板13は
反射板10と同反射板10の放物面の焦点Fとの間に位
置している。補助反射板13を所望の位置に支持するた
め、補助反射板13は例えはグラスファイバーで形成し
た絶縁円錐部材140大径側端邪に取付けられている。
Similar to the conventional double reflector antenna, the auxiliary reflector 13 is located between the reflector 10 and the focal point F of the paraboloid of the reflector 10. In order to support the auxiliary reflector 13 at a desired position, the auxiliary reflector 13 is attached to the large diameter end of an insulating conical member 140 made of glass fiber, for example.

そして、同円錐部材14はその小径側端部が、反射板1
0の成句リンク16内に装着したl\ブ15に固定され
ている。円錐部材14は比戟的薄く形成され、VSWR
及びパターンを悪下させないよう、アンテナ装置には無
視し得る僅かな変化を起こさせるのみである。これに対
して、補助反射板13は反射板10の端部から補助反射
板13の後方へと延びる3条又は4条の溝(pod S
 )によって支持されている。補助反射板13は反射板
10の開口の非稼働部分全最小としたときでも、送信状
態においてフィードホーン11全介して送られるほぼ全
てのエネルギーを遮断(1ntercept)l、、ま
た受信状態においても、反射板10によって反射されて
入ってくるほぼ全てのエネルギーを遮断するように位置
及び大きさが決定されている。なお、本実施例では反射
板10の直径に対する補助反射板13の直径の割合は約
0.05である。はとんど全ての二重反射板アンテナと
同様に、本発明においても補助反射板13ば、好ましく
はフィードホーン11から送られるエネルギーの少なく
とも98%奮遮断するものである。この結果を得るため
に、補助反射板13ば、その直径が中帯域周波数(mi
−1)and  frequency)における1つの
波長の約9倍の大きさに形成されるとともに、その位置
にフィードホーン11に対して非常に接近している。
The conical member 14 has a small diameter side end that is connected to the reflecting plate 1.
It is fixed to the l\b 15 installed in the idiomatic link 16 of 0. The conical member 14 is formed relatively thin, and the VSWR
In order to avoid deteriorating the pattern, only negligible changes are made to the antenna device. On the other hand, the auxiliary reflector 13 has three or four grooves (pod S) extending from the end of the reflector 10 to the rear of the auxiliary reflector 13.
) is supported by Even when the non-operating portion of the aperture of the reflector 10 is minimized, the auxiliary reflector 13 intercepts almost all the energy sent through the entire feed horn 11 in the transmitting state, and also in the receiving state. The position and size are determined so as to block almost all the energy reflected by the reflection plate 10. In this embodiment, the ratio of the diameter of the auxiliary reflector 13 to the diameter of the reflector 10 is approximately 0.05. As with most dual reflector antennas, the auxiliary reflector 13 in the present invention preferably blocks at least 98% of the energy transmitted from the feedhorn 11. In order to obtain this result, the diameter of the auxiliary reflector 13 is set at the mid-band frequency (mi
-1) and frequency), and is located very close to the feed horn 11 at that position.

フィードホーン11は好ましくは滑らかな壁面を有し、
かつフィードホーン11内を通過する中帯域信号(mi
dband  signals)の1つの波長とほぼ等
しい内径を有する円筒状の導波管にて構成するのがよい
。このようなフィードホーン11は補助反射板13に対
してほぼ同一のE面及びH面パターン全有する信号全発
信するものであって、製造コストが極めて低いものであ
る。フィードホーン11の細心方向長さは、単に導波管
12の延長にすぎないので、厳密に考える必要はない。
Feed horn 11 preferably has smooth walls;
and a medium band signal (mi
It is preferable to use a cylindrical waveguide having an inner diameter approximately equal to one wavelength of the dband signals. Such a feed horn 11 emits all signals having almost the same E-plane and H-plane patterns to the auxiliary reflector 13, and its manufacturing cost is extremely low. The length of the feed horn 11 in the narrow direction is simply an extension of the waveguide 12, so there is no need to consider it strictly.

フィードホーン11と導波管12の内径は一致し、両者
11・ 12は多数個のねじ19によって互いに固着さ
れた結合フランジ17.18によって連結されている。
The feed horn 11 and the waveguide 12 have the same inner diameter and are connected by connecting flanges 17 and 18 which are fixed to each other by a number of screws 19.

フィードホーン11の外側表面から反射板10方向への
放射を防止するため、フィードホーン11の開口部又は
自由端は、同フィードホーン11と同心状に設けた導電
性を有する短い円筒体21及び短絡(shorting
)  リング22から成る四分の一波長のチョーク(c
hoicc)20によって包囲されている。円筒体21
の内周面はフィードホーン11の外周面から離間し、フ
ィードホーン11の一端から四分の一波長とほぼ等しい
位置までフィードホーン11の長さ方向へ延びている。
In order to prevent radiation from the outer surface of the feed horn 11 toward the reflector 10, the opening or free end of the feed horn 11 is connected to a short conductive cylinder 21 provided concentrically with the feed horn 11 and a short circuit. (shorting
) A quarter-wave choke consisting of a ring 22 (c
hoicc) 20. Cylindrical body 21
The inner peripheral surface of the feed horn 11 is spaced apart from the outer peripheral surface of the feed horn 11, and extends in the length direction of the feed horn 11 from one end of the feed horn 11 to a position approximately equal to a quarter wavelength.

そして、円筒体21はリンク22によってフィードホー
ン11に短絡され、フィードホーン11の外周面に電流
が流れることを防止するための四分の一波長の同軸状の
チョーク20を形成している。
The cylindrical body 21 is short-circuited to the feed horn 11 by a link 22, forming a coaxial choke 20 of a quarter wavelength for preventing current from flowing to the outer peripheral surface of the feed horn 11.

所望ならは、前記実施例の真直なフィードホーン11に
代えて漏斗状(flarea)のものを使用したり、テ
ーパ状の導波管全真直なフィードホーン11と同ホーン
11とは直径が異なる真直な支持導波管12との間に使
用したりすることも可能である。
If desired, a funnel-shaped feed horn 11 may be used in place of the straight feed horn 11 of the above embodiment, or a tapered waveguide may have a different diameter from the completely straight feed horn 11. It is also possible to use it between a straight supporting waveguide 12.

本究明の重要な観点に従えば補助反射板13に反射面を
形成し、同反射面はその中心全中心として対称状となっ
ている。そして、補助反射′!l5L13は中心部が反
射板10からlfmflljする方向へ軸心に沿って傾
斜し、その傾斜度合が補助反射板13の半径の増加に伴
って減少している。さらに、補助反射板130半径方向
外方部に反射板10側へ軸心に沿って傾斜し、その傾斜
度合は補助反射板130半径の増加に伴って増加してい
る。よって、この実施例では補助反射板13の反射面は
、補助反射板13の中心と半径r1の中間において反射
板10から離間する方向へ傾斜し、さらに半径rlから
補助反射板13の外周方向へ延ひて再び反射板10方向
へと傾斜している。J、シ詳細に述べると、補助反射板
13の反射面は補助反射板13の中心から半径rlの外
方へと延ひ、反射板10から離間して傾斜し、その傾斜
度合は半径の増加とは逆に減少するようになっている。
According to an important aspect of the present study, a reflective surface is formed on the auxiliary reflective plate 13, and the reflective surface is symmetrical with respect to its entire center. And auxiliary reflex′! The center portion of l5L13 is inclined along the axis in the direction lfmfllj from the reflecting plate 10, and the degree of inclination decreases as the radius of the auxiliary reflecting plate 13 increases. Furthermore, the radially outward portion of the auxiliary reflector 130 is inclined toward the reflector 10 along the axis, and the degree of inclination increases as the radius of the auxiliary reflector 130 increases. Therefore, in this embodiment, the reflective surface of the auxiliary reflector 13 is inclined in a direction away from the reflector 10 between the center of the auxiliary reflector 13 and the radius r1, and is further inclined in the direction of the outer circumference of the auxiliary reflector 13 from the radius rl. It extends and slopes again toward the reflector 10 direction. J. In detail, the reflective surface of the auxiliary reflector 13 extends outward from the center of the auxiliary reflector 13 at a radius rl, is tilted away from the reflector 10, and the degree of inclination increases as the radius increases. On the contrary, it is decreasing.

そして、反射面は半径r1から補助反射板13の外周へ
延びると反射板10の方向に傾斜し、その傾斜度合に半
径が大きくなると逆に減少するようになっている。最終
的な結果として、補助反射&13は断面凹状全なしてい
る口 第1図より明らかなように、補助反射板13はその中心
が、好ましくは自身の外周部よりも反射板10の開口部
平面aにより接近した位置に設けられている。すなわち
、補助反射板13の中心と外周部との間には軸心方向に
おけるずれがある。
When the reflecting surface extends from the radius r1 to the outer periphery of the auxiliary reflecting plate 13, it is inclined toward the reflecting plate 10, and conversely decreases as the radius increases to the degree of inclination. As a final result, the auxiliary reflector 13 has a concave cross-section.As is clear from FIG. It is provided at a position closer to a. That is, there is a shift in the axial direction between the center and the outer circumference of the auxiliary reflecting plate 13.

補助反射板13における軸心方向のずれと断面凹状の形
状の組合せが、反射板10の開口の稼働部分全域にわた
って、補助反射板13を介してフィードホーン11と反
射板100間にほぼ等しい電波の通路が生じて、反射板
10及び補助反射板13の開口の非稼働部分における工
率ルキーの損失が最小化される。より詳細に述べると、
補助反射板13はフィードホーン11(又は補助反射板
13)の中心の小さな非稼働部分と反射板10の外周と
のffiの環状セクター8内において球面の波面形状を
なしてフィードボーン11から送られるエネルキーの大
部分を反射する。同様に反射&10は補助反射板13の
外縁と反射板10の闇、すなわち補助反射板13の非稼
働部分の外方の形状をなして補助反射板13からのエネ
ルギーの大部分?反射している。よって、フィードホー
ン11と補助反射&13とによって作られる非稼働部分
は最初から小さく(代表例を挙けれは、12−140k
ly、の周波数における反射板1017)開口全体の5
%未満)、その後も、補助反射板13の形状はこれらの
非稼働部分の悪影響も減少させる。さらに、この結果は
開口部の稼働部分全体を通して(振幅及び位相の両者に
おける)電磁界の比較的均一な分布盆行うことによって
得られる。
The combination of the misalignment in the axial direction and the concave cross-sectional shape of the auxiliary reflector 13 results in approximately equal radio waves being transmitted between the feed horn 11 and the reflector 100 via the auxiliary reflector 13 over the entire operating area of the opening of the reflector 10. A passage is created to minimize the loss of efficiency in the non-active parts of the apertures of the reflector 10 and the auxiliary reflector 13. In more detail,
The auxiliary reflector 13 is sent from the feedbone 11 with a spherical wavefront shape within the annular sector 8 of ffi between the small non-operating part at the center of the feed horn 11 (or the auxiliary reflector 13) and the outer periphery of the reflector 10. Reflects most of the energy. Similarly, reflection &10 is the shape of the outer edge of the auxiliary reflector 13 and the darkness of the reflector 10, that is, the outer shape of the non-operating part of the auxiliary reflector 13, and most of the energy from the auxiliary reflector 13? It's reflecting. Therefore, the non-operating part created by the feed horn 11 and the auxiliary reflector &13 is small from the beginning (a typical example is 12-140k).
Reflector plate 1017) at the frequency of ly, 5 of the entire aperture
%), then the shape of the auxiliary reflector 13 also reduces the negative effects of these non-active parts. Furthermore, this result is obtained by providing a relatively uniform distribution of the electromagnetic field (both in amplitude and phase) throughout the active portion of the aperture.

本発明のアンテナは単に構造が簡単で製造コストが低い
はか9でなく、優れた機能特性を有するものである。こ
のアンテナは、棟々の異なった使用に供するために、異
なるRPE値、利得値、VSWR値全設定することが可
能である。これらの特性値中の任意の1つは、他の特性
値たち全比較的少し低下させた場合にのみ最適値とする
ことができる。一般に、平均性能は利得とVSWRと■
PE23々バランスさせて得ている。
The antenna of the present invention not only has a simple structure and low manufacturing cost, but also has excellent functional characteristics. This antenna is fully configurable with different RPE, gain, and VSWR values for different uses. Any one of these characteristic values can be made optimal only if all the other characteristic values are reduced relatively slightly. In general, average performance depends on gain and VSWR.
It is obtained by balancing PE23.

第5〜8図は、第1〜4図に示すアンテナに対して7.
62n(3インチ〕のテーパ面を形成した導波管部を取
付けた場合の磁界を示すものである。
5-8 show the antennas shown in FIGS. 1-4 in 7.
This figure shows the magnetic field when a waveguide section with a tapered surface of 62n (3 inches) is attached.

7.62/7++(3インチ)のテーパ面ケ有する導波
管部は、WC940の導波管によって構成した7620
(3インチ)のフィードホーンと、wc6BOO導波管
によって構成したフィードホーンの間に挿入されている
。フィードホーンの口部は、補助反射板13の中心から
254rM(1インチ)離れた所に位置し、補助反射板
13の前面の中心は、反射板の焦点から2.01■(0
,79’インチ〕前方の位置にある。このアンテナは、
450α(15フイート〕の直径を有する反射板10と
、225CM(8,86インチ〕の補助反射板13とを
有し、両者10.13は絶縁円錐部材14に代って支柱
に支持されている。第5,6図は、12.250)lz
における8面及びH面のパターンを示し、第7゜8図は
14.5GHzにおける8面及び■面のパターンを示し
ている。第5〜8図においでは、拡大したパターンを示
すためには拡大した寸法音用い、縮少したパターンを示
すためには縮少した寸法音用いている。第5〜8図にお
いて鎖線で示す曲線は、f〜Tにおけるサイドローブ最
大値?示すため、アメリカ合衆国連邦通信委員会によっ
て定められた特定値、すなわちdBi(0)=32 2
5]0g10θ を示している。なお、7°全越えても
10%に満たないサイドローブが特定の値を越えるにす
ぎない。このアンテナFl 12.25 GH7,及び
145QHzの規準での試験に合格しており、さらに狭
い主ビーム(beam)f使用して試運転が行われてい
る。複数個の第1のサイドローブは比較的高く形成され
、これが多くの二重反射式アンテナの特性を有すること
になる。この第1サイドローフの数を減少したいときハ
、若干形状の異った補助反射板を便用すれはよいが、ア
ンテナの利得も減少することに免れない0 第5〜8図に示すツマターンを生じさせるアンテナの指
向性利得を以下に示す。なお、指向性不t+<iは反射
&10及び補助反射8!13の凡M8表面の特性の低下
をも含むものである。
7. The waveguide section with a tapered surface of 62/7++ (3 inches) is a 7620 waveguide made of WC940 waveguide.
(3 inch) feed horn and a feed horn constructed from a wc6BOO waveguide. The mouth of the feed horn is located 254 rM (1 inch) away from the center of the auxiliary reflector 13, and the center of the front surface of the auxiliary reflector 13 is 2.01 m (0.0 m) away from the focal point of the reflector.
, 79' inches] in the forward position. This antenna is
It has a reflector 10 with a diameter of 450α (15 feet) and an auxiliary reflector 13 with a diameter of 225CM (8,86 inches), both 10.13 being supported by a column instead of the insulating cone member 14. .Figures 5 and 6 are 12.250)lz
Figure 7.8 shows the pattern of the 8-plane and the H-plane at 14.5 GHz. In FIGS. 5 to 8, an enlarged size note is used to indicate an enlarged pattern, and a reduced size note is used to indicate a reduced pattern. The curves indicated by chain lines in Figs. 5 to 8 are the maximum side lobe values from f to T? To indicate the specific value established by the Federal Communications Commission of the United States of America, namely dBi(0) = 32 2
5]0g10θ. Note that even if all 7 degrees are exceeded, only less than 10% of the side lobes exceed a specific value. This antenna has passed tests under standards of Fl 12.25 GH7 and 145 QHz, and trial runs are being conducted using an even narrower main beam (f). The plurality of first sidelobes are formed relatively high, which has the characteristics of many double reflector antennas. If you want to reduce the number of first side lobes, you can use an auxiliary reflector with a slightly different shape, but this will inevitably reduce the gain of the antenna. The resulting antenna directional gain is shown below. Note that the directivity loss t+<i also includes the reduction in the characteristics of the approximately M8 surface of reflection &10 and auxiliary reflection 8!13.

12.250ELz  53.69dB  53.64
dB   *53.67dB〔67、昨効率 (ell’1cicncy)) 14.50 GH7,54,95dB  54.74 
dB   *54.85 dB〔63,雛効率 (efficiency)) リターンロスの値は画周波数帯において、アンテナが1
.25〜1.30の範囲のV S W Rを有してイル
こと全示している。
12.250ELz 53.69dB 53.64
dB *53.67dB [67, last efficiency (ell'1cency)) 14.50 GH7,54,95dB 54.74
dB *54.85 dB [63, chick efficiency] The value of return loss is when the antenna is 1 in the image frequency band.
.. All are shown having a V S WR in the range of 25 to 1.30.

本発明の別個において、アンテナは上述したアンテナに
似ているが反射板10の焦点F7.I・ら678rIR
(2,6フインチ)前方に設けられi76.2z(30
インチ〕の補助反射板13を有し、さらに4.45z 
(1,75イン−f−)の孔を備えた漏斗状のフィード
ホーンを有している。このアンテナは8゜7GHz〜4
.4GHzo範囲内における様々な周波数で試験された
が、その結果は次頁の表に示されている。
In a separate aspect of the invention, the antenna is similar to the antenna described above, but with the focal point F7 of the reflector 10. I.et al.678rIR
(2,6 finches) installed in front of i76.2z (30
It has an auxiliary reflector 13 of 4.45 z
It has a funnel-shaped feed horn with (1,75 in-f-) holes. This antenna is 8°7GHz~4
.. Tested at various frequencies within the 4 GHz range, the results are shown in the table on the next page.

補助反射板13は上述したものと同一であるが、支柱に
代わってグラスファイバー上に設けられている。この補
助反射@Z13i3.95GHzの周波数帯において試
験され、第9.10図に示される振幅及び位相パターン
を庄する。第9,10図に示すものはE面パターンであ
り、■面パターンは図示しないものの、特に上述した3
、95GHzにおける試験の結果においてE面パターン
と類似していると思われる。第9,10図からも明らか
なように、補助反射板13の非稼働部分は、パターンの
中心から16°の位置にまで延び、さらに反射板10の
端縁は約74°の位置にある。振幅パターンと位相パタ
ーンの両者は、反射板10の放物面の焦点に関して一定
の半径(constant  ra7dius)線上で
測定されたものである。第9図から明らかなように、振
幅は補助反射板13の非稼働部分の外端付近で急速に増
加する。そして振幅は開口の稼働部分の主要部分、すな
わち補助反射板13の非稼働部分の端と反射板10の外
周との間において、ゆつくりと増器しつづける。反射板
10の外周において、振幅は急速に低下する。このこと
は反射板10の開放さf′した開口の範囲全体にマイク
ロ波が均一にあること全保証している。
The auxiliary reflector 13 is the same as described above, but is provided on the glass fiber instead of the pillar. This auxiliary reflection @Z13i was tested in the 3.95 GHz frequency band and produced the amplitude and phase pattern shown in Figure 9.10. What is shown in Figures 9 and 10 is the E-side pattern, and although the ■-side pattern is not shown, it is especially
, appears to be similar to the E-plane pattern in the test results at 95 GHz. As is clear from FIGS. 9 and 10, the non-operating portion of the auxiliary reflector 13 extends to a position 16° from the center of the pattern, and the edge of the reflector 10 is located at a position of about 74°. Both the amplitude pattern and the phase pattern were measured on a constant radius line with respect to the focus of the paraboloid of the reflector 10. As is clear from FIG. 9, the amplitude increases rapidly near the outer end of the non-active portion of the auxiliary reflector 13. The amplitude continues to increase slowly in the main part of the working part of the aperture, that is, between the end of the non-working part of the auxiliary reflector 13 and the outer periphery of the reflector 10. At the outer periphery of the reflector 10, the amplitude decreases rapidly. This fully guarantees that the microwaves are uniformly distributed over the entire area of the open aperture f' of the reflector plate 10.

位相パターンは第10図から明らかなように比較的一定
に保たれて開口の開放部分を通過する。
The phase pattern remains relatively constant as it passes through the open portion of the aperture, as can be seen in FIG.

上記のアンテナの大きさ全変化させて他の周波数帯内で
使用し、周波数に応じた結果を導き出すことは可能であ
る。また、この種のアンテナに覆い(ShrOudS)
を被せて、反射板10の損失(spillover)f
減少しかつ、この領域内における几PEy向上させるこ
とも可能である。
It is possible to completely vary the size of the antenna described above and use it in other frequency bands to derive frequency-dependent results. You can also cover this kind of antenna (ShrOudS)
The loss (spillover) f of the reflector 10 is
It is also possible to decrease and improve the PEy within this region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本究明を具体化したマイクロ波用アンテナの中
央部縦断面図、第2図は第1図のアンテナの補助反射板
部分の拡大断面図、第3図は同じ<i1図のアンテナの
フィードホーン部分の拡大断面図、第4図は同じく第1
図のアンテナの補助反射板の全体を示す側面図、第5,
6図は本発明七具付化したアンテナによって形成される
それぞれ周波数12.25GHzにおけるE面及びE面
のパターンを示す図、第7・ 8図は第5,6図のパタ
ーン全形成する同じアンテナによって形成されるそれぞ
れ周波数14.501(y、におけるE面及びE面のパ
ターンを示す図、第9・ 10図は第1゜2.4図に示
される補助反射板の大きさ全変化させることにより周波
数3.g5GI−1zにおいて得られる振幅及び位相パ
ターンを示す図である。 反射板10、フィードホーン11、補助反射板13゜ 待Ff 出11 人   アンドリュー コーポレーシ
ョン化 理 人  弁理士  恩 1)博 宣図面の浄
書(内容に変更なし) FIG、 1 FIG、 4 FIG、 9 0G、  t。 1、事件の表ン1\ 昭和58年特h!l願第1eE889号2 発明の名称 マイクロ波用アンデプ 3、補IFをする者 小イ′1との関係’  i、11i+’f出願人11 
所   アメリカ合衆国 607I62  イリノイ州
A−ラン1−パーク ウ土スI〜 ワンハンドレッドアンドノイノラーイ−1ノ゛−トス1
〜リ−1〜 10b00 氏 名   アンドリコー ]−ポレーシ三1ン(名 
称)  代表化 イー 」ル プルツカ−Illl  
箱   ノ7メリカ合衆国4、代理人
Figure 1 is a vertical cross-sectional view of the central part of a microwave antenna that embodies this research, Figure 2 is an enlarged cross-sectional view of the auxiliary reflector part of the antenna in Figure 1, and Figure 3 is the same antenna as in Figure 1. 4 is an enlarged cross-sectional view of the feed horn portion of the
A side view showing the entire auxiliary reflector of the antenna shown in Fig. 5,
Figure 6 is a diagram showing the E-plane and E-plane patterns at a frequency of 12.25 GHz, respectively, formed by the antenna equipped with the present invention, and Figures 7 and 8 are the same antenna that forms the entire pattern of Figures 5 and 6. Figures 9 and 10 show the patterns of the E-plane and E-plane at a frequency of 14.501 (y), respectively, formed by changing the size of the auxiliary reflector shown in Figure 1.2.4. It is a diagram showing the amplitude and phase pattern obtained at a frequency of 3.g5GI-1z.Reflector 10, feed horn 11, auxiliary reflector 13°. Engraving of drawings (no changes in content) FIG, 1 FIG, 4 FIG, 9 0G, t. 1. Case table 1 \ 1988 special h! 1 Application No. 1eE889 2 Name of the invention Microwave antenna amplifier 3, relationship with supplementary IF processor A'1 i, 11i+'f Applicant 11
Location: United States of America 607I62 A-Lan 1-Park, Illinois
~Lee-1~ 10b00 Name Andrico] - Poreshi 31 (Name
representation)
Box No. 7 United States of America 4, Agent

Claims (1)

【特許請求の範囲】 1 パラホラ式反射板kWするマイクロ波用7ンテナに
おいて、反射板(10)と同反射板(10〕の焦点(F
)との間に位置し、かつ自身の中+L>’に中心として
対称形状をなす反射面を形成する補助反射板(13〕と
、同反射面の中央部カニnn記反抱寸&(10)から離
間する方向へslらに沿って傾斜し、その傾斜度合が補
助反射板(13)の半径の増加に伴って誠少しているこ
とと、前記袖助反携寸板(13)の半径方向外方部が反
射板(10)但11へ軸心に沿って傾斜し、その傾斜度
合は補助反射1jJsL(13)の半径の増加に伴って
増加していることと、前記補助反射&(13)7)・ら
のマイクロ波信号全受信して、同マイクロ波信号全袖助
反射板(13)に送信するためのフィードホーン(11
〕と、補助反射板(13〕の反射面がフィー1:ホーン
(1i’)k通して送られたり、又は反射板(10)に
よって反射されるエネルギーのほぼ全部全遮断するよう
な位置と大きさと?与えられていること全特徴とするマ
イクロ波用アンテナ。 2 @記フィードホーン(11〕は前記反射板(10)
の軸心上において、反射&(10)と補助反射板(13
)の間に位置し、かつ作@ (operating)周
波帯の全体にわたって約1.3以下のV8WR2有する
ことを特徴とする特許請求の範囲第1項に記載のマイク
ロ波用アンテナ。 3 前記フィードホーン(11)+’j:、F面パター
ンと11面パターンとがほぼ等しくなっている補助反射
板(13)に信月を送ることを特徴とする特許請求の範
囲第1項に記載のマイクロ波用アンテナ。 4 前記フィードホーン(11〕は、壁面が滑らかに形
成された導波管であることを特徴とする特許請求の範囲
第1項に記載のマイクロ波用アンテナ。 5 前記フィードホーン(11)の孔は中帯域周波数に
おける1つの波長とほぼ等しい大きさ會有することを特
徴とする特許請求の範囲第1項、第3項及び第4項のい
ずれかに記載のマイクロ波用アンテナ。 6 前記フィードホーン(11)は、反射板(10)の
中心全通りその軸心に沿って延びる硬い(rigid 
)導波管によって支持されていることを特徴とする特許
請求の範囲第1項に記載のマイクロ波用アンテナ。 7 前記補助反射板(13)は、反射板(10)に固着
した絶縁用円錐部材(14)によって支持されているこ
とを特徴とする特許請求の範囲第1項に記載のマイクロ
波用アンテナ。 8 前記補助反射板(13〕は、フィードホーン(11
)から送られるエネルギーの少なくとも約98%を遮断
するように位置及び大きさが決められていることを特徴
とする特許請求の範囲第1項ニ記載のマイクロ波用アン
テナ。 9 前記補助反射板(13)の中心は、同袖助反射板(
13)の外周部よりも反射&(10)の関口平面に接近
していることを特徴とする特許請求の範囲第1項に記載
のマイクロ波用アンテナ。 10  前記補助反射板(13)の反射面は、補助反射
&(13)の中心とその外周の任意の1点との間におい
て、滑らかに連続する凹状曲線全形成していることを特
徴とする特許請求の範囲第1項に記載のマイクロ波用ア
ンテナ。 】1 バラホラ式反射板を有するマイクロ波用アンテナ
において、反射板(10)と同反射板(10)の焦点C
F )との間に位置する補助反射板(13)と、同梱助
反射板(13)の反射面が補助反射板(13)の外周部
よりも反射板(10)の開口平面(a)に近接している
ことと、hjJ記反対反射面央部が反射板(10)から
離間する方向へ軸心に沿って傾斜(−1その傾斜度合が
補助反射板(13)の半径の増加に伴って織少しでいる
ことと、前記補助反射板(13)の半径方向外方部は反
射板(10)側へ軸心に沿って傾斜し、その傾斜度合は
補助反射板(13〕の半径の増加に伴って増加している
ことと、中帯域周波数の1つの波長とほぼ等しい直径の
孔?有し、かつ壁面が滑かに形成さ九た円筒状の導波管
によって構成され、E面/fターンとH面パターンとが
ほぼ等しくなっている補助反射&(13)に信号を送る
ためのフィードホーン(11〕と、前記補助反射板(1
3)の反射面はフィードホーン(11)k通して送られ
たり、反射板(10)によって反射されたりするエネル
キーのほぼ全部を遮断するように位置及び大きさが決め
られていることを特徴とするマイクロ波用アンテナ。
[Claims] 1. In a microwave 7-antenna with a parabolic reflector (kW), the reflector (10) and the focal point (F) of the reflector (10)
) and forms a symmetrical reflecting surface with its center +L>' as the center, and an auxiliary reflecting plate (13) that is located between ), and the degree of inclination increases as the radius of the auxiliary reflective plate (13) increases, and the radius of the sleeve auxiliary and reflective plate (13). The outward part of the direction is inclined toward the reflecting plate (10) but 11 along the axis, and the degree of inclination increases as the radius of the auxiliary reflection 1jJsL (13) increases, and the auxiliary reflection &( 13) A feed horn (11) for receiving all the microwave signals from 7) and transmitting them to the full-length sub-reflector (13).
], and the reflective surface of the auxiliary reflector (13) is positioned and sized so as to completely block almost all of the energy transmitted through the horn (1i')k or reflected by the reflector (10). A microwave antenna having all the characteristics given above. 2. The feed horn (11) is the reflector (10).
On the axis of the reflector & (10) and the auxiliary reflector (13
) and has a V8WR2 of about 1.3 or less over the entire operating frequency band. 3. Said feed horn (11)+'j:, the signal is sent to the auxiliary reflector (13) in which the F-plane pattern and the 11-plane pattern are approximately equal. Microwave antenna described. 4. The microwave antenna according to claim 1, wherein the feed horn (11) is a waveguide with a smooth wall surface. 5. A hole in the feed horn (11). 6. The microwave antenna according to any one of claims 1, 3, and 4, characterized in that the antenna has a size substantially equal to one wavelength in a medium band frequency.6. (11) is a rigid (rigid) extending through the entire center of the reflector (10) along its axis.
) The microwave antenna according to claim 1, wherein the microwave antenna is supported by a waveguide. 7. The microwave antenna according to claim 1, wherein the auxiliary reflector (13) is supported by an insulating conical member (14) fixed to the reflector (10). 8 The auxiliary reflector (13) is connected to the feed horn (11).
2. The microwave antenna according to claim 1, wherein the microwave antenna is positioned and sized to block at least about 98% of the energy transmitted from the antenna. 9 The center of the auxiliary reflector (13) is located at the center of the auxiliary reflector (13).
The microwave antenna according to claim 1, wherein the microwave antenna is closer to the Sekiguchi plane of reflection & (10) than the outer peripheral part of (13). 10. The reflective surface of the auxiliary reflective plate (13) is characterized by forming a smoothly continuous concave curve between the center of the auxiliary reflective plate (13) and any one point on its outer periphery. A microwave antenna according to claim 1. ]1 In a microwave antenna having a scattering reflector, the reflector (10) and the focal point C of the reflector (10)
The auxiliary reflector (13) located between the auxiliary reflector (13) and the included auxiliary reflector (13) have a reflective surface that is closer to the aperture plane (a) of the reflector (10) than the outer periphery of the auxiliary reflector (13). The central part of the opposite reflecting surface is inclined along the axis in the direction away from the reflecting plate (10) (-1). Accordingly, the outer part of the auxiliary reflector (13) in the radial direction is inclined toward the reflector (10) along the axis, and the degree of inclination is equal to the radius of the auxiliary reflector (13). E A feed horn (11) for sending a signal to the auxiliary reflector (13) in which the plane/f-turn and the H-plane pattern are almost equal, and the auxiliary reflector (13).
3) The reflecting surface is positioned and sized so as to block almost all of the energy sent through the feed horn (11) or reflected by the reflector (10). microwave antenna.
JP58164889A 1982-09-07 1983-09-07 Microwave antenna Pending JPS59131203A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41532382A 1982-09-07 1982-09-07
US415323 1982-09-07

Publications (1)

Publication Number Publication Date
JPS59131203A true JPS59131203A (en) 1984-07-28

Family

ID=23645242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58164889A Pending JPS59131203A (en) 1982-09-07 1983-09-07 Microwave antenna

Country Status (4)

Country Link
EP (1) EP0102846A1 (en)
JP (1) JPS59131203A (en)
AU (1) AU1877183A (en)
BR (1) BR8304855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193606A (en) * 1983-04-18 1984-11-02 Nippon Telegr & Teleph Corp <Ntt> Axis symmetry antenna

Families Citing this family (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3533204A1 (en) * 1985-09-18 1987-03-19 Standard Elektrik Lorenz Ag ANTENNA WITH A MAIN REFLECTOR AND AUXILIARY REFLECTOR
US5130718A (en) * 1990-10-23 1992-07-14 Hughes Aircraft Company Multiple dichroic surface cassegrain reflector
CN1074177C (en) * 1997-04-22 2001-10-31 詹秀英 Disk edge of satallite antenna
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9318810B2 (en) 2013-10-02 2016-04-19 Wineguard Company Ring focus antenna
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN113131210B (en) * 2021-04-13 2022-09-06 西北核技术研究所 Positive feed Cassegrain antenna for high-power microwave

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB973583A (en) * 1962-04-11 1964-10-28 Post Office Improvements in or relating to microwave aerials
US3241147A (en) * 1963-12-16 1966-03-15 Bell Telephone Labor Inc Antenna utilizing intermediate cuspate reflector to couple energy from feed to main reflector
FR1392013A (en) * 1964-01-31 1965-03-12 New aerials for microwaves
FR1407753A (en) * 1964-06-23 1965-08-06 Comp Generale Electricite Reflector refinements
GB1218351A (en) * 1967-01-31 1971-01-06 Emi Ltd Improvements in or relating to aerial systems
US3705406A (en) * 1971-11-22 1972-12-05 Nasa Multiple reflection conical microwave antenna
US3983560A (en) * 1974-06-06 1976-09-28 Andrew Corporation Cassegrain antenna with improved subreflector for terrestrial communication systems
JPS604605B2 (en) * 1978-05-15 1985-02-05 三菱電機株式会社 Reflector antenna device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193606A (en) * 1983-04-18 1984-11-02 Nippon Telegr & Teleph Corp <Ntt> Axis symmetry antenna
JPH0568124B2 (en) * 1983-04-18 1993-09-28 Nippon Telegraph & Telephone

Also Published As

Publication number Publication date
BR8304855A (en) 1984-04-24
EP0102846A1 (en) 1984-03-14
AU1877183A (en) 1984-03-15

Similar Documents

Publication Publication Date Title
JPS59131203A (en) Microwave antenna
US4626863A (en) Low side lobe Gregorian antenna
EP0136818A1 (en) Dual mode feed horn or horn antenna for two or more frequency bands
US3162858A (en) Ring focus antenna feed
US5959590A (en) Low sidelobe reflector antenna system employing a corrugated subreflector
US6020859A (en) Reflector antenna with a self-supported feed
US7205950B2 (en) Radio wave lens antenna
US6911953B2 (en) Multi-band ring focus antenna system with co-located main reflectors
US7242904B2 (en) Dual-band multiple beam antenna system for communication satellites
JPS60132406A (en) Microwave antenna
US3936837A (en) Corrugated horn fed offset paraboloidal reflector
US3757345A (en) Shielded end-fire antenna
US4410892A (en) Reflector-type microwave antennas with absorber lined conical feed
Holzman A highly compact 60-GHz lens-corrected conical horn antenna
US3332083A (en) Cassegrain antenna with offset feed
CN112490674B (en) Low-focal-diameter-ratio reflector antenna based on double-frequency feed source feed
US4178576A (en) Feed system for microwave antenna employing pattern control elements
US2549143A (en) Microwave broadcast antenna
EP3673537A2 (en) Parabolic reflector antennas that support low side lobe radiation patterns
US7280081B2 (en) Parabolic reflector and antenna incorporating same
CN110739547B (en) Cassegrain antenna
US3216018A (en) Wide angle horn feed closely spaced to main reflector
US2483575A (en) Directional microwave antenna
Chen et al. Millimeter wave multi-beam reflector antenna
EP0155761A1 (en) Planar-parabolic reflector antenna with recessed feed horn