JPS591307B2 - Nannenseiji Yushisoseibutsu - Google Patents

Nannenseiji Yushisoseibutsu

Info

Publication number
JPS591307B2
JPS591307B2 JP13198575A JP13198575A JPS591307B2 JP S591307 B2 JPS591307 B2 JP S591307B2 JP 13198575 A JP13198575 A JP 13198575A JP 13198575 A JP13198575 A JP 13198575A JP S591307 B2 JPS591307 B2 JP S591307B2
Authority
JP
Japan
Prior art keywords
resin
parts
weight
flame retardant
flammability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13198575A
Other languages
Japanese (ja)
Other versions
JPS5274653A (en
Inventor
泰 吉村
禎造 工藤
正敏 三雲
恭三 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP13198575A priority Critical patent/JPS591307B2/en
Publication of JPS5274653A publication Critical patent/JPS5274653A/en
Publication of JPS591307B2 publication Critical patent/JPS591307B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は耐熱性の優れた難燃性樹脂組成物に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flame-retardant resin composition with excellent heat resistance.

更に詳しく言えば、エポキシ基を有するビニル単量体を
必須成分として含む樹脂状成分単独又はゴム成分との混
合物から得られる樹脂組成物(I)と、水酸基、フェノ
ール性水酸基、カルボキシル基又は酸無水物を有するハ
ロゲン系難燃剤の単独又は2種以上の混合物間とからな
る耐熱性の優れた難燃性樹脂組成物に関するものである
More specifically, a resin composition (I) obtained from a resinous component containing a vinyl monomer having an epoxy group as an essential component, alone or in a mixture with a rubber component, and a hydroxyl group, a phenolic hydroxyl group, a carboxyl group, or an acid anhydride. The present invention relates to a flame-retardant resin composition with excellent heat resistance, which is composed of a halogen-based flame retardant containing halogen-based flame retardants alone or in a mixture of two or more.

所謂スチレン系樹脂は、その優れた性質により、家庭用
弱電機器、自動車部品、建築用材、その他各種成形品と
して非常に多くの分野において使用されている。
Due to its excellent properties, so-called styrene-based resins are used in a wide variety of fields such as household electrical appliances, automobile parts, construction materials, and various other molded products.

しかし、スチレン系樹脂は他の合成高分子の多くのもの
と同様に易燃性であるために火災の危険度が大きい。一
方、近年、家庭用弱電部品を中心にして、合成高分子の
難燃化が要求されだした。
However, like many other synthetic polymers, styrenic resins are easily flammable and pose a high risk of fire. On the other hand, in recent years, there has been a demand for synthetic polymers to be flame retardant, especially for household light electrical parts.

また、各国において消費者保護の立場から、難燃化に関
する法的規制も強まつている。現在、合成高分子の難燃
化は、主に・・ロゲン、リンなどを含有する化合物や三
酸化アンチモン等の難燃剤を添加することにより行なわ
れているが、これらの難燃剤を配合することにより目的
とする難燃性は得られる反面、他の物性に好ましくない
影響を招く傾向が見られる。
Furthermore, legal regulations regarding flame retardation are becoming stronger in each country from the standpoint of consumer protection. Currently, flame retardant synthetic polymers are mainly made by adding compounds containing rogens, phosphorus, etc., and flame retardants such as antimony trioxide. Although the desired flame retardance can be obtained, there is a tendency for other physical properties to be adversely affected.

特に低分子量の難燃剤を添加混合した場合は、熱変形温
度の低下、成形加工時の腐食性気体の発生、長期使用期
間中に樹脂から滲出する物質の毒性及び難燃性の持続性
が問題とされている。一方、共重合により難燃化する方
法においては、難燃化賦与化合物として、ハロゲンやリ
ンを含有した化合物があるが、他モノマーとの共重合性
や得られた樹脂組成物に望まれる物性を具備させること
が困難なために、現在、実際に使用されているものはま
だ少なく価格的にも高価なものが多い。
In particular, when a low molecular weight flame retardant is added and mixed, there are problems such as a decrease in heat distortion temperature, generation of corrosive gas during molding, toxicity of substances exuded from the resin during long-term use, and sustainability of flame retardancy. It is said that On the other hand, in the method of making flame retardant by copolymerization, compounds containing halogen or phosphorus are used as flame retardant imparting compounds, but they do not have the ability to copolymerize with other monomers or the desired physical properties of the resulting resin composition. Because they are difficult to equip, there are still only a few of them in actual use, and many of them are expensive.

本発明者らは、上記欠点を改良すべく、鋭意検討した結
果、樹脂状成分に官能基を導入し、これとの反応性を有
する官能基を含有した難燃剤とを組合せることにより、
容易に難燃性、耐熱性及び安全性の優れた樹脂組成物が
得られることを見出した。即ち、本発明は、ゴム成分0
〜40重量%とエポキシ基を含有するビニル単量体を必
須成分として含む樹脂状成分100〜60重量%より得
られる樹脂)98〜60重量部と水酸基、フエノール性
水酸基、カルボキシル基又は酸無水物を有するハロゲン
系難燃剤の単独又は2種以上の混合物(11)2〜40
重量部とからなる耐熱性の優れた難燃性樹脂組成物で、
その樹脂状成分がより成ることを特徴とする。
In order to improve the above-mentioned drawbacks, the present inventors have made extensive studies and found that by introducing a functional group into a resinous component and combining it with a flame retardant containing a functional group that is reactive with the resinous component,
It has been found that a resin composition with excellent flame retardancy, heat resistance, and safety can be easily obtained. That is, in the present invention, the rubber component is 0.
98 to 60 parts by weight of a resin obtained from 100 to 60 parts by weight of a resinous component containing as an essential component a vinyl monomer containing an epoxy group and a hydroxyl group, a phenolic hydroxyl group, a carboxyl group, or an acid anhydride. Single or mixture of two or more halogenated flame retardants (11) 2-40
A flame-retardant resin composition with excellent heat resistance consisting of parts by weight,
It is characterized in that its resinous component consists of.

ここで、エポキシ基を有するビニル単量体とは、グリシ
ジルメタクリレート、グリシジルアクリレート及びグリ
シジルビニルエーテル等であり、2種以上を同時に併用
しても、さしさわりはない。
Here, the vinyl monomer having an epoxy group includes glycidyl methacrylate, glycidyl acrylate, glycidyl vinyl ether, etc., and there is no problem even if two or more of them are used in combination.

本発明にかかわる水酸基を有するハロゲン系難燃剤とは
、2・2−ビス(3′・5′−ジブロム−4′β−オキ
シエトキシフエニル)プロパンや、2・2−ビス(ブロ
ムメチル)−1・3−プロパンジオール等であり、フエ
ノール性水酸基を有するハロゲン系難燃剤とは、テトラ
プロムビスフエノールA1テトラプロムビスフエノール
S及びトリプロムフエノール等である。また、カルボキ
シル基を有する・・ロゲン系難燃剤とは、トリブロム安
息香酸やトリブロム酢酸等であり、酸無水物を有するハ
ロゲン系難燃剤とは、テトラブロム無水フタル酸やクロ
レンド酸無水物等である。本発明におけるゴム成分とし
ては、耐衝撃性重合体の製造に一般に用いられているも
のを使用すればよく、例えば、ポリプタジエンゴム、ブ
タジエン・スチレンゴム、エチレン・プロピレンゴム、
アクリルゴム、クロロプレンゴム等が適用できる。
The halogen flame retardants having a hydroxyl group according to the present invention include 2,2-bis(3',5'-dibromo-4'β-oxyethoxyphenyl)propane and 2,2-bis(bromomethyl)-1 - 3-propanediol, etc., and the halogenated flame retardant having a phenolic hydroxyl group includes tetraprombisphenol A1, tetraprombisphenol S, tripromphenol, and the like. Furthermore, the halogen-based flame retardants having a carboxyl group include tribromobenzoic acid and tribromoacetic acid, and the halogen-based flame retardants having an acid anhydride include tetrabromo-phthalic anhydride and chlorendic anhydride. As the rubber component in the present invention, those commonly used in the production of impact-resistant polymers may be used, such as polyptadiene rubber, butadiene/styrene rubber, ethylene/propylene rubber,
Acrylic rubber, chloroprene rubber, etc. can be used.

次に、ビニル芳香族単量体としては、スチレンが最も適
当であるが、α−メチルスチレン、pメチルスチレンの
如き各種置換スチレン誘導体も使用可能であり、これら
とスチレンの混合物も同様に使用することができる。ま
たシアン化ビニル単量体としては、アクリロニトリルが
最も適当であるが、メメクリロニトリル等も用いられる
。本発明において樹脂状成分とは下記の如きものである
が、(a)のエポキシ基を含有するビニル単量体の使用
量は、樹脂の難燃化に要する官能基含有難燃剤の種類、
量に対応し、1重量%以下では本発明の目的とする耐熱
性、安全性の優れた樹脂組成物が得られず、一方、30
重量%より多く使用することは必要がなく、樹脂組成物
の物性、更にはコスト的にも、寧ろ不利となる。
Next, as the vinyl aromatic monomer, styrene is most suitable, but various substituted styrene derivatives such as α-methylstyrene and p-methylstyrene can also be used, and mixtures of these and styrene can also be used. be able to. Furthermore, as the vinyl cyanide monomer, acrylonitrile is most suitable, but memecrylonitrile and the like can also be used. In the present invention, the resinous components are as follows, and the amount of the vinyl monomer containing an epoxy group (a) used depends on the type of functional group-containing flame retardant required to make the resin flame retardant,
Corresponding to the amount of
It is not necessary to use more than % by weight, and it is rather disadvantageous in terms of the physical properties of the resin composition and also in terms of cost.

以上述べたように本発明においてはエポキシ基を含むよ
うに変性した樹脂状成分が用いられるが、これらの樹脂
状成分としては、上記単量体の中、変性ポリスチレンの
ような(a)と(b)の共重合体、変性アクリロニトリ
ル・スチレン(AS)樹脂のような(a)、(5)及び
(c)の共重合体、変性アクリロニトリル・フッジエン
・スチレン(ABS)樹脂のようなゴム状成分に(a)
、Cb)及び(c)をグラフト共重合させた樹脂が含ま
れる。
As described above, in the present invention, resinous components modified to contain epoxy groups are used. Among the above monomers, (a) and ( copolymers of (a), (5) and (c), such as copolymers of b), modified acrylonitrile styrene (AS) resins, rubbery components such as modified acrylonitrile fluoride styrene (ABS) resins; to (a)
, Cb) and (c) are graft copolymerized.

さらにこれらの単独樹脂はポリスチレンのような(b)
の重合体、AS樹脂のような(b)及び(c)の共重合
体、ハイインパクトポリスチレンのようなゴム状成分と
(b)のグラフト共重合体、又はABS樹脂のようなゴ
ム状成分と(b)及び(c)のグラフト共重合体とブレ
ンドすることによつて本発明の樹脂状成分として使用で
きる。特に好ましい樹脂状成分としては、変性AS樹脂
、及びこれとAS樹脂又はABS樹脂とのブレンド、変
性ABS樹脂及びこれとAS樹脂又はABS樹脂とのブ
レンド、並びに変性ポリスチレン及びてれとハイインパ
クトポリスチレン又はポリスチレンとのブレンドが具体
例として挙げられる。なおこれら重合方法、ブレンド方
法には、特に規定はなく、慣用の方法で行なえばよい。
一方、本発明において使用するハロゲン系難燃剤は、エ
ポキシ基との反応性を有する官能基を含有した化合物で
あり、この使用量は、目的とする難燃化の度合いによつ
て変るが、本発明の難燃性樹脂組成物中、2重量部以下
では難燃化の目的が達せず、また40重量部以上では、
過度の使用量となり、樹脂物性、特に熱安定性などを低
下させることになる。
Furthermore, these single resins can be used as (b) resins such as polystyrene.
A copolymer of (b) and (c) such as AS resin, a graft copolymer of (b) with a rubbery component such as high impact polystyrene, or a rubbery component such as ABS resin. It can be used as the resinous component of the present invention by blending it with the graft copolymers (b) and (c). Particularly preferred resinous components include modified AS resins and blends thereof with AS resins or ABS resins, modified ABS resins and blends thereof with AS resins or ABS resins, and modified polystyrenes and high-impact polystyrenes or A specific example is a blend with polystyrene. There are no particular restrictions on these polymerization methods and blending methods, and conventional methods may be used.
On the other hand, the halogen-based flame retardant used in the present invention is a compound containing a functional group that is reactive with an epoxy group, and the amount used varies depending on the degree of flame retardation aimed at. In the flame retardant resin composition of the invention, if it is less than 2 parts by weight, the purpose of flame retardation cannot be achieved, and if it is more than 40 parts by weight,
If the amount used is excessive, the physical properties of the resin, especially the thermal stability, etc. will be deteriorated.

本発明の難燃性樹脂組成物は、前記ハロゲン系難燃剤(
I[)を樹脂(1)の製造時の任意の時に加えることに
よつても、又は得られた樹腟1)とハロゲン系難燃剤(
11)とを慣用の混合装置、例えば熱ロール、バンバリ
ミキサ一又は押出機等で混合することによつても容易に
製造される。
The flame retardant resin composition of the present invention comprises the halogen flame retardant (
I[) can be added at any time during the production of resin (1), or the resulting resin (1) and halogenated flame retardant (
11) in a conventional mixing device, such as a hot roll, a Banbury mixer, or an extruder.

尚、樹脂状成分と・・ロゲン系難燃剤中の官能基の反応
の際には、テトラ−n−ブチルアンモニウムブロマイド
、2−エチル−4−イミダゾール、三フツ化ボロンの如
き反応促進剤を、難燃性樹脂組成物の物性をそこなわな
い範囲で加えることは、特にさしさわりはない。
In addition, when the resin component reacts with the functional group in the rogen-based flame retardant, a reaction accelerator such as tetra-n-butylammonium bromide, 2-ethyl-4-imidazole, or boron trifluoride is used. There is no particular problem in adding it within a range that does not impair the physical properties of the flame-retardant resin composition.

又、エポキシ基と反応しないハロゲン系の難燃剤、リン
系の難燃剤及び三酸化アンチモンの如き無機系の難燃剤
を併用して使用することも特にさしさわりはない。
Further, there is no particular problem in using halogen-based flame retardants, phosphorus-based flame retardants, and inorganic flame retardants such as antimony trioxide in combination, which do not react with epoxy groups.

以下実施例について、本発明の詳細を述べるが、実施例
、参考例、比較例中の燃焼性は、アメリカ合衆国アンダ
ーライメーズ・ラボラトリ一にて制定されたサブジエク
ト番号94号に基づいて測定した。
The details of the present invention will be described below with reference to Examples, and the flammability in the Examples, Reference Examples, and Comparative Examples was measured based on Subdivision No. 94 established by the Underlimaze Laboratory of the United States.

尚試験片の寸法は、厚さ1/8インチ、巾1/2インチ
、長さ6インチである。また例文中の部とは、すべて重
量部のことである。参考例 1 上記組成物を攪拌装置のついた密閉型反応容器に仕込み
、ゴム成分が完溶液、72℃に昇温して、3時間半塊状
重合した。
The dimensions of the test piece are 1/8 inch thick, 1/2 inch wide, and 6 inches long. All parts in the example sentences refer to parts by weight. Reference Example 1 The above composition was charged into a closed reaction vessel equipped with a stirring device, and the temperature was raised to 72°C until the rubber component was completely dissolved, and bulk polymerization was carried out for 3 and a half hours.

更に予じめ水100部、水酸化マグネシウム4部、ラウ
リル硫酸ソーダ0.002部を混合して調製しておいた
分散剤水溶液を加え、攪拌して懸濁させた。その後12
0℃に昇温し、5時間懸濁重合した。得られた粒子は水
洗後乾燥した。これを樹脂Aとする。尚、この樹脂Aを
油圧プレス(200℃/10分間、ゲージ圧100kg
/Cd)でプレス成形し、切削にて試験片を作り、燃焼
性を測定したところ、よく燃えた。上記組成物を予じめ
水100部に対して水酸化マグネシウム4部、ラウリル
硫酸ソーダ0.002部を混合しておいた分散剤水溶液
が入つている攪拌装置のついた密閉型反応器に仕込み、
よく懸濁させた。
Furthermore, an aqueous dispersant solution prepared in advance by mixing 100 parts of water, 4 parts of magnesium hydroxide, and 0.002 parts of sodium lauryl sulfate was added, and the mixture was stirred and suspended. then 12
The temperature was raised to 0°C, and suspension polymerization was carried out for 5 hours. The obtained particles were washed with water and then dried. This is called resin A. This resin A was pressed in a hydraulic press (200°C/10 minutes, gauge pressure 100 kg).
/Cd) was press-molded and cut into test pieces, and the flammability was measured, and it burned well. The above composition was charged into a closed reactor equipped with a stirring device containing an aqueous dispersant solution prepared by mixing 100 parts of water with 4 parts of magnesium hydroxide and 0.002 parts of sodium lauryl sulfate. ,
Suspended well.

その後70℃で10時間懸濁重合を行なつた。得られた
粒子は水洗後乾燥した。これを樹脂Bとする。尚、この
樹脂Bの燃焼性を参考例1と同様にして測定したところ
よく燃えた。参考例 3 上記組成物を攪拌装置のついた密閉型反応容器に仕込み
ゴム成分が完溶後、85℃に昇温して3時間塊状重合し
た。
Thereafter, suspension polymerization was carried out at 70°C for 10 hours. The obtained particles were washed with water and then dried. This will be referred to as resin B. The flammability of this resin B was measured in the same manner as in Reference Example 1, and it burned well. Reference Example 3 The above composition was charged into a closed reaction vessel equipped with a stirring device, and after the rubber component was completely dissolved, the temperature was raised to 85° C. and bulk polymerization was carried out for 3 hours.

更に予め水100部、水酸化マグネシウム4部、ラウリ
ル硫酸ソーダ0.002部を混合して調製した分散剤水
溶液を加え、攪拌して懸濁させた。その後120℃に昇
温し、10時間懸濁重合した。得られたポリマー粒子を
水洗後乾燥した。これを樹脂Dとする。尚、この樹脂D
の燃焼性を参考例1と同様にして測定したところよく燃
えた。参考例 5 参考例4と同様にして、重合温度70℃で15時間重合
し、乾燥後ポリマーを得た。
Further, an aqueous dispersant solution prepared in advance by mixing 100 parts of water, 4 parts of magnesium hydroxide, and 0.002 parts of sodium lauryl sulfate was added, and the mixture was stirred and suspended. Thereafter, the temperature was raised to 120°C, and suspension polymerization was carried out for 10 hours. The obtained polymer particles were washed with water and then dried. This will be referred to as resin D. Furthermore, this resin D
The flammability of the material was measured in the same manner as in Reference Example 1, and it burned well. Reference Example 5 In the same manner as in Reference Example 4, polymerization was carried out at a polymerization temperature of 70° C. for 15 hours, and a polymer was obtained after drying.

この得られたポリマーをゲルパーミエーシヨンクロマト
グラム(GPC)にて測定したところその重量平均分子
量は47000であり、グリシジルメタクリレートを2
8.6%含有していた。これを樹脂Eとする。尚、この
樹脂Eの燃焼性を参考例1と同様にして測定したところ
よく燃えた。参考例 6 撹拌装置のついた反応罐に上記組成物を仕込み、懸濁状
とし120℃に昇温した。
When this obtained polymer was measured by gel permeation chromatogram (GPC), its weight average molecular weight was 47,000, and glycidyl methacrylate was
It contained 8.6%. This will be referred to as resin E. The flammability of this resin E was measured in the same manner as in Reference Example 1, and it burned well. Reference Example 6 The above composition was placed in a reaction vessel equipped with a stirrer to form a suspension, and the temperature was raised to 120°C.

120℃にて10時間重合を行なわせた後、得られたポ
リマーを洗浄乾燥した。
After polymerization was carried out at 120° C. for 10 hours, the obtained polymer was washed and dried.

これを樹脂Fとする。尚、この樹脂Fの燃焼性を参考例
1と同様にして測定したところよく燃えた。実施例 1 参考例1で得られた樹脂A56部と参考例3で得られた
樹脂C22部及びテトラブロム無水フノル酸22部をブ
ラベンダープラストグラムにより200℃で5分メルト
ブレンドした後プレス成形(200℃/10分、100
k9/Cr!l)し、切削により所定の試験片を作製し
、常法により物性を測定したところ、引張強度4551
<g/Cd引張破断伸度9%、熱変形温度(荷重18.
6kg/Cd)80℃で燃焼性はV−0であつた。
This is referred to as resin F. The flammability of this resin F was measured in the same manner as in Reference Example 1, and it burned well. Example 1 56 parts of the resin A obtained in Reference Example 1, 22 parts of the resin C obtained in Reference Example 3, and 22 parts of tetrabromofunolic anhydride were melt-blended at 200°C for 5 minutes using a Brabender plastogram, and then press-molded (200°C). °C/10 minutes, 100
k9/Cr! l), a specified test piece was prepared by cutting, and the physical properties were measured by a conventional method, and the tensile strength was 4551.
<g/Cd tensile elongation at break 9%, heat distortion temperature (load 18.
6 kg/Cd) The flammability was V-0 at 80°C.

比較例 1 実施例1で樹脂Cの代りに樹脂Bを用いた以外は実施例
1と同様にし,て物性を測定したところ、燃焼性がV−
2で、しかも熱変形温度(荷重18.6kg/Cd)が
70℃と低く、実施例3に較べて難燃性及び耐熱性が劣
つている。
Comparative Example 1 When the physical properties were measured in the same manner as in Example 1 except that Resin B was used instead of Resin C in Example 1, the flammability was V-
Moreover, the heat distortion temperature (load: 18.6 kg/Cd) was as low as 70°C, and the flame retardance and heat resistance were inferior to Example 3.

実施例 2 参考例1で得られた樹脂A53部と参考例3で得られた
樹脂C22部及びテトラプロムビスフエノールA25部
を実施例1と同様にしてメルトブレンド後試験片を作製
して物性を測定したところ引張強度470kg/Cr!
IL、引張破断伸度7%、熱変形温度(荷重18.6k
9/CrA)86℃で燃焼性はVOであつた。
Example 2 53 parts of the resin A obtained in Reference Example 1, 22 parts of the resin C obtained in Reference Example 3, and 25 parts of tetraprombisphenol A were melt-blended in the same manner as in Example 1, and then a test piece was prepared and the physical properties were determined. When measured, the tensile strength was 470kg/Cr!
IL, tensile elongation at break 7%, heat distortion temperature (load 18.6k
9/CrA) The flammability was VO at 86°C.

比較例 2 実施例2で樹脂Cの代りに樹脂Bを用いた以外は、実施
例1と同様にして物性を測定したところ、燃焼性はV−
0と、同じであつたが熱変形温度(荷重18.6kg/
Cd)が64℃と低く、実施例2に較べて耐熱性が劣つ
ている。
Comparative Example 2 The physical properties were measured in the same manner as in Example 1 except that Resin B was used instead of Resin C in Example 2, and the flammability was V-
0, but the heat distortion temperature (load 18.6 kg/
Cd) is as low as 64° C., and the heat resistance is inferior to that of Example 2.

実施例 3 参考例2で得られた樹脂B6O部と参考例3で得られた
樹脂C2O部及びテトラプロムビスフエノールA2O部
を実施例1と同様にしてメルトブレンド後試験片を作製
して物性を測定したところ引張強度440k9/Cd、
引張破断伸度6%、熱変形温度(荷重18.6kg/C
rli)81℃で燃焼性はV2であつた。
Example 3 After melt blending the resin B6O part obtained in Reference Example 2, the resin C2O part obtained in Reference Example 3, and the tetraprombisphenol A2O part in the same manner as in Example 1, a test piece was prepared and the physical properties were evaluated. When measured, the tensile strength was 440k9/Cd,
Tensile elongation at break 6%, heat distortion temperature (load 18.6 kg/C
rli) Flammability was V2 at 81°C.

比較例 3 実施例3で樹脂Cの代りに樹脂Bを用いた以外は実施例
1と同様にして物性を測定したところ、燃焼性は実施例
3と同様に−2であつたが熱変形温度(荷重18。
Comparative Example 3 When the physical properties were measured in the same manner as in Example 1 except that Resin B was used instead of Resin C in Example 3, the flammability was -2 as in Example 3, but the heat distortion temperature was (Load 18.

6k9/Cd)が71℃と低かつた。6k9/Cd) was as low as 71°C.

実施例 4参考例2で得られた樹脂B89部と参考例3
で得られた樹脂C5部及びテトラプロムビスフエノール
A6部を簡単なブレンダ一でブレンドした後押出機(2
20゜c)でペレツト化し、射出成形機(シリンダー温
度220℃)で試験片を作製して物性を測定したところ
引張強度620kg/Cd、引張破断伸度8%、熱変形
温度(荷重18.6kg/Cd)78℃で、燃焼性は−
2であつた。
Example 4 89 parts of resin B obtained in Reference Example 2 and Reference Example 3
5 parts of the resin C obtained in step 1 and 6 parts of tetraprombisphenol A were blended in a simple blender, and then an extruder (2
A test piece was prepared using an injection molding machine (cylinder temperature: 220°C), and its physical properties were measured. The tensile strength was 620kg/Cd, the tensile elongation at break was 8%, and the heat distortion temperature (load: 18.6kg). /Cd) At 78℃, the flammability is -
It was 2.

実施例 5 参考例4で得られた樹脂D56部と参考例5で得られた
樹脂E22部及びテトラブロム無水フタル酸22部をブ
ラベンダープラストグラムによりメルトブレンドした後
プレス成形し、常法により物性を測定したところ、引張
強度452kg/Cd、引張破断伸度7%、熱変形温度
74℃で燃焼性はV−0であつた。
Example 5 56 parts of the resin D obtained in Reference Example 4, 22 parts of the resin E obtained in Reference Example 5, and 22 parts of tetrabromo phthalic anhydride were melt-blended using a Brabender plastogram, then press-molded, and the physical properties were determined by a conventional method. When measured, the tensile strength was 452 kg/Cd, the tensile elongation at break was 7%, the heat distortion temperature was 74°C, and the flammability was V-0.

比較例 4 実施例5で樹脂Eの代りに樹脂Dを用いた以外は実施例
5と同様にして物性を測定したところ燃焼性が−2で、
しかも熱変形温度が62℃と低く実施例5に較べて難燃
性及び耐熱性が劣つていた。
Comparative Example 4 The physical properties were measured in the same manner as in Example 5 except that Resin D was used instead of Resin E in Example 5, and the flammability was -2.
Moreover, the heat distortion temperature was as low as 62° C., and the flame retardance and heat resistance were inferior to that of Example 5.

実施例 6 参考例4で得られた樹脂D56部と参考例5で得られた
樹脂E22部及びテトラプロムビスフエノールA22部
を実施例1と同様にしてメルトブレンド後試験片を作成
して物性を測定したところ引張強度440k9/Cd、
引張破断伸べ6%、熱変形温度78℃で燃焼性は−0で
あつた。
Example 6 56 parts of Resin D obtained in Reference Example 4, 22 parts of Resin E obtained in Reference Example 5, and 22 parts of Tetraprombisphenol A were melt-blended in the same manner as in Example 1, and then a test piece was prepared and the physical properties were determined. When measured, the tensile strength was 440k9/Cd,
The tensile elongation at break was 6%, the heat distortion temperature was 78°C, and the flammability was -0.

比較例 5 実施例6で樹脂Eの代りに樹脂Fを用いた以外は、実施
例6と同様にして物性を測定したところ燃焼性がV−2
で、しかも熱変形温度が59℃と低く、実施例6に較べ
て難燃性及び耐熱性が劣つている。
Comparative Example 5 The physical properties were measured in the same manner as in Example 6 except that Resin F was used instead of Resin E in Example 6, and the flammability was V-2.
Moreover, the heat distortion temperature was as low as 59° C., and the flame retardancy and heat resistance were inferior to that of Example 6.

尚、前記実施例、比較例における成形条件及び測定条件
は以下の通りである。
The molding conditions and measurement conditions in the Examples and Comparative Examples are as follows.

O成形条件 (a)ブラベンダ一・プラストグラム (c)押出 (d)射出成形 (a)燃焼性UL規格サブジエクト番号94号テストピ
ース(b)引張強度及び引張破断伸度 (c)熱変形温度
O Molding conditions (a) Brabender plastogram (c) Extrusion (d) Injection molding (a) Flammability UL standard subdivision No. 94 test piece (b) Tensile strength and tensile elongation at break (c) Heat distortion temperature

Claims (1)

【特許請求の範囲】[Claims] 1 エポキシ基含有ビニル単量体1〜30重量%とビニ
ル芳香族単量体99〜35重量%及びシアン化ビニル単
量体0〜35重量%とからなる樹脂状成分100〜60
重量%とゴム状成分0〜40重量%とから得られる樹脂
又は樹脂混合物( I )98〜60重量部と水酸基、フ
ェノール性水酸基、カルボキシル基又は酸無水物を含有
するハロゲン系難燃剤の単独又は2種以上の混合物(I
I)2〜40重量部とからなる難燃性樹脂組成物。
1 100 to 60% resinous component consisting of 1 to 30% by weight of an epoxy group-containing vinyl monomer, 99 to 35% by weight of a vinyl aromatic monomer, and 0 to 35% by weight of a vinyl cyanide monomer
98 to 60 parts by weight of a resin or resin mixture (I) obtained from 0 to 40 parts by weight of a rubbery component and a halogenated flame retardant containing a hydroxyl group, a phenolic hydroxyl group, a carboxyl group, or an acid anhydride, alone or A mixture of two or more types (I
I) A flame retardant resin composition comprising 2 to 40 parts by weight.
JP13198575A 1975-10-31 1975-10-31 Nannenseiji Yushisoseibutsu Expired JPS591307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13198575A JPS591307B2 (en) 1975-10-31 1975-10-31 Nannenseiji Yushisoseibutsu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13198575A JPS591307B2 (en) 1975-10-31 1975-10-31 Nannenseiji Yushisoseibutsu

Publications (2)

Publication Number Publication Date
JPS5274653A JPS5274653A (en) 1977-06-22
JPS591307B2 true JPS591307B2 (en) 1984-01-11

Family

ID=15070849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13198575A Expired JPS591307B2 (en) 1975-10-31 1975-10-31 Nannenseiji Yushisoseibutsu

Country Status (1)

Country Link
JP (1) JPS591307B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195748U (en) * 1984-06-06 1985-12-27 横井 末吉 container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195748U (en) * 1984-06-06 1985-12-27 横井 末吉 container

Also Published As

Publication number Publication date
JPS5274653A (en) 1977-06-22

Similar Documents

Publication Publication Date Title
US4857576A (en) Method for rendering a flammable polymer material flame-resistant
US4386176A (en) Thermoplastic resin composition having high heat resistance
US4309513A (en) Novel resin compositions based on polyphenylene ether
JPS6127410B2 (en)
US3300545A (en) Blends of polystyrene and a graft copolymer of a styrene-methyl methacrylate type mixture on a rubbery polymer of a conjugated 1, 3-diene
US3879345A (en) Self-extinguishing polystyrene resin composition
JPS59207910A (en) Crosslinked copolymer of brominated styrene and n-brominatedphenylmaleimide
JPS61211354A (en) Flame-retardant styrene resin composition
JP3204412B2 (en) Flame retardant thermoplastic resin composition
JPS591307B2 (en) Nannenseiji Yushisoseibutsu
JPS5946532B2 (en) Flame retardant resin composition
JPS6250504B2 (en)
JPS624737A (en) Flame-retarding resin composition
KR100583524B1 (en) High Impact Polystyrene Resin with Good Falling Dart Impact Prepared by Continuous Mass Polymerization process
US3179721A (en) Binary blends of styrene/acrylonitrile copolymer and polysulfide rubber and methods for preparing the same
JPH08225709A (en) Flame-retardant thermoplastic resin composition
JPS58456B2 (en) How can I help you?
JPH0710943B2 (en) Flame-retardant styrene resin composition
JPS6050829B2 (en) Flame retardant resin composition
JPH0195143A (en) Resin composition
JPS596253A (en) Heat- and impact-resistant resin composition
KR100372804B1 (en) Flame retardant styrene based resin composition
JPS6381152A (en) Heat-resistant flame-retardant resin composition
JPH03252443A (en) Fire-resistant resin composition
JPS6253316A (en) Flame-retardant resin composition