JPS59130338A - High elasticity and high strength fiber or film and production thereof - Google Patents

High elasticity and high strength fiber or film and production thereof

Info

Publication number
JPS59130338A
JPS59130338A JP329983A JP329983A JPS59130338A JP S59130338 A JPS59130338 A JP S59130338A JP 329983 A JP329983 A JP 329983A JP 329983 A JP329983 A JP 329983A JP S59130338 A JPS59130338 A JP S59130338A
Authority
JP
Japan
Prior art keywords
film
stretching
highly
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP329983A
Other languages
Japanese (ja)
Inventor
大谷 武治
節家 孝志
純 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP329983A priority Critical patent/JPS59130338A/en
Publication of JPS59130338A publication Critical patent/JPS59130338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は新規な高弾性高強力繊維又はフィルムの製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing high modulus, high strength fibers or films.

近年高弾性高強力繊維又はフィルムに対する各種要求度
が高く特にそれら製造方法に関する研究開発が活発に行
われている。
In recent years, various demands for high elasticity and high strength fibers or films have been high, and in particular, research and development regarding their production methods has been actively conducted.

例えば特開昭56−15430号公報に開示された方法
はその代表的な一つであり、即ち公知のポリマーによる
非晶あるいは可能な限り低結晶化度の原繊維又はフィル
ムを、該ポリマーの結晶化温度の下限の温度領域におい
てゾーン延伸、つまり原理的に幅の狭いヒーター及びク
ーラーの設置された部分で被延伸原繊維の限られた部分
を熱延伸し直ちに冷却することにより、高配向の伸びき
ジ鎖構造の形成を行うものであり、これにより高弾性高
強力化繊維又はフィルムが得られるとしたものである。
For example, the method disclosed in Japanese Unexamined Patent Publication No. 15430/1984 is one of the representative methods. Highly oriented elongation can be achieved by zone stretching in the lower limit of the temperature range, that is, in principle, by hot stretching a limited portion of the fibril to be drawn in a narrow area where a heater and cooler are installed and immediately cooling it. This method forms a chain structure, and as a result, highly elastic and highly strengthened fibers or films can be obtained.

この方法によれば、一般に上述した高弾性高強力繊維又
はフィルムが複雑な紡糸と延伸を必要としていたのを著
しく簡便化し得る利点を有している。
This method has the advantage that the above-mentioned high modulus high strength fibers or films that generally require complicated spinning and drawing can be significantly simplified.

そこでこの方法を更に詳述すると、該方法は実際には、
上記ゾーン延伸をくり返し多段に行うことにより段階的
に原繊維の高分子鎖のからみを解きほぐしそ九らを長手
方向に揃え上述した高弾性化及び高強力化を達成しよう
として居ジ、このとき延伸される繊維は該延伸中のくび
れだ部分のみが加熱され、この部分での全ての高分子鎖
に略均−な力が加わり、概ね理想に近い状態での延伸が
期待され得ることになる。
Therefore, to explain this method in more detail, the method actually:
By repeating the above zone stretching in multiple stages, the polymer chains of the fibril are gradually disentangled and aligned in the longitudinal direction in order to achieve the high elasticity and high strength mentioned above. The fiber to be drawn is heated only at the waist portion during the drawing, and a substantially uniform force is applied to all the polymer chains in this portion, so that it can be expected that the fiber will be drawn in an approximately ideal state.

そして上述した如くこの方法は、上記ゾーン延伸時の加
熱域の幅が小さいことが重要な特徴であって、即ち熱延
伸が非常に微少な区域で行われることから個々の繊維の
延伸斑の発生が極めて少なくかつその配向が著しく高度
に行われるのである。
As mentioned above, an important feature of this method is that the width of the heating zone during zone stretching is small; that is, since hot stretching is performed in a very small area, stretching unevenness of individual fibers occurs. The orientation is extremely small and the orientation is extremely high.

一般に、上述した加熱域の幅は10咽以下、好ましくは
2ttrrn以下、最も好ましいのは被延伸繊維中のミ
クロフィブリルの長さに近い約100μ以下であるのが
良いとされている。そして延伸後の冷却は、上述の如き
高度に配向された被延伸物の配向構造を凍結するもので
あることからその温度勾配が鋭いことが要求される。
Generally, it is said that the width of the above-mentioned heating region is 10 mm or less, preferably 2 ttrrn or less, and most preferably about 100 μm or less, which is close to the length of the microfibrils in the fibers to be drawn. Since the cooling after stretching freezes the highly oriented orientation structure of the object to be stretched as described above, it is required that the temperature gradient be sharp.

しかし通常かかる熱延伸によるポリマー原繊維の高配同
化のための加熱及び冷却手段としては、実情として熱源
として電熱ヒーター、冷却媒体として冷水を用いるのが
普通であって、上述した加熱域の微小化には自ら限界が
ある。
However, as a heating and cooling means for highly assimilating polymer fibrils through hot drawing, in reality, it is common to use an electric heater as the heat source and cold water as the cooling medium. has its own limits.

そして上記加熱部と冷却部における熱拡散を防ぐための
スベ=ザーの設置手段もとられるが、これも温度勾配の
緩慢化の原因になυ結果的に上記理想状態の配向を阻害
する重大な原因になっている。
Measures are taken to install a smoother to prevent heat diffusion in the heating and cooling sections, but this also causes a slowing of the temperature gradient. It is the cause.

ここに発明者等はかかる現状に鑑み鋭意検削を行なった
結果、上述したゾーン延伸に際して、その加熱及び冷却
手段として異種金属接触面での通電時に発熱あるいは吸
熱する現象、即ちベルチェ効果を利用することにより上
述の問題が驚くほど解消されることを見出しこの発明に
到達したのである。
In view of the current situation, the inventors have conducted intensive machining and have found that, in the above-mentioned zone stretching, the phenomenon of heat generation or heat absorption during energization at the contact surface of dissimilar metals, that is, the Beltier effect, is utilized as a means of heating and cooling. The inventors have found that the above-mentioned problems can be surprisingly solved by doing so, and have arrived at the present invention.

即ちこの発明は、非晶あるいは可能な限り低結晶化度の
原繊維又はフィルムを、ガラス転移点以上、結晶化温度
以下でゾーン延伸し高配向繊維又はフィルムを製造する
に際し、前記ゾーン延伸における加熱及び冷却手段とし
て、異種金属の接触面を通じての通電時に発熱及び吸熱
を起すベルチェ効果を利用したことを特徴とする高弾性
高強力繊維又はフィルムの製造方法である。
That is, this invention provides a method for producing highly oriented fibers or films by zone-stretching amorphous or as low-crystallinity fibrils or films at a temperature above the glass transition point and below the crystallization temperature. and a method for producing a highly elastic and highly strong fiber or film, characterized in that the Beltier effect, which causes heat generation and heat absorption when electricity is applied through the contact surfaces of dissimilar metals, is utilized as a cooling means.

以下図面によりこの発明の一芙施態様を説明する。Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.

第1図は本発明方法の実施装置における上述した加熱延
伸部を概略的に示したものであり、原繊維等の被延伸物
1の両側に異種金属2a 、2bの接合体2を配置した
ものである。そして3はこれら異種金属2a 、2b間
に電流を通すための回路である。
FIG. 1 schematically shows the above-mentioned heated stretching section in the apparatus for implementing the method of the present invention, in which a bonded body 2 of dissimilar metals 2a and 2b is arranged on both sides of an object 1 to be stretched, such as a raw fiber. It is. 3 is a circuit for passing current between these dissimilar metals 2a and 2b.

上記金属2a12b間の接触面に電流が流れると該電流
の方向により上記ベルチェ効果として発熱又は吸熱が起
る。
When a current flows through the contact surface between the metals 2a12b, heat generation or heat absorption occurs as the Beltier effect depending on the direction of the current.

異種金属の組合せとしては電気電導度の異る金属が使用
されるが最も一般的にはカロメル及びアロメルであり、
他に銅とコンスタンタン、あるいは白金と白金ロソウム
等がある。
Metals with different electrical conductivities are used as a combination of different metals, but the most common are calomel and allomel.
Other examples include copper and constantan, or platinum and platinum lotum.

上記発熱及び吸熱は上記異種金属の接合面に生ずるので
その部分での温度勾配は非常に急峻である。例えばカロ
メル及びアロメルを用いた例についての電圧変化に伴う
温度変化は第2図に示されて居す、これら発熱及吸熱現
象を利用した場合の温度勾配の一例は第3図の通りであ
る。一般に電熱ヒーターを用いた従来の温度勾配を示す
一例の第4図に比しその勾配の急峻さが明らかである。
Since the heat generation and heat absorption occur at the joint surfaces of the dissimilar metals, the temperature gradient at that portion is very steep. For example, the temperature change with voltage change in the case of using calomel and allomel is shown in FIG. 2, and an example of the temperature gradient when these exothermic and endothermic phenomena are utilized is shown in FIG. 3. The steepness of the gradient is clear compared to FIG. 4, which shows an example of a conventional temperature gradient using an electric heater.

被延伸物は本発明においても原繊維に使用のポリマーの
ガラス転移点以上、結晶化温度以上で均一な張力下に延
伸することが必要である。特に該結晶化温度領域の下限
温度に達し得る発熱量が得られるような延伸速度、金属
の組合せ及び適切な電流値等の設定が望ましい。
In the present invention as well, the object to be drawn must be drawn under uniform tension at a temperature above the glass transition point and above the crystallization temperature of the polymer used for the fibrils. In particular, it is desirable to set the stretching speed, combination of metals, appropriate current value, etc. such that a heat generation amount that can reach the lower limit temperature in the crystallization temperature range is obtained.

この発明で使用される原繊維又は原フィルムとしては、
ラメラ等の既存の結晶を含まない非晶質繊維又はフィル
ムが好ましいが、これらが得られない場合は低結晶性低
配向繊維又はフィルムでも使用し得る。
The fibrils or raw films used in this invention include:
Amorphous fibers or films that do not contain existing crystals, such as lamellae, are preferred, but if these are not available, low-crystalline, low-orientation fibers or films may also be used.

具体的にかかる原繊維又は原フィルムの配向度と結晶化
度の凡その目安を例示すると次の通りである。
Specific examples of the degree of orientation and degree of crystallinity of such fibrils or films are as follows.

複屈折    結晶化度(9)) ポリエチレン      0.5X10  以下  6
0以下ポリエチレンテレフタレート 0.3X10 1
/    2.0ナイロン6      35.0X1
0  //   30  //その他にポリプロピレン
等の結晶性ポリマーモ使用し得る。
Birefringence Crystallinity (9)) Polyethylene 0.5X10 or less 6
0 or less polyethylene terephthalate 0.3X10 1
/ 2.0 nylon 6 35.0X1
0 // 30 // In addition, crystalline polymers such as polypropylene may be used.

以下実施例を示してこの発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

実施例1 溶融紡糸後急冷して得た帆5■φ、複屈折0.5×10
、結晶化度55%の高密度ポリエチレン原繊維を、第1
図示の加熱、冷却部を具備させたゾーン延装置を用い常
法の如く下記条件設定下にて延伸した。
Example 1 Sail obtained by rapid cooling after melt spinning, 5 φ, birefringence 0.5×10
, high-density polyethylene fibrils with a crystallinity of 55% were first
Using a zone stretching apparatus equipped with heating and cooling sections as shown in the figure, stretching was carried out under the following conditions as in the conventional method.

延伸温度  90℃ 張      力     3にり/crI冷却温度 
 −40℃ 延伸領域設定幅    2wn 尚上記加熱冷却部の異種金属としてはカロメル及びアロ
メルの組合せとし直流電圧2.43 mVを印加した。
Stretching temperature 90℃ Tension 3/crI Cooling temperature
-40°C Stretching area setting width 2wn Note that the different metals in the heating and cooling section were a combination of calomel and allomel, and a DC voltage of 2.43 mV was applied.

得られた延伸物の特性を調べ結果を表1に示した。比較
のために上記加熱を発熱ヒーターとした外は同様に行な
い結果を同表に示した。
The properties of the obtained stretched product were investigated and the results are shown in Table 1. For comparison, the same procedure was carried out except that a heating heater was used for the heating described above, and the results are shown in the same table.

第  1  表 上表1の結果によれば電熱利用によるものに比し本発明
が優れた効果を示すことが明らかである。
Table 1 According to the results shown in Table 1 above, it is clear that the present invention exhibits superior effects compared to those using electric heating.

実施例2 実施例1のポリエチレンに代え、下記のポリエチレンテ
レフタレート及びナイロン6原繊維を用い下表2及び3
に示した条件とした外は全く同様に行ない結果を同表に
示した。
Example 2 In place of the polyethylene in Example 1, the following polyethylene terephthalate and nylon 6 fibrils were used as shown in Tables 2 and 3 below.
The test was carried out in exactly the same manner except that the conditions shown in 1 were used, and the results are shown in the same table.

ポリエチレンテレフタレート  2.lX10100.
3X10−31.8ナイロン6     7X10’°
 35.0X10−319表2及び表3の結果によれば
、本発明はポリエチレンに加えてポリエチレンテレフタ
レート及びナイロン6による原繊維に対しても非常に効
果を示すことが明らかであった。
Polyethylene terephthalate 2. lX10100.
3X10-31.8 Nylon 6 7X10'°
35.0X10-319 According to the results in Tables 2 and 3, it was clear that the present invention was very effective for fibrils made of polyethylene terephthalate and nylon 6 in addition to polyethylene.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する一態様装置における加熱延伸
部の概略説明図、第2図はカロメル及びアロメルを用い
た場合のペルチェ効果を示−t−図、第3図は同効果に
よる温度勾配の一例図、第4図は電熱ヒーターを用いた
場合の第3図と同様の図である。 ■・・・被延伸物、2a r 2b・・・異種金属、2
・・・金属接合体。 特許出願人  三菱レイヨン株式会社 第1図    第2図 第3図   第4図
Fig. 1 is a schematic explanatory diagram of the heated stretching section in one embodiment of the apparatus for carrying out the present invention, Fig. 2 is a Peltier effect diagram when calomel and allomel are used, and Fig. 3 is a temperature diagram due to the same effect. An example of the gradient, FIG. 4, is a diagram similar to FIG. 3 when an electric heater is used. ■...Object to be stretched, 2a r 2b...Different metal, 2
...Metal joint. Patent applicant Mitsubishi Rayon Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 非晶あるいは可能な限り低結晶化度の原繊維又はフィル
ムを、ガラス転移点以上、結晶化温度以下でゾーン延伸
し高配向繊維又はフィルムを製造するに際し、前記ゾー
ン延伸における加熱及び冷却手段として、異種金属の接
触面を通じての通電時に発熱及び吸熱を起すペルチェ効
果を利用したことを特徴とする高弾性高強力繊維又はフ
ィルムの製造方法、
When manufacturing a highly oriented fiber or film by zone stretching an amorphous or as low crystallinity fibril or film at a temperature above the glass transition point and below the crystallization temperature, as a heating and cooling means in the zone stretching, A method for producing a highly elastic and highly strong fiber or film, characterized by utilizing the Peltier effect that generates heat and absorption when electricity is passed through the contact surfaces of dissimilar metals,
JP329983A 1983-01-14 1983-01-14 High elasticity and high strength fiber or film and production thereof Pending JPS59130338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP329983A JPS59130338A (en) 1983-01-14 1983-01-14 High elasticity and high strength fiber or film and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP329983A JPS59130338A (en) 1983-01-14 1983-01-14 High elasticity and high strength fiber or film and production thereof

Publications (1)

Publication Number Publication Date
JPS59130338A true JPS59130338A (en) 1984-07-26

Family

ID=11553488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP329983A Pending JPS59130338A (en) 1983-01-14 1983-01-14 High elasticity and high strength fiber or film and production thereof

Country Status (1)

Country Link
JP (1) JPS59130338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859389A (en) * 1985-02-20 1989-08-22 Toyo Boseki Kabushiki Kaisha Process for preparing polyamide fibers having improved properties
EP0967310A1 (en) * 1998-06-26 1999-12-29 Officine Meccaniche Riva S.r.l. Texturing machine and texturing process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859389A (en) * 1985-02-20 1989-08-22 Toyo Boseki Kabushiki Kaisha Process for preparing polyamide fibers having improved properties
EP0967310A1 (en) * 1998-06-26 1999-12-29 Officine Meccaniche Riva S.r.l. Texturing machine and texturing process

Similar Documents

Publication Publication Date Title
JP2007303035A (en) Spontaneously elongative and thermo conjugate fiber and method for producing the same
BR8603956A (en) PROCESS TO PRODUCE POLYETHYLENE ARTICLES HAVING A, HIGH TENSION RESISTANCE AND A HIGH MODULE
Kunugi et al. Preparation of high-modulus and high-strength nylon-6 fibre by the zone-annealing method
Kunugi et al. Mechanical properties and superstructure of high-modulus and high-strength nylon-6 fibre prepared by the zone-annealing method
JPS63105161A (en) Nonwoven fabric and its production
JPS59130338A (en) High elasticity and high strength fiber or film and production thereof
JP2007204902A (en) Heat-bonding conjugated fiber and method for producing the same
EP1207035A1 (en) Process for producing biaxially oriented polyester film and biaxially oriented polyester film
JPS6243857B2 (en)
Petermann et al. Lamellar changes during heat treatment in isotactic polystyrene crystals
JPS62156310A (en) Polypropylene adhesive fiber
JP2007138183A (en) Biaxially oriented polyester film
JP4224813B2 (en) Method for producing polyester fiber
JPH0380620B2 (en)
JPS6351089B2 (en)
JPH03234811A (en) Melt spinning of polyester fiber
Shi et al. Structure Development in Melt Spinning and Drawing of Nylon-11 and Nylon-12 Fibers
JPS6287321A (en) Manufacture of highly toughened polyester film
JP3560163B2 (en) Biaxially oriented polyester film and method for producing the same
JP3048251B2 (en) Method for producing oriented polyester film
JP3020723B2 (en) Method for producing biaxially stretched polyester film
JPS61242824A (en) Manufacturing method for biaxially oriented polyethylene terephthalate film
JPS60181314A (en) Manufacture of polyvinylidene fluoride monofilament having high knot strength
JPH02127521A (en) Conjugate fiber and production thereof
JP2583372B2 (en) High shrinkage conjugate fiber