JPH03252443A - Fire-resistant resin composition - Google Patents

Fire-resistant resin composition

Info

Publication number
JPH03252443A
JPH03252443A JP4724890A JP4724890A JPH03252443A JP H03252443 A JPH03252443 A JP H03252443A JP 4724890 A JP4724890 A JP 4724890A JP 4724890 A JP4724890 A JP 4724890A JP H03252443 A JPH03252443 A JP H03252443A
Authority
JP
Japan
Prior art keywords
rubber
weight
resin composition
content
modified polystyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4724890A
Other languages
Japanese (ja)
Inventor
Rinichi Tsunoda
角田 林一
Akihito Tohara
登原 明史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4724890A priority Critical patent/JPH03252443A/en
Publication of JPH03252443A publication Critical patent/JPH03252443A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fire-resistant resin composition excellent in impact resistance, having heat resistance and excellent in heat stability during molding process by blending a specified rubber modified polystyrene-based resin with a specified brominated polystyrene and arbitrarily antimony trioxide. CONSTITUTION:A resin composition composed of (A) 100 pts.wt. rubber modified polystyrene-based resin obtained from styrene and a rubbery polymer (suitably polybutadiene or butadiene-styrene copolymer), containing the rubbery polymer in a state of dispersed particles having 0.3-5mum particle size and having 3-18wt.% rubber content, 2-5 ratio of gel content to the rubber content and 8-12 swelling index, (B) 3-20 pts.wt. brominated polystyrene (e.g. polytribromostyrene) having 1500-15000, preferably 2000-12000 weight-average molecular weight and 68-72%, preferably 68-70% bromine content and (C) 0-10 pts.wt., preferably 1-5 pts.wt. antimony trioxide.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐衝撃性に優れ、H燃性にしてかつ耐熱性が
良好で成形特熱安定性の優れたスチレン系樹脂組成物に
関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a styrenic resin composition that has excellent impact resistance, H flammability, good heat resistance, and excellent molding stability. It is.

[従来の技術及び発明が解決しようとする課B]スチレ
ン系樹脂は、安価な上に優れた耐衝撃性、耐熱性、機械
特性、電気特性、成形加工性を有する等の多くの特性を
有するため、広く家庭電気製品、事務機器、家庭用品等
に多量に使用されている。しかし、スチレン系樹脂は燃
え易いと云う性質のため、UL規格などの難燃化に関す
る各種規制が義務づけられ、多くの使用上の制限を受け
ている。
[Problem B to be solved by conventional technology and the invention] Styrenic resins are inexpensive and have many properties such as excellent impact resistance, heat resistance, mechanical properties, electrical properties, and moldability. Therefore, it is widely used in large quantities in household electrical appliances, office equipment, household goods, etc. However, since styrene resins are easily flammable, they are subject to various regulations regarding flame retardancy, such as UL standards, and are subject to many restrictions on use.

スチレン系樹脂の難燃化は、主にハロゲン、リン等を含
をする化合物や三酸化アンチモン等の難燃助剤を添加す
ることにより行われているが、これらの難燃剤、難燃助
剤を配合することにより目的とする難燃性が得られるも
のの、その反面、他の物性に悪い影響を及ぼすことが多
い。また近年大型テレビのハウジングやコンピューター
のハウジング等の大型成形品の普及に伴い、難燃性と耐
衝撃性特に実用衝撃強度の落鍾衝撃強さの高いものに加
えて、耐熱性が良好で成形特熱安定性の優れた成形材料
が強く求められている。
Flame retardant of styrenic resins is mainly achieved by adding compounds containing halogens, phosphorus, etc., and flame retardant aids such as antimony trioxide. Although the desired flame retardance can be obtained by blending with , it often has a negative effect on other physical properties. In addition, in recent years, with the spread of large molded products such as large TV housings and computer housings, in addition to flame retardant and impact resistance, especially those with high practical impact strength, such as those with good heat resistance and molded products. There is a strong demand for molding materials with excellent specific thermal stability.

従来、難燃剤としてブロム化ポリスチレンを熱可望性樹
脂に配合することにより難燃性樹脂組成物を製造するこ
とは公知である。
BACKGROUND ART Conventionally, it has been known to produce a flame-retardant resin composition by blending brominated polystyrene as a flame retardant with a thermoplastic resin.

公表特許昭62−501153号公報において、ブロム
化ポリスチレンの芳香族環1個あたり、ブロムの数が1
.5〜2.5のものを熱可望性樹脂に配合することによ
り難燃性樹脂組成物を得ることが開示されているが、ブ
ロム化ポリスチレンの芳香族環1個あたり、ブロム数が
2.5より大きい場合については具体的な記載が全くな
い。
In published patent No. 62-501153, the number of bromine atoms is 1 per aromatic ring of brominated polystyrene.
.. It has been disclosed that a flame retardant resin composition can be obtained by blending a thermoplastic resin with a bromine number of 2.5 to 2.5 per aromatic ring of brominated polystyrene. There is no specific description of cases where the value is greater than 5.

また、公表特許昭63−501427号公報において、
ブロム化ポリスチレン製造に関することが開示されてお
り、その中でポリ・トリフロモスチレンの場合は重量平
均分子量の低い方即ちLi2Oまではポリフェニレンエ
ーテルとのブレンドにおいて相溶性が良いということが
記述されているが、ゴム変性ポリスチレン系樹脂につい
ての記載が無い。
In addition, in published patent No. 1983-501427,
It is disclosed regarding the production of brominated polystyrene, and it is stated that in the case of poly-trifllomostyrene, those with lower weight average molecular weights, that is, up to Li2O, have good compatibility in blending with polyphenylene ether. However, there is no description of rubber-modified polystyrene resin.

[課題を解決するための手段] 本発明者らは、かかる状況に鑑み、耐衝撃性に優れ、難
燃性にしてかつ耐熱性が良好で成形特熱安定性の優れた
スチレン系樹脂組成物を得るべく鋭意検討した結果、特
定の組成を有する樹脂に特定の構造のハロゲン含有化合
物を配合するか、または該配合物に三酸化アンチモンを
配合することにより達成されることを見いだし、本発明
を完成するに至った。
[Means for Solving the Problems] In view of the above circumstances, the present inventors have developed a styrenic resin composition that has excellent impact resistance, flame retardancy, good heat resistance, and excellent molding stability. As a result of intensive studies to obtain this, it was discovered that this can be achieved by blending a halogen-containing compound with a specific structure into a resin having a specific composition, or by blending antimony trioxide into the blend, and the present invention has been made. It has been completed.

即ち、本発明は、ゴム状重合体が0.3〜5ミクロンの
大きさに分散しており、ゴム量が3〜18重量%で、ゲ
ル含有量とゴム量の比が2へ・5の範囲にあり、かつ膨
潤指数が8〜12であるゴム変性ポリスチレン系樹脂(
A)100重量部、重量平均分子量1.500〜15,
000、ブロム含有率が68重量%〜72重量%のブロ
ム化ポリスチレン(B)3〜20重量部、および三酸化
アンチモン(C)0〜10重量部からなる難燃性樹脂組
成物に関する。
That is, in the present invention, the rubbery polymer is dispersed in a size of 0.3 to 5 microns, the rubber content is 3 to 18% by weight, and the ratio of gel content to rubber content is 2 to 5. Rubber-modified polystyrene resin (
A) 100 parts by weight, weight average molecular weight 1.500-15,
000, relates to a flame-retardant resin composition comprising 3 to 20 parts by weight of brominated polystyrene (B) having a bromine content of 68% to 72% by weight, and 0 to 10 parts by weight of antimony trioxide (C).

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いるゴム変性ポリスチレン系樹脂(A)は、
スチレンとゴム状重合体を用い、通常の塊状重合、塊状
−懸濁重合などで製造することができる。スチレンとし
ては、スチレン、α−メチルスチレンのようなα−置換
スチレン1、ビニルトルエン、m−クロルスチレン、P
−クロルスチレン、P−メチルスチレンのような核置換
スチレンなどが挙げられ、これらの1種又は2種以上が
用いられる。スチレンが最も好ましい。また、ゴム状重
合体としては、天然ゴム、ポリブタジェン、ブタジェン
−スチレン共重合体、ブタジェン−アクリロニトリル共
重合体、ポリクロロプレン、アクリルゴム、エチレン−
プロピレンゴム、エチレン−プロピレン−ジエンモノマ
ーゴム、エチレン−酢酸ビニル共重合体等が挙げられる
。ポリブタジェン、ブタジェン−スチレン共重合体が好
ましい。
The rubber-modified polystyrene resin (A) used in the present invention is
It can be produced by conventional bulk polymerization, bulk-suspension polymerization, etc. using styrene and a rubbery polymer. Examples of styrene include styrene, α-substituted styrene 1 such as α-methylstyrene, vinyltoluene, m-chlorostyrene, P
Examples include nuclear-substituted styrenes such as -chlorostyrene and P-methylstyrene, and one or more of these may be used. Styrene is most preferred. Examples of rubbery polymers include natural rubber, polybutadiene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, polychloroprene, acrylic rubber, and ethylene-styrene copolymer.
Examples include propylene rubber, ethylene-propylene-diene monomer rubber, and ethylene-vinyl acetate copolymer. Polybutadiene and butadiene-styrene copolymers are preferred.

本発明に用いるゴム変性ポリスチレン系樹脂(A)中の
ゴム状重合体は0.3〜5ミクロンの大きさに分散して
いることが必要である。ゴム状重合体の大きさが0.3
ミクロン未満では衝撃強度特に実用衝撃強度の落鍾衝撃
強さが大巾に低下し、かつ難燃化しづらいため多量の難
燃剤が必要になり物性低下及び経済的に不利になる。ま
た、5ミクロンより大きくなると耐衝撃性特に実用衝撃
強度の落鍾衝撃強さが大中に低下する。
The rubbery polymer in the rubber-modified polystyrene resin (A) used in the present invention needs to be dispersed in a size of 0.3 to 5 microns. The size of the rubbery polymer is 0.3
If the particle size is less than microns, the impact strength, especially the practical impact strength, the falling hammer impact strength, will be greatly reduced, and it will be difficult to make it flame retardant, so a large amount of flame retardant will be required, resulting in a decrease in physical properties and an economic disadvantage. Moreover, when the diameter is larger than 5 microns, the impact resistance, especially the practical impact strength, such as the drop impact strength, decreases considerably.

ゴム変性ポリスチレン系樹脂(A)のゴム量は3〜18
重量%であることが必要である。ゴム量が3重量%未満
では衝撃強度が低下し、18重量%より多いとiI燃性
、耐光性、流動性、剛性、熱安定性などの特性が低下し
て好ましくない。
The rubber content of the rubber-modified polystyrene resin (A) is 3 to 18
It is necessary that the amount is % by weight. If the amount of rubber is less than 3% by weight, the impact strength will decrease, and if it is more than 18% by weight, properties such as iI flammability, light resistance, fluidity, rigidity, and thermal stability will deteriorate, which is not preferable.

ゴム変性ポリスチレン系樹脂(A)のゲル含有量とゴム
量の比が2〜5の範囲であることが必要である。ゲル含
有量とゴム量の比が2未満では衝撃強度が低下して好ま
しくなく、また5より大きいと多量の難燃剤が必要にな
り、耐衝腎性低下及び経済的に不利になる。
It is necessary that the ratio of the gel content to the rubber amount of the rubber-modified polystyrene resin (A) is in the range of 2 to 5. If the ratio of gel content to rubber content is less than 2, the impact strength will decrease, which is undesirable, and if it is greater than 5, a large amount of flame retardant will be required, resulting in a decrease in impact resistance and an economic disadvantage.

ゴム変性ポリスチレン系樹脂(A)の膨潤指数が8〜1
2の範囲であることが必要である。膨潤指数が8未満で
は難燃化しすらいため多量の難燃剤が必要になり、耐衝
撃性低下及び経済的に不利になる。また膨潤指数が12
より大きいと衝撃強度カ低下し、バランスの優れた難燃
性樹脂組成物を得ることが出来ない。
The swelling index of the rubber modified polystyrene resin (A) is 8 to 1.
It is necessary to be within the range of 2. If the swelling index is less than 8, flame retardance will not be achieved, and a large amount of flame retardant will be required, resulting in a decrease in impact resistance and an economic disadvantage. Also, the swelling index is 12
If it is larger, the impact strength decreases, making it impossible to obtain a well-balanced flame-retardant resin composition.

本発明に用いるブロム化ポリスチレン(B)(以下、難
燃剤と略記する)の分子構造は、下記に示す如くである
The molecular structure of the brominated polystyrene (B) (hereinafter abbreviated as flame retardant) used in the present invention is as shown below.

X;自然数(ブロムの数) Xは1〜5の範囲の種々の数をとりえ、混合使用されて
よいが、ブロム化ポリスチレンのブロム含有率は68重
量%〜72重量%、好ましくは68重量%〜70重量%
である。また、重量平均分子量は1,500〜15,0
00、好ましくは2.000〜1.2.000である。
X; Natural number (number of bromine) %~70% by weight
It is. In addition, the weight average molecular weight is 1,500 to 15,0
00, preferably 2.000 to 1.2.000.

その使用量はゴム変性ポリスチレン系樹脂100重量部
に対して3〜20重量部が必要である。難燃剤の重量平
均分子量が1 、500未満ではガラス転移温度が低く
なり、ゴム変性ポリスチレン系樹脂に混合して難燃性樹
脂組成物にした場合、耐熱温度を下げるので好ましくな
く、 又、重量平均分子量が15.000を越えると耐
衝撃性、特に実用衝撃強度の落鍾衝撃強度が大巾に低下
す る。
The amount used is 3 to 20 parts by weight per 100 parts by weight of the rubber-modified polystyrene resin. If the weight average molecular weight of the flame retardant is less than 1,500, the glass transition temperature will be low, and when mixed with rubber-modified polystyrene resin to make a flame retardant resin composition, the heat resistance temperature will be lowered, which is undesirable. When the molecular weight exceeds 15,000, the impact resistance, especially the practical impact strength, the impact strength of the stone drop, is significantly reduced.

その理由は明らかではないが、特定のゴム変性ポリスチ
レン系樹脂(A)と特定の難燃剤との相溶性が関係して
いるものと推測される。また、難燃剤がゴム変性ポリス
チレン系樹脂100重量部に対して、3M量部未満では
必要な難燃性を得ることができず、また、20重量部を
越えると経済的に不利であるだけでなく、耐衝撃性特に
実用衝撃強度の落鍾衝撃強さが大巾に低下する。
Although the reason is not clear, it is presumed that it is related to the compatibility between the specific rubber-modified polystyrene resin (A) and the specific flame retardant. Furthermore, if the flame retardant is less than 3M parts per 100 parts by weight of the rubber-modified polystyrene resin, the necessary flame retardancy cannot be obtained, and if it exceeds 20 parts by weight, it is only economically disadvantageous. As a result, the impact resistance, especially the practical impact strength, such as the drop impact strength, is greatly reduced.

本発明では前記のゴム変性ポリスチレン系樹脂(A)1
00重量部と前記した難燃剤3〜20重量部だけでも本
発明の難燃性と耐衝撃性に加え、良好で成形時熱安定性
の良い成形材料が得られる。
In the present invention, the above-mentioned rubber-modified polystyrene resin (A) 1
Even with only 3 to 20 parts by weight of the above-mentioned flame retardant, a molding material having good flame retardancy and impact resistance as well as good thermal stability during molding can be obtained.

更に本発明においては、難燃助剤として三酸化アンチモ
ン(C)が存在すると高価な難燃剤の添加量を減少させ
ることが出来好ましい。その二酸化アンチモン(C)の
添加量は、0〜10重量部である。難燃助剤の三酸化ア
ンチモンは例えば、UL−94の燃焼クラスによっては
添加量が異なるが経済的な面からは1〜5重量部が好ま
しい。三酸化アンチモンが10重量部を越えると、耐衝
撃性が低下するので好ましくない。
Furthermore, in the present invention, it is preferable that antimony trioxide (C) is present as a flame retardant auxiliary agent since the amount of expensive flame retardant added can be reduced. The amount of antimony dioxide (C) added is 0 to 10 parts by weight. The amount of antimony trioxide used as a flame retardant aid varies depending on the UL-94 combustion class, but from an economical point of view it is preferably 1 to 5 parts by weight. If the amount of antimony trioxide exceeds 10 parts by weight, impact resistance decreases, which is not preferable.

本発明の難燃性樹脂組成物の製造方法は、ゴム変性ポリ
スチレン系樹脂(A)に難燃剤及び三酸化アンチモン(
C)を配合することによる。配合方法は特に制限がなく
、タンブラ−ミキサー、スーパーミキサー、バ:/バリ
ーミキサー、ニーダ−ロール、単軸押出機、二軸押出機
等を用いる方法がある。
The method for producing a flame retardant resin composition of the present invention includes adding a flame retardant and antimony trioxide (
By blending C). There are no particular restrictions on the blending method, and methods include methods using a tumbler mixer, super mixer, bar/bury mixer, kneader roll, single screw extruder, twin screw extruder, etc.

本発明の難燃性樹脂組成物には、必要に応じて本発明の
目的を損なわない範囲で他の難燃剤や添加剤を添加でき
る。各種添加剤として、可塑剤、滑剤、安定剤、紫外線
吸収剤、充填剤、補強剤、着色剤等が挙げられる。
Other flame retardants and additives can be added to the flame-retardant resin composition of the present invention, if necessary, within a range that does not impair the object of the present invention. Various additives include plasticizers, lubricants, stabilizers, ultraviolet absorbers, fillers, reinforcing agents, colorants, and the like.

[発明の効果] 本発明の難燃性樹脂組成物は、耐衝撃性に優れ、難燃性
にしてかつ耐熱性が良好で成形時熱安定性の優れたスチ
レン系樹脂組成物であり、工業材料特に事務機器、電気
機器のハウジング材として産業上極めて有用である。
[Effects of the Invention] The flame-retardant resin composition of the present invention is a styrene-based resin composition that has excellent impact resistance, flame retardancy, good heat resistance, and excellent thermal stability during molding. It is extremely useful industrially, especially as a housing material for office equipment and electrical equipment.

[実施例コ 以下、実施例及び比較例を挙げて本発明を説明する。[Example code] The present invention will be described below with reference to Examples and Comparative Examples.

難燃性樹脂組成物の評価は次に示す方法で行った。メル
トフローレートの試験にはペレットを用い、その他の試
験には射出成形試験片を用いた。
Evaluation of the flame-retardant resin composition was performed by the following method. Pellets were used for melt flow rate tests, and injection molded specimens were used for other tests.

・アイゾツト衝撃強さ ASTM−D256.試験片厚’j 6.4 mm、ノ
ツチ付き・落鍾衝撃強さ 15011II11角、厚み3n+n+、片ビンゲート
の平板成形品にミサイル(R=3/4インチ)を使用し
、ミサイルにのせる荷重とミサイルの落下させる距離(
ミサイル先端から成形品の面までの距離)をかえて、成
形品が割れるところの破壊エネルギーを計算する。
・Izotsu impact strength ASTM-D256. Test piece thickness 'j 6.4 mm, with notch, impact strength 15011II 11 square, thickness 3n+n+, using a missile (R = 3/4 inch) on a flat plate molded product of one bin gate, and the load placed on the missile and Distance the missile falls (
Calculate the fracture energy at the point where the molded product breaks by changing the distance from the tip of the missile to the surface of the molded product.

・メルトフローレート 150−R1133、温度200°C2荷重5kg・引
張強さ ASTM −0638で測定。
- Melt flow rate 150-R1133, temperature 200°C, load 5kg, tensile strength measured according to ASTM-0638.

・伸び ASTM −0638で測定。·stretch Measured according to ASTM-0638.

・加熱変形温度 ASTM −0648、試験片厚み6.4 mm、アニ
ール無、曲げ応力18.6 kg / cm2 ・燃焼性(UL94) 試験片厚ミ1/8.1/12 イア チ、V−O又はV
−2を判定する。
・Heat deformation temperature ASTM -0648, specimen thickness 6.4 mm, no annealing, bending stress 18.6 kg/cm2 ・Flammability (UL94) Specimen thickness 1/8.1/12 I, V-O or V
Determine -2.

・熱安定性試験 東芝機械l580−A、シリンダー温度230″C1金
型温度60°Cにて滞留時間10分、20分後に成形し
て、3シヨツト目のカラーチップ(90mmX50mm
X2.5nv厚み)の焼は状態を比較観察し、下記判定
基準に従った。
・Thermal stability test Toshiba Machine 1580-A, cylinder temperature 230'' C1 mold temperature 60°C, residence time 10 minutes, after 20 minutes molding, 3rd shot color chip (90mm x 50mm
The condition of the baked material (X2.5nv thickness) was comparatively observed, and the following criteria were followed.

・ゴム状重合体の粒子径 コールタ−カウンター(コールタ−カウンターRTI−
II型)にて、ジメチルホルムアミドとチオシアン酸ア
ンモニウムとの混合電解液を用いて、樹脂ペレット2〜
4粒をジメチルホルムアミド約5 ml中に入れ約2〜
5分間放置する。次にジメチルホルムアミド溶解分を適
度の粒子濃度として測定し、50%のメジアン径を平均
粒子径とする。
・Particle size of rubbery polymer Coulter Counter (Coulter Counter RTI-
Type II), using a mixed electrolyte of dimethylformamide and ammonium thiocyanate, resin pellets 2~
Put 4 grains in about 5 ml of dimethylformamide and put about 2~
Leave for 5 minutes. Next, the dimethylformamide dissolved content is measured as an appropriate particle concentration, and the 50% median diameter is defined as the average particle diameter.

・膨潤指数 1gの樹脂に20m1のトルエンを加えて1時間激しく
しん盪し、溶解或いは膨潤させる。次に遠心分離機にて
ゲルを沈降させた后、デカンテーションで上澄液を分離
し、沈降したゲルを秤量する。このようにして得られた
トルエン膨潤ゲルを160°C1常圧で45分間、続い
て3〜5 mmHgの減圧下で15分間乾燥させ、デシ
ケータ中で冷却層秤量する。膨潤指数はトルエン膨潤ゲ
ルの重量を乾燥ゲル重量で際した商の数値で示す。
- Add 20ml of toluene to a resin with a swelling index of 1g and shake vigorously for 1 hour to dissolve or swell. Next, after the gel is sedimented using a centrifuge, the supernatant liquid is separated by decantation, and the sedimented gel is weighed. The toluene-swollen gel thus obtained is dried at 160° C. and normal pressure for 45 minutes, then dried under reduced pressure of 3 to 5 mmHg for 15 minutes, and weighed in a desiccator in a cooling layer. The swelling index is expressed as the quotient of the weight of the toluene-swollen gel divided by the weight of the dry gel.

、ゴム量 ゴム変性ポリスチレン系樹脂をコンプレッションで20
0″Cにて、薄いフィルムにし、そのフィルムを赤外分
光光度計(日立製作所、EPI、G3)にて、1601
cm−’ 、 967cm−’の吸収帯の吸光度比を測
定し、あらかじめ作成しておいた検量線でゴム量を渭j
定する。
, Rubber amount Rubber modified polystyrene resin is compressed to 20
The film was made into a thin film at 0″C, and the film was measured at 1601 with an infrared spectrophotometer (Hitachi, EPI, G3).
Measure the absorbance ratio of the absorption bands at cm-' and 967 cm-', and calculate the amount of rubber using the calibration curve prepared in advance.
Set.

・ブロム化ポリスチレンの重量平均分子量ブロム化ポリ
スチレンのゲルパーミェーションクロマトグラフィーに
よる分子量測定によるスチレン化合物ポリマー換算分子
量で重量平均分子量1.500〜15.000、好まし
くは2,000〜12.000が望ましい。
・Weight average molecular weight of brominated polystyrene The weight average molecular weight of brominated polystyrene is 1.500 to 15.000, preferably 2,000 to 12.000 in terms of the molecular weight of a styrene compound polymer determined by molecular weight measurement using gel permeation chromatography. desirable.

・測定器メーカー及び型式 %式% 溶媒:テトラヒドロフラン 温  度:38°C 濃   度:20■/20d溶媒 (ゴム変性ポリスチレン系樹脂の重合)実施例及び比較
例で用いるゴム変性ポリスチレン系樹脂の重合は、ポリ
ブタジェンをスチレンモノマーに溶解した溶液100部
にエチルベンゼン5部、1.1−ビス(b−ブチルパー
オキシ)33.5−1−リメチルシクロヘキサン0.0
5部を添加して重合原料液を調製した後、該原料液を連
続3段重合機に連続して送入して重合を行った。各重合
機は、1,21の容量ををし、攪拌翼が付いている。重
合温度ば105〜145°Cの間で変化させ、最終重合
機出口で固形分が80%となるまで重合させた後、加熱
真空下の脱揮装置に送り込み、未反応スチレンモノマー
及びエチルヘンゼンを除去し、ダイスからストランドを
引き、水冷後、ペレット状に切断する。ペレット中のゴ
ム状物質の含有量を測定しゴム含有量10%、粒子径2
μ、ゲル含有量/ゴム量の比3.膨潤指数10のゴム変
性ポリスチレン樹脂(H−1)を得た。類似の方法によ
り、H−2〜H−10を重合した。第1表にゴム変性ポ
リスチレン樹脂H−1〜H−10の組成などを記述する
・Measuring instrument manufacturer and model % formula % Solvent: Tetrahydrofuran Temperature: 38°C Concentration: 20■/20d Solvent (Polymerization of rubber-modified polystyrene resin) Polymerization of rubber-modified polystyrene resin used in Examples and Comparative Examples , 100 parts of a solution of polybutadiene dissolved in styrene monomer, 5 parts of ethylbenzene, 1.1-bis(b-butylperoxy)33.5-1-limethylcyclohexane 0.0
After adding 5 parts to prepare a polymerization raw material solution, the raw material solution was continuously fed into a continuous three-stage polymerization machine to perform polymerization. Each polymerizer has a capacity of 1.21 mm and is equipped with stirring blades. The polymerization temperature was varied between 105 and 145°C, and after polymerization was carried out until the solid content reached 80% at the exit of the final polymerizer, it was sent to a devolatilization device under heating and vacuum to remove unreacted styrene monomer and ethylhenzene. Then, the strands are pulled from the die, cooled in water, and then cut into pellets. The content of rubbery substances in the pellets was measured, and the rubber content was 10% and the particle size was 2.
μ, gel content/rubber content ratio 3. A rubber-modified polystyrene resin (H-1) having a swelling index of 10 was obtained. H-2 to H-10 were polymerized by a similar method. Table 1 describes the compositions of rubber-modified polystyrene resins H-1 to H-10.

以下余白 第 1 表 第2表 (注)上記の構造式 (ハロゲン含有化合物) 実施例及び比較例に用いる各種ノ\ロゲン含有化合物の
性状を第2表に示す。
Margins below Table 1 Table 2 (Note) Above structural formula (halogen-containing compound) Table 2 shows the properties of various halogen-containing compounds used in Examples and Comparative Examples.

・ B ・ B−6 TBAモノマー(テトラブロモビスフェノールA) 実施例1 ゴム変性ポリスチレン樹脂H−1、ハロゲン含有化合物
β−1、三酸化アンチモン及びその他を以下に示す配合
割合でドラムブレンダーで混合后、35mmφベント付
二軸押出機で220 ”Cで混練しペレット化した。
- B - B-6 TBA monomer (tetrabromobisphenol A) Example 1 Rubber-modified polystyrene resin H-1, halogen-containing compound β-1, antimony trioxide and others were mixed in a drum blender in the proportions shown below, The mixture was kneaded and pelletized at 220''C using a 35mmφ vented twin-screw extruder.

重量部 ゴム変性ポリスチレン樹脂(H−1)   100ハロ
ゲン含有化合物(B−1)      16三酸化アン
チモン            4錫系熱安定剤   
           0.5エチレンビスステアロア
ミド       0.5得られたペレットは、シリン
ダー温度220°C1金型温度60°Cで射出成形し、
各種の物性を測定した。その結果を第3表に示す。
Part by weight Rubber-modified polystyrene resin (H-1) 100 Halogen-containing compound (B-1) 16 Antimony trioxide 4 Tin-based heat stabilizer
0.5 Ethylene bisstearamide 0.5 The obtained pellets were injection molded at a cylinder temperature of 220°C and a mold temperature of 60°C.
Various physical properties were measured. The results are shown in Table 3.

実施例2〜5 実施例1におけるゴム変形ポリスチレン樹脂、ハロゲン
含有化合物及び三酸化アンチモンを第3表に示す如く代
える以外は、実施例1と同様に溶融混練してベレットを
得た。その評価結果を第3表に示す。
Examples 2 to 5 A pellet was obtained by melt-kneading in the same manner as in Example 1, except that the rubber-modified polystyrene resin, halogen-containing compound, and antimony trioxide in Example 1 were changed as shown in Table 3. The evaluation results are shown in Table 3.

比較例1.2 実施例1におけるハロゲン含有化合物に代えて、重量平
均分子量600.000のハロゲン含有化合物を用いる
以外は、実施例1と同様に溶融混練してペレットを得た
。その評価結果を第3表に示す。
Comparative Example 1.2 Pellets were obtained by melt-kneading in the same manner as in Example 1, except that a halogen-containing compound having a weight average molecular weight of 600.000 was used in place of the halogen-containing compound in Example 1. The evaluation results are shown in Table 3.

比較例3〜6 実施例1におけるゴム変性ポリスチレン樹脂H−1を、
比較例3ではH−5、比較例4ではH−6、比較例5で
はH−7、比較例6ではH−8に代える以外は、実施例
1と同様に溶融混練してベレットを得た。その評価結果
を第4表に示す。
Comparative Examples 3 to 6 Rubber modified polystyrene resin H-1 in Example 1 was
A pellet was obtained by melt-kneading in the same manner as in Example 1, except that H-5 was used in Comparative Example 3, H-6 in Comparative Example 4, H-7 in Comparative Example 5, and H-8 in Comparative Example 6. . The evaluation results are shown in Table 4.

比較例7 実施例Iにおける三酸化アンチモンの配合量を16重量
部とする以外は実施例1と同様に溶融混練してペレット
を得た。その評価結果を第4表に示す。
Comparative Example 7 Pellets were obtained by melt-kneading in the same manner as in Example 1, except that the amount of antimony trioxide in Example I was changed to 16 parts by weight. The evaluation results are shown in Table 4.

比較例8 実施例1のゴム変性ポリスチレン樹脂H−1に代えてH
−5、ハロゲン含有化合物B−1に代えてB−4を用い
る以外は、実施例1と同様に溶融混練してペレットを得
た。その評価結果を第4表に示す。
Comparative Example 8 Rubber modified polystyrene resin H-1 of Example 1 was replaced with H
-5, pellets were obtained by melt-kneading in the same manner as in Example 1, except that B-4 was used in place of halogen-containing compound B-1. The evaluation results are shown in Table 4.

比較例9 実施例1のゴム変性ポリスチレン樹脂H−1に代えてH
−9、ハロゲン含有化合物B−1に代えてB−5、かつ
三酸化アンチモンを無添加とする以外は、実施例1と同
様に溶融混練してペレットを得た。その評価結果を第4
表に示す。
Comparative Example 9 Rubber modified polystyrene resin H-1 of Example 1 was replaced with H
Pellets were obtained by melt-kneading in the same manner as in Example 1, except that B-9 was used instead of halogen-containing compound B-1 and antimony trioxide was not added. The evaluation results are shown in the fourth
Shown in the table.

比較例10 実施例1のゴム変性ポリスチレン樹脂H−1に代えてH
−10、ハロゲン含有化合物B−1に代えてB−6、難
燃助剤の配合量を代えて用いる以外は、実施例1と同様
に溶融混練した。その評価結果を第4表に示す。
Comparative Example 10 Rubber-modified polystyrene resin H-1 of Example 1 was replaced with H
-10, halogen-containing compound B-1 was replaced with B-6, and the blending amount of the flame retardant aid was changed, but melt-kneading was carried out in the same manner as in Example 1. The evaluation results are shown in Table 4.

比較例11 実施例1のゴム変性ポリスチレン樹脂H−1に代えてH
−11を用いる以外は、実施例1と同様に溶融混練した
。その評価結果を第4表に示す。
Comparative Example 11 Rubber modified polystyrene resin H-1 of Example 1 was replaced with H
Melt-kneading was carried out in the same manner as in Example 1 except that -11 was used. The evaluation results are shown in Table 4.

以下余白Margin below

Claims (1)

【特許請求の範囲】 1、(A)(a)ゴム状重合体が0.3〜5ミクロンの
大きさに分散しており(b)ゴム量が3〜18重量%(
c)ゲル含有量とゴム量の比が2〜5の範囲にあり、か
つ(d)膨潤指数が8〜12であるゴム変性ポリスチレ
ン系樹脂100重量部、(B)重量平均分子量1,50
0〜15,000、ブロム含有率が68重量%〜72重
量%のブロム化ポリスチレン3〜20重量部、および(
C)三酸化アンチモン0〜10重量部からなる難燃性樹
脂組成物。 2、ブロム化ポリスチレンが、トリブロモポリスチレン
であることを特徴とする特許請求の範囲第1項記載の難
燃性樹脂組成物。
[Scope of Claims] 1. (A) (a) The rubbery polymer is dispersed in a size of 0.3 to 5 microns, and (b) The amount of rubber is 3 to 18% by weight (
c) 100 parts by weight of a rubber-modified polystyrene resin having a gel content to rubber content ratio in the range of 2 to 5, and (d) a swelling index of 8 to 12, (B) a weight average molecular weight of 1,50
0 to 15,000, 3 to 20 parts by weight of brominated polystyrene with a bromine content of 68% to 72% by weight, and (
C) A flame-retardant resin composition comprising 0 to 10 parts by weight of antimony trioxide. 2. The flame-retardant resin composition according to claim 1, wherein the brominated polystyrene is tribromopolystyrene.
JP4724890A 1990-03-01 1990-03-01 Fire-resistant resin composition Pending JPH03252443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4724890A JPH03252443A (en) 1990-03-01 1990-03-01 Fire-resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4724890A JPH03252443A (en) 1990-03-01 1990-03-01 Fire-resistant resin composition

Publications (1)

Publication Number Publication Date
JPH03252443A true JPH03252443A (en) 1991-11-11

Family

ID=12769949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4724890A Pending JPH03252443A (en) 1990-03-01 1990-03-01 Fire-resistant resin composition

Country Status (1)

Country Link
JP (1) JPH03252443A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207201A (en) * 2011-03-16 2012-10-25 Ps Japan Corp Heat-resistant styrenic resin composition, extruded sheet, and molded article
US9156998B2 (en) 2007-04-10 2015-10-13 Nok Corporation Coating agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9156998B2 (en) 2007-04-10 2015-10-13 Nok Corporation Coating agent
JP2012207201A (en) * 2011-03-16 2012-10-25 Ps Japan Corp Heat-resistant styrenic resin composition, extruded sheet, and molded article

Similar Documents

Publication Publication Date Title
JP2001040204A (en) Thermoplastic resin composition having flame retardance
KR101040447B1 (en) Flame retardant resin composition having good impact strength and high gloss
CN1315933C (en) PP and ABS nano filler alloy and preparation method thereof
CN115109350B (en) High-performance flame-retardant HIPS material and preparation method and application thereof
JPH03252443A (en) Fire-resistant resin composition
RU2072377C1 (en) Polymeric material
JPS6250504B2 (en)
WO1986003508A1 (en) Thermoplastics containing brominated homopolymer
JP2837738B2 (en) Light-resistant flame-retardant resin composition
JPH02124957A (en) High-rigidity flame-retarding styrene resin composition
JPS6381152A (en) Heat-resistant flame-retardant resin composition
JPH05170940A (en) Polystyrenic resin film
JPH04370134A (en) Halogen-free flame-retarding resin composition
JPH07166047A (en) Flame-retardant resin composition
KR20180076638A (en) Thermoplastic flame retardant resin composition, method for preparing the resin composition and molding product comprising the resin composition
JPH04311755A (en) Flame-retardant styrenic resin composition
JPH03292351A (en) Highly light-resistant and flame-retardant resin composition
JPH06172607A (en) Flame retardant polystyrene resin composition
JP4049912B2 (en) Molding materials and molded products
JPS60170667A (en) Flame-retardant resin composition having excellent heat-discoloration resistance
JP2022174462A (en) Resin composition, molding, electronic component, electronic apparatus, and method for producing resin composition
JPS6128546A (en) Polyphenylene ether resin composition
JPH03237148A (en) Resin composition
JPH0428744A (en) Resin composition
JPS5946270B2 (en) Flame retardant resin composition