JPS5913000B2 - image conversion element - Google Patents
image conversion elementInfo
- Publication number
- JPS5913000B2 JPS5913000B2 JP47059283A JP5928372A JPS5913000B2 JP S5913000 B2 JPS5913000 B2 JP S5913000B2 JP 47059283 A JP47059283 A JP 47059283A JP 5928372 A JP5928372 A JP 5928372A JP S5913000 B2 JPS5913000 B2 JP S5913000B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- layer
- substrate
- conversion element
- ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Liquid Crystal (AREA)
Description
【発明の詳細な説明】
本発明はX線像を可視像に変換することを目的とし、X
線像を直接充分な輝度を持つ可視像にし、かつ安全にこ
れを見ることができるX線可視変換素子に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The purpose of the present invention is to convert an X-ray image into a visible image,
The present invention relates to an X-ray visual conversion element that directly converts a ray image into a visible image with sufficient brightness and allows the user to safely view the image.
本来ネマティック電界効果型液晶は、電界の付与によつ
て液晶が散乱を生じ、これを電界が印加されていない非
散乱部分と比較することにより、文字、記号等の光学像
のパターン認識別できるものであるが、それ自体が発光
するものではなく、外光によつて表示像を見分けること
ができるものである。Essentially, nematic field-effect liquid crystals can be used to recognize and distinguish patterns in optical images such as letters and symbols by scattering the liquid crystal when an electric field is applied and comparing this with the non-scattering part to which no electric field is applied. However, it does not emit light itself, and the displayed image can be distinguished by external light.
従つて周囲の光による照明、採光によつて表示物の識別
が左右され、これは強い外光によつて充分な輝度の光学
像を得る手段となるものである。本発明ではこの特徴を
活して有効なX線可視変換素子を実現したものである。
従来X線を直接可視化し得る手段としては、螢光体が最
もよく知られ、又多く使われてきたが、これは充分な輝
度を得ることが難しく、又鮮明度も次分なものを得るこ
とが難しかつた。Therefore, the identification of the displayed object is influenced by the illumination and daylighting of the surroundings, and this is a means of obtaining an optical image of sufficient brightness using strong external light. The present invention utilizes this feature to realize an effective X-ray visible conversion element.
Conventionally, fluorescent materials are the most well-known and widely used means of directly visualizing X-rays, but it is difficult to obtain sufficient brightness and the clarity is only second-order. It was difficult.
これに対し最近電場発光材を用いたものが考案されたが
、この場合でも周囲が充分明るい雰囲気ではその外光に
よる電場発光体やその支持体等の散乱反射によつて充分
なコントラストを持つたものが得られない欠点を有して
いた。更に像増巾器として知られるマイクロチャンネル
プレートのようなもの、撮像管からTV画像へ変換する
もの等があるが、これ等は実用化が困難であつたり、解
像力が不充分だつたり、又本質的に発光体を用いること
から、外光によつてコントラストの低下を招く欠点を有
していた。本発明によるX線可視変換素子はこれ等の欠
点を取除き、本発明者らが既に開発した像変換素子の原
理に係はり、外光によつて極めて見易い像となる受光型
の像表示を行ラもので、直接見たり、拡大投影を行つた
り、写真撮影等を容易にならしめるものである。In response to this, a device using an electroluminescent material has recently been devised, but even in this case, in a sufficiently bright environment, sufficient contrast can be achieved due to the scattering and reflection of external light on the electroluminescent material and its support. It had the disadvantage of not being able to produce anything. Furthermore, there are devices such as microchannel plates known as image intensifiers, and devices that convert image pickup tubes into TV images, but these are difficult to put into practical use, have insufficient resolution, or are difficult to put into practical use. Since it essentially uses a light-emitting material, it has the drawback of reducing contrast due to external light. The X-ray visible conversion element according to the present invention eliminates these drawbacks and uses the principles of the image conversion element already developed by the present inventors to provide a light-receiving type image display that provides an extremely easy-to-see image when exposed to external light. It is easy to view directly, enlarge and project images, and take photographs.
以下これを図面に示す実施例によつて説明する。This will be explained below with reference to embodiments shown in the drawings.
第1図の12が本発明による液晶セルの模式的断面図で
、その中1は基板、2は導電層、3は光導電層、4は可
視光反射性絶縁層、5は適当なスペーサーによつて保持
された液晶層、6は導電層、Tは基板で8は導電層2及
び6にリード線で接続・ されている電源である。9は
X線の散乱ビームをカットするグリッド、10は外部に
X線が漏洩するのを防ぐ鉛板で内張りした外箱である。12 in FIG. 1 is a schematic cross-sectional view of a liquid crystal cell according to the present invention, in which 1 is a substrate, 2 is a conductive layer, 3 is a photoconductive layer, 4 is a visible light reflective insulating layer, and 5 is a suitable spacer. 6 is a conductive layer, T is a substrate, and 8 is a power source connected to the conductive layers 2 and 6 by lead wires. Reference numeral 9 is a grid that cuts off scattered X-ray beams, and reference numeral 10 is an outer box lined with a lead plate to prevent leakage of X-rays to the outside.
尚上記基板1,7の少なくともいずれか一方は透明とな
つており、透明基板はいわゆる鉛ガラスとするのが有効
である。一般には11の方向からX線を照射し、セル1
2との間に置かれた被検体14を透過したX線像として
セル12の光導電層3上に結像させる。X線の強弱に従
つて導電性のパターンが形成され、導電層2及び6に印
加された交流電場によつて散乱像を得ることができる。
この散乱像を13の方向より照明するか、又は外光の下
で可視画像として見ることができる。本発明による更に
有効な素子は第2図に示す如く、12の前記セルのX線
照射側基板もしくはこの基板の上に、X線に対して透過
性で、可視光に対して不透過性の部材15を形成してな
るもので、第2図ではセル12の外部にこの可視光遮断
する層15を形成した場合を示しているが、これのみに
限定されるものではない。Note that at least one of the substrates 1 and 7 is transparent, and it is effective to use so-called lead glass as the transparent substrate. Generally, X-rays are irradiated from 11 directions, and cell 1
An image is formed on the photoconductive layer 3 of the cell 12 as an X-ray image transmitted through the subject 14 placed between the cell 12 and the cell 12. A conductive pattern is formed according to the strength of the X-rays, and a scattering image can be obtained by applying an alternating current electric field to the conductive layers 2 and 6.
This scattered image can be illuminated from 13 directions or viewed as a visible image under external light. A more effective element according to the present invention, as shown in FIG. Although FIG. 2 shows a case where the visible light blocking layer 15 is formed outside the cell 12, the present invention is not limited to this.
第1図において基板1にぱ通常のガラスを用いることが
でき、導電層2は酸化インジウムや酸化スズ又は極めて
薄い金属層からなり、光導電層3はCdS,CdSe,
Se,Sb2S3,PbO等のX線によつて光導電性を
得られる物質から成る。In FIG. 1, the substrate 1 can be made of ordinary glass, the conductive layer 2 is made of indium oxide, tin oxide, or an extremely thin metal layer, and the photoconductive layer 3 is made of CdS, CdSe,
It is made of a material such as Se, Sb2S3, PbO, etc. that can obtain photoconductivity by X-rays.
可視光反射性の絶縁層4は金属酸化物を用いた薄膜で低
屈折率と高屈折率ど交互に%波長ずつ積層した光学薄膜
を使用することができる。液晶層5は一例としてメトキ
シベンジリデンブチルアニリンなる物質を用いれば室温
で液晶状態を示し、容易に使用できる。電極層6は透明
導電性被膜として知られている酸化インジウム、酸化ス
ズ等の薄膜が有効である。基板7にはX線強度に依存し
て鉛含有量と厚さを考慮した含鉛ガラス板を用いる。電
源8には15〜100V程度の交流電源を用いれば、液
晶層10〜50μ程度の場合良好な散乱状態が得られる
。薄膜の各々の厚さはX線の強度や、製造上の事由によ
つて決定されるが、おおよそ光学的厚さとして考えられ
る0.1μ〜10μ程度の範囲にある。このような構造
を持つパネルにX線を所定の方法で照射する時、X線に
よつて光導電層を導電性にした後、漏洩したX線はパネ
ルの観測者側の基板の鉛ガラスによつて吸収され、観測
者のX線による障害を防ぐことができる。The visible light reflective insulating layer 4 can be an optical thin film made of a metal oxide, in which low refractive index and high refractive index layers are alternately laminated at % wavelength. For example, if a substance called methoxybenzylidene butylaniline is used, the liquid crystal layer 5 exhibits a liquid crystal state at room temperature and can be easily used. For the electrode layer 6, a thin film of indium oxide, tin oxide, etc., which is known as a transparent conductive film, is effective. For the substrate 7, a lead-containing glass plate is used whose lead content and thickness are taken into consideration depending on the X-ray intensity. If an AC power source of about 15 to 100 V is used as the power source 8, a good scattering state can be obtained when the liquid crystal layer is about 10 to 50 microns. The thickness of each thin film is determined by the intensity of X-rays and manufacturing reasons, but is approximately in the range of 0.1 μm to 10 μm, which can be considered as the optical thickness. When a panel with such a structure is irradiated with X-rays in a prescribed manner, after the photoconductive layer is made conductive by the X-rays, the leaked X-rays reach the lead glass of the substrate on the observer side of the panel. Therefore, the radiation is absorbed and the observer can be prevented from being harmed by X-rays.
一方外光によつて光導電性物質が導電性になることを反
射性の絶縁層によつて完全に遮断し、同時に液晶の前方
散乱による散乱光を観測者側に反射し、外光の影響を防
ぐと同時に散乱コントラストを高めている。又紫外部の
光線は含鉛ガラス及び透明電極層で遮断されてしまうの
で、光導電面に影響を及ぼさない。このようにして得ら
れるX線可視像変換器は外光が充分であればある程鮮明
な像として見ることができ、又写真撮影や拡大投影を行
うことも容易にするものである。第2図に示される如く
X線照射側に可視光を遮断する部材として、不透明なプ
ラスチツク部材を塗布したり、基板そのものを不透明ガ
ラスとする時、被検体部分も観測者側も明るい場所にて
操作することが可能となり、製品の非破壊検査等に於い
て極めて有効なX線観測機材となり得る。On the other hand, the reflective insulating layer completely blocks the photoconductive material from becoming conductive due to external light, and at the same time reflects the scattered light caused by forward scattering of the liquid crystal toward the observer, thereby preventing the influence of external light. At the same time, it increases scattering contrast. Furthermore, since ultraviolet light is blocked by the lead-containing glass and the transparent electrode layer, it does not affect the photoconductive surface. The X-ray visible image converter thus obtained can be viewed as a sharper image as long as there is sufficient external light, and it also facilitates photographing and enlarged projection. As shown in Figure 2, when an opaque plastic material is coated on the X-ray irradiation side as a member to block visible light, or when the substrate itself is made of opaque glass, both the subject part and the observer's side should be placed in a bright place. This makes it possible to operate the device, and it can become an extremely effective X-ray observation equipment for non-destructive inspection of products.
不透明部材15としてはX線グリツドを用い、周囲を不
透光性の接着材等でセル12と密着して用いることも可
能である。このように本発明によるX線可視変換素子は
本発明者らの先の開発になる像変換素子に基づく絶縁層
を設けた事により、極めて実用的な素子となると同時に
、安全にX線像を直接見ること、及びX線源のみ用意さ
れれば軽量な持運び可能なパネルとして用いることがで
き、種々の製品過程に於いて、それ等の工程を妨げずに
検査したり、実験研究用機材として組み込むことを容易
にするものである。It is also possible to use an X-ray grid as the opaque member 15, and use an opaque adhesive around the periphery of the cell 12 in close contact with the cell 12. As described above, the X-ray visible conversion element according to the present invention has an insulating layer based on the image conversion element developed earlier by the present inventors, and thus becomes an extremely practical element and at the same time can safely convert X-ray images. If only direct viewing and an X-ray source are provided, it can be used as a lightweight, portable panel, and can be used to inspect various product processes without interfering with them, or as equipment for experimental research. This makes it easy to incorporate it into the system.
第1図及び第2図は本発明の実施例による像変換素子の
各説明図である。
1・・・・・傷板、2・・・・・・導電層、3・・・・
・・光導電層、4・・・・・・可視光反射性絶縁層、5
・・・・・・液晶層、6・・・・・・導電層、7・・・
・・・基板、8・・・・・・電源、9・・・・・・グリ
ツド、10・・・・・荀板で内張りした外箱、12・・
・・・・液晶セル、14・・・・・・被検体、15・・
・・・・可視光遮断層。FIGS. 1 and 2 are explanatory diagrams of image conversion elements according to embodiments of the present invention. 1...Scarred plate, 2...Conductive layer, 3...
...Photoconductive layer, 4...Visible light reflective insulating layer, 5
...Liquid crystal layer, 6... Conductive layer, 7...
... Board, 8... Power supply, 9... Grid, 10... Outer box lined with shingle board, 12...
...Liquid crystal cell, 14...Subject, 15...
...Visible light blocking layer.
Claims (1)
し、一方の基板は鉛を含有するガラスよりなる透明基板
で、その内壁面側に透明電極層を設け、かつ他方の基板
はその全部若しくは基板壁面部をX線透過性で可視光不
透光性部材にて形成してなり、該基板の内壁面側に導電
性電極層、光導電層、可視光反射性絶縁層を設けたこと
を特徴とする液晶像変換素子。1 It has a nematic liquid crystal layer sandwiched between two substrates, one of which is a transparent substrate made of lead-containing glass, with a transparent electrode layer provided on its inner wall surface, and the other substrate is a transparent substrate made of lead-containing glass. The whole or the wall surface of the substrate is made of a material that is transparent to X-rays and opaque to visible light, and a conductive electrode layer, a photoconductive layer, and a visible light reflective insulating layer are provided on the inner wall surface of the substrate. A liquid crystal image conversion element characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP47059283A JPS5913000B2 (en) | 1972-06-14 | 1972-06-14 | image conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP47059283A JPS5913000B2 (en) | 1972-06-14 | 1972-06-14 | image conversion element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS4921165A JPS4921165A (en) | 1974-02-25 |
JPS5913000B2 true JPS5913000B2 (en) | 1984-03-27 |
Family
ID=13108896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP47059283A Expired JPS5913000B2 (en) | 1972-06-14 | 1972-06-14 | image conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5913000B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4915504A (en) * | 1972-04-04 | 1974-02-12 |
-
1972
- 1972-06-14 JP JP47059283A patent/JPS5913000B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4915504A (en) * | 1972-04-04 | 1974-02-12 |
Also Published As
Publication number | Publication date |
---|---|
JPS4921165A (en) | 1974-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3592527A (en) | Image display device | |
US6853418B2 (en) | Liquid crystal display device | |
KR20170031837A (en) | Liquid Crystal Display | |
GB1118227A (en) | A display system | |
EP0514486A1 (en) | Radiation dosage indicator. | |
CN110633695B (en) | Line identification module and display device | |
JPH08262438A (en) | Back light structure for liquid crystal display device | |
CN104035251B (en) | Array base palte, display device, the preparation method of display device and array base palte | |
JP4578954B2 (en) | Display device | |
JPS5913000B2 (en) | image conversion element | |
GB1431280A (en) | X-ray image converter | |
US4019809A (en) | Electrochromic display device | |
Fujieda et al. | Characterization of a liquid crystal/dye cell for a future application in display-integrated photovoltaics | |
JPS5981683A (en) | Liquid crystal display | |
US4285055A (en) | Self-luminescent light source for liquid crystal display watch | |
GB2017372A (en) | Liquid crystal display device | |
TWI252945B (en) | Reflective liquid crystal display device | |
JPS589391B2 (en) | electronic clock lighting device | |
JPS59807B2 (en) | image conversion element | |
JP2002250916A (en) | Liquid crystal display device | |
KR830001003B1 (en) | Self-luminous light source for LCD clock | |
CN207440469U (en) | A kind of multi views 3D liquid crystal displays | |
US20240302541A1 (en) | Electronic device | |
JP2523697B2 (en) | Projection type liquid crystal display device | |
SU792280A1 (en) | Light-valve indicator |