JPS59129841A - Diaphragm device in camera or the like - Google Patents

Diaphragm device in camera or the like

Info

Publication number
JPS59129841A
JPS59129841A JP58005593A JP559383A JPS59129841A JP S59129841 A JPS59129841 A JP S59129841A JP 58005593 A JP58005593 A JP 58005593A JP 559383 A JP559383 A JP 559383A JP S59129841 A JPS59129841 A JP S59129841A
Authority
JP
Japan
Prior art keywords
ring
aperture
blade
movable member
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58005593A
Other languages
Japanese (ja)
Other versions
JPH0466007B2 (en
Inventor
Akiyasu Washimi
鷲見 明保
Hidefumi Notazu
英文 野田頭
Hiroyoshi Inaba
弘義 稲葉
Makoto Katsuma
勝間 真
Hiroyasu Murakami
村上 博泰
Akira Hiramatsu
平松 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58005593A priority Critical patent/JPS59129841A/en
Priority to US06/570,352 priority patent/US4491401A/en
Publication of JPS59129841A publication Critical patent/JPS59129841A/en
Publication of JPH0466007B2 publication Critical patent/JPH0466007B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • G03B9/06Two or more co-operating pivoted blades, e.g. iris type

Abstract

PURPOSE:To make a diaphragm mechanism part simple and compact, and also to make it excellent in its respectiveness by driving a diaphragm by a vibrating wave motor mechanism. CONSTITUTION:A titled device is provided with a diaphragm blade 6 for forming a diaphragm aperture, disphragm blade operating ring 5 for operating this blade 6, vibrating ring 10 vibrated electrostrictive elements 12a, 12b, and a turning ring 13 which is brought to friction and press contacting to this vibrating ring 10. Also, this device is provided with an elastic small roller 16 as an accelerating mechanism which accelerate a motion of the turning ring 13 driven by travelling vibrating wave generated in the vibrating ring 10 basing on a feed to the electrostrictive elements 12a, 12b, and transfers it to a stop-blade operating ring 5.

Description

【発明の詳細な説明】 本発明はカメラ、その他の光学機器のレンズに使用され
る絞り装置に関するものであり、特にモータ等を駆動源
とし電気的に絞り口径を制御する絞り装置の構造に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aperture device used in lenses of cameras and other optical equipment, and particularly relates to the structure of an aperture device that uses a motor as a drive source to electrically control the aperture aperture. It is.

投影する場合の重要な条件である露出条件を決定する制
御方式として、絞り優先式とシャンク−秒時優先式とが
ある。このどちらの制御方式も被写体輝度・フィルム感
度・シャッター秒時・絞り個等の露出条件となる諸因子
に基づいて写真学的演算処理システムによって電気的制
御処理が行われている。
Control methods for determining exposure conditions, which are important conditions for projection, include an aperture priority method and a shank-second priority method. In both of these control methods, electrical control processing is performed by a photographic processing system based on various factors that constitute exposure conditions such as subject brightness, film sensitivity, shutter speed, and number of apertures.

このように現在及び今後のカメラの制御システムは電気
的制御を必須の要件として採り入れてその制御の高速化
・高精度化の要求に応えていくと考えられている。カメ
ラ側のこのような電気的制御に応えるべく、撮影レンズ
にも自動合焦装置を組み込んだり、モータ駆動によるズ
ームレンズの提案が行われているが、従来のこれらモー
タ組み込みの撮影レンズは既有の単体のモータを撮影レ
ンズに&置し、撮影レンズの可動部材とモータ回転軸を
歯車列等を介して連結する構成のため撮影レンズをコン
パクトにすることができない。
In this way, it is believed that current and future camera control systems will incorporate electrical control as an essential requirement to meet the demands for faster and more accurate control. In order to respond to this kind of electrical control on the camera side, proposals have been made to incorporate automatic focusing devices into photographic lenses and zoom lenses driven by motors, but conventional photographic lenses with built-in motors are not available. The single motor is placed on the photographic lens, and the movable member of the photographic lens and the rotation shaft of the motor are connected via a gear train or the like, which makes it impossible to make the photographic lens compact.

又絞り装置に電磁駆動装置を組み込み電磁力によって絞
り羽根全駆動制御する装置も例えば米国特許第3813
7’042号明細書で提案されている。しかし、これら
の絞り装置δは絞り装置の構成部品と電磁機構の構成部
品の共通化が図られてなく装置全体が複雑、大型化する
There is also a device that incorporates an electromagnetic drive device into the aperture device and controls the entire drive of the aperture blades using electromagnetic force, for example, as disclosed in U.S. Pat. No. 3,813.
No. 7'042. However, in these aperture devices δ, the components of the aperture device and the electromagnetic mechanism are not made common, and the entire device becomes complicated and large.

又近年絞り本体と同様に中空状のモータにより絞り°を
作動させるものが提案されている。これはレンズ外径は
コンパクトにできるものの、モータと絞り本体との連結
部分が複雑化したリモータの性能不足に起因する絞り羽
根の応答性が悪かったり、あるいは価格の面からは、中
空状のモーフ自体高価なものである等の欠点があった。
Also, in recent years, it has been proposed that the diaphragm is operated by a hollow motor in the same way as the diaphragm body. This is because although the outer diameter of the lens can be made compact, the connection part between the motor and the aperture body is complicated and the response of the aperture blades is poor due to insufficient performance of the remoter, or from a price point of view, it is difficult to use a hollow morph. It had drawbacks such as being expensive in itself.

本発明は上記に鑑みて提案されたもので、絞り駆動を振
動波モータ機構で行うようにして絞り機構部の簡素化・
コンパクト化等を可能にし、且つ応答性に優れた、低コ
ストの、新規駆動方式の絞り装置構成を提供することを
目的とする。
The present invention has been proposed in view of the above, and simplifies and simplifies the diaphragm mechanism by driving the diaphragm using a vibration wave motor mechanism.
It is an object of the present invention to provide a configuration of a diaphragm device using a new drive method, which is compact, has excellent responsiveness, and is low cost.

即ち本発明は絞り口径を形成する絞り羽根、該絞り羽根
を作動させる第1の可動部材、電歪素子(圧電素子)に
より振動する振動部材、該振動部材に常時摩擦圧接させ
た第2の可動部材、電歪素子に対する給電に基づき振動
部材に生じる進行性振動波により駆動される上記第2の
可動部材の連動を増速して前記第1の可動部材に伝達す
る増速機構、とからなることを特徴とするカメラ等に於
ける紋り装置′己を要旨とする。
That is, the present invention provides an aperture blade that forms an aperture aperture, a first movable member that operates the aperture blade, a vibrating member that vibrates by an electrostrictive element (piezoelectric element), and a second movable member that is constantly friction-welded to the vibrating member. and a speed increasing mechanism that speeds up the interlocking movement of the second movable member, which is driven by progressive vibration waves generated in the vibrating member based on power supply to the electrostrictive element, and transmits the speed to the first movable member. The gist of this paper is a print device for a camera etc. which is characterized by the following.

以下図の一実施例に基づいて具体的に説明する。図に於
て、1は羽根ケース裏板、2はその裏板に形成した入射
開口、3は羽根ケース表板、4はその表板に形成した、
開放絞り口径を決定する開口である。上記の羽根ケース
裏板1と同表板3は両者間に適当な隙間を存して一体に
結合される。
A detailed explanation will be given below based on an embodiment shown in the drawings. In the figure, 1 is the back plate of the blade case, 2 is the entrance opening formed in the back plate, 3 is the front plate of the blade case, and 4 is the hole formed in the top plate.
This is the aperture that determines the open aperture. The blade case back plate 1 and the blade case front plate 3 are integrally joined with an appropriate gap between them.

5は第1の可動部材たる絞り羽根作動環(風車)であり
、羽根ケース表板3の周壁内周に丁度嵌入していて光軸
O−0を中心に回転動自由である。又該作動環5の面に
は環に沿って略等間隔に複数個の長孔7を形成しである
Reference numeral 5 designates an aperture blade operating ring (windmill) as a first movable member, which is fitted exactly into the inner periphery of the peripheral wall of the blade case top plate 3 and is freely rotatable about the optical axis O-0. Further, a plurality of elongated holes 7 are formed on the surface of the actuating ring 5 at approximately equal intervals along the ring.

6は上記絞り羽根作動環5と羽根ケース表板3の裏面と
の間に、絞り羽根作動環5の開孔を囲むように略等間隔
に配列した複数枚の絞り羽根である。各羽根6は夫々羽
根の表側基部に植設したピン8か羽根ケース表板3側に
形成した受孔3aに嵌入していて、夫々ピン8を中心に
回動自由である。9は各絞り羽根6の裏面側に植設した
ピンで、その各ピンの先端部は前記絞り羽根作動環5の
各対応長孔7に嵌入係合している。5aは絞り羽根作動
環5の外周部に略等間隔数個所に切込みにより形成した
弾性舌片で、各弾性舌片の自由端部を羽根ケース表板3
の裏面に接触させることにより、絞り羽根作動環5を常
時羽根ケース表板3から離れるスラスト方向に付勢させ
である。而して第1の可動部材たる絞り羽根作動環5を
第1図に於て反時計方向に回動させると各絞り羽根6が
絞り口径縮径方向に駆動される。絞り口径縮径状態時に
作動環5を逆に時計方向へ回動させれば各絞り羽根6は
絞り口径拡径方向に駆動される。
A plurality of aperture blades 6 are arranged at approximately equal intervals between the aperture blade operation ring 5 and the back surface of the blade case front plate 3 so as to surround the opening of the aperture blade operation ring 5. Each blade 6 is fitted into a pin 8 implanted in the front base of the blade or into a receiving hole 3a formed in the blade case front plate 3, and is freely rotatable around the pin 8. Reference numeral 9 denotes a pin implanted on the back side of each aperture blade 6, and the tip end of each pin is fitted into each corresponding elongated hole 7 of the aperture blade operating ring 5. Reference numeral 5a denotes elastic tongues formed by cutting at several locations at approximately equal intervals on the outer periphery of the aperture blade operating ring 5, and the free end of each elastic tongue is connected to the blade case top plate 3.
By contacting the back surface of the blade case, the aperture blade operating ring 5 is always urged in the thrust direction away from the blade case top plate 3. When the aperture blade operating ring 5, which is the first movable member, is rotated counterclockwise in FIG. 1, each aperture blade 6 is driven in the direction of reducing the aperture diameter. If the operating ring 5 is rotated clockwise in the opposite direction when the aperture diameter is reduced, each aperture blade 6 is driven in the direction in which the aperture diameter increases.

10は羽根ケース裏板1の内面に開口2と同心に、振動
吸収部材11を介して不動に配設した振動部材としての
振動リング(ステータ)で、このリング10の裏面に対
してリングに沿って後述する作動原理に従う配列で電歪
素子12a・12bが接着して設けである。
Reference numeral 10 denotes a vibration ring (stator) as a vibration member that is immovably disposed concentrically with the opening 2 on the inner surface of the blade case back plate 1 via a vibration absorbing member 11. The electrostrictive elements 12a and 12b are bonded and provided in an arrangement according to the operating principle described later.

13は節2の可動部材としての回動リング(ロータ)で
、該回動リングの裏面側にはゴム等の摩擦部材13aを
貼合せである。14は羽根ケース裏板3の周壁数個所に
略等間隔に形成した切欠孔3bからケース内方へ差し込
んだ板ばね片で、該板ばね片の先端部が前記回動リング
13の表面に接して回動リング13を振動リング10方
向にスラスト付勢し、回動リング13に貼合せた摩擦部
材13aが常時振動リング10面に摩擦圧接状態に保持
される。
Reference numeral 13 denotes a rotating ring (rotor) as a movable member of the node 2, and a friction member 13a made of rubber or the like is bonded to the back side of the rotating ring. Reference numeral 14 denotes a leaf spring piece inserted into the case through notch holes 3b formed at several locations on the circumferential wall of the blade case back plate 3 at approximately equal intervals, and the tip of the leaf spring piece is in contact with the surface of the rotation ring 13. The rotary ring 13 is thrust in the direction of the vibrating ring 10, and the friction member 13a bonded to the rotary ring 13 is always held in a state of frictional contact with the vibrating ring 10 surface.

15は回動リング13の内周に基部をカシメ等により植
設し、先端部をリング半径方向に向けて設けた略等間隔
複数本のピン軸、16はその各ピン軸に夫々抜は止めし
て回転自由に保持させた弾性小ローラである。この各弾
性小ローラ16は夫々羽根ケース裏板lの内周に開口2
の周縁に沿って形成したリング状■型凹溝軌道1aに前
記板ばね片14による回動1ノング13のスライド方向
付勢力で常時圧接されている。又その各弾性小ローラ1
6の凹溝軌道圧接側と反対側の面に前記絞り羽根作動環
5の内面が弾性舌片5aによる付勢力で常時圧接Sれて
いる。
Reference numeral 15 indicates a plurality of pin shafts whose bases are implanted on the inner circumference of the rotary ring 13 by caulking or the like, and which are arranged at approximately equal intervals with their tips facing in the radial direction of the ring, and reference numeral 16 indicates that each of the pin shafts is secured against removal. It is a small elastic roller that is held freely rotatable. Each of these elastic small rollers 16 has an opening 2 on the inner periphery of the blade case back plate l.
It is constantly pressed into contact with the ring-shaped square groove raceway 1a formed along the circumference of the ring 1a by the biasing force in the sliding direction of the rotation 1 nong 13 by the leaf spring piece 14. Also, each elastic small roller 1
The inner surface of the aperture blade operating ring 5 is constantly pressed against the surface opposite to the concave groove raceway pressure contact side of the aperture blade 6 by the biasing force of the elastic tongues 5a.

17aφ17bは電歪素子12a・12bに対する給電
端子17a′・17bと、給電制御回路(図に省略)と
を結ぶリード線、18aは給電端子17aと電歪素子1
2a、及び電歪素子12a・12a間を結ぶリード線、
18bは給電端子17bと電歪素子12b及び電歪素子
12b・12bを結ぶリード線である。
17aφ17b is a lead wire connecting the power supply terminals 17a' and 17b for the electrostrictive elements 12a and 12b and a power supply control circuit (not shown); 18a is a lead wire connecting the power supply terminal 17a and the electrostrictive element 1;
2a, and a lead wire connecting between the electrostrictive elements 12a and 12a,
18b is a lead wire connecting the power supply terminal 17b, the electrostrictive element 12b, and the electrostrictive elements 12b, 12b.

而して給電回路からリード線17a・17b→給電端子
17a*17b−+配線18a・18bを介して電歪素
子12a−12bに夫々交流等の周波電流を印加すると
、位相をずらした状態で配列された電歪素子12a・1
2bに位相のずれた歪が次々に生じ、その結果振動リン
グ10の表面に進行性振動波を生じる。そしてその進行
性振動波エネルギが振動リング10と回動リング13側
の摩擦部材13aとの接触面部分に於て両者10・13
を相対的に摩擦移動させる力として働き、第2の可動部
材としての摩擦部材13aを含む回動リング13が光軸
0−Oを中心に回動駆動される。振動リング10に生じ
る進行性振動波の方向は電歪素子12aと12bに対す
る周波電圧の位相切換えにより正方向・逆方向例れにも
制御できる。即ち回動リング]3の回動方向を正・逆切
換え制御できる。
When frequency currents such as alternating current are applied from the power supply circuit to the electrostrictive elements 12a and 12b via the lead wires 17a and 17b→power supply terminals 17a*17b-+wirings 18a and 18b, respectively, they are arranged in a phase-shifted state. Electrostrictive element 12a.1
2b, out-of-phase strains occur one after another, resulting in progressive vibration waves on the surface of the vibrating ring 10. The progressive vibration wave energy is transmitted to the contact surface between the vibration ring 10 and the friction member 13a on the rotary ring 13 side.
The rotating ring 13 including the friction member 13a serving as the second movable member is driven to rotate about the optical axis 0-O. The direction of the progressive vibration wave generated in the vibration ring 10 can be controlled in both forward and reverse directions by switching the phase of the frequency voltage applied to the electrostrictive elements 12a and 12b. That is, the rotating direction of the rotating ring] 3 can be controlled by switching between forward and reverse directions.

回動リング13が回動駆動されると、その回動に伴ない
該回動リングに取付けた各弾性小ローラ16がリング状
V型凹溝軌道la上を回転しなから移動する。一方この
各弾性小ローラ16には前記したように第1の可動部材
たる絞り羽根作動環5が常時押圧接触しているから上記
の各弾性小ローラ16の回転に伴ない作動環5が連動し
て回転駆動される。この場合その作動環5の回転は第2
の可動部材たる回動リング13の振動リング10による
回転速度と各弾性小ローラ16の回転速度を加えた速度
で駆動される。即ち回動リング10の2倍のスピードで
絞り羽根作動環13が回転するため絞り羽根6は高速で
開閉動作を行うことになる。
When the rotating ring 13 is driven to rotate, the small elastic rollers 16 attached to the rotating ring move without rotating on the ring-shaped V-shaped concave groove track la. On the other hand, as described above, the aperture blade operating ring 5, which is the first movable member, is always in pressure contact with each of the elastic small rollers 16, so the operating ring 5 is interlocked with the rotation of each of the elastic small rollers 16. Rotationally driven. In this case, the rotation of the operating ring 5 is
The rotary ring 13, which is a movable member, is driven at a speed that is the sum of the rotational speed of the vibration ring 10 and the rotational speed of each small elastic roller 16. That is, since the aperture blade operating ring 13 rotates at twice the speed of the rotary ring 10, the aperture blades 6 open and close at high speed.

上記の電歪素子を利用して発生させた進行性振動波によ
る物体の移動駆動原理について今少し説明する。
The principle of driving the movement of an object by the progressive vibration waves generated using the electrostrictive element described above will be briefly explained.

第4図に於て、100及び200は付勢部材或は自重力
で互いに摩擦圧接状態にした移動体(ロータ)と振動子
(ステータ)とする。X軸は振動子200の表面上に起
きる表面波の進行方向を示し、Z軸をその法線方向とす
る。
In FIG. 4, 100 and 200 are a movable body (rotor) and a vibrator (stator) which are brought into frictional contact with each other by an urging member or their own gravity. The X-axis indicates the traveling direction of surface waves occurring on the surface of the vibrator 200, and the Z-axis is the normal direction thereof.

振動子200表面に電歪素子により振動を与えると振動
波が発生し振動子表面上を伝播していく。この振動波は
縦波と横波を伴った表面波で、その質点Aの運動は楕円
軌道を画く振動となる。
When the surface of the vibrator 200 is vibrated by an electrostrictive element, vibration waves are generated and propagate on the surface of the vibrator. This vibration wave is a surface wave accompanied by a longitudinal wave and a transverse wave, and the motion of the mass point A is a vibration that describes an elliptical orbit.

質点Aについて着目すると、縦振巾U、横振巾Wの楕円
運動を行っており、表面波の振動方向を+X方向とする
と楕円運動は反時計方向に回転している。この表面波は
一波長ごとに頂点A−A・・・・を有しその頂点速度■
はX成分のみであってV=2πfu(但しfは振動数)
である。そこでこの表面に移動体100の表面を加圧接
触させると、移動体表面は頂点A−A・・・・のみに接
触するのであるから移動体100は振動子200との摩
擦力により矢印Nの方向に駆動することになる。
Focusing on the mass point A, it is performing an elliptical motion with a vertical oscillation width U and a lateral oscillation width W, and when the vibration direction of the surface wave is set to the +X direction, the elliptical motion rotates counterclockwise. This surface wave has an apex A-A... for each wavelength, and its apex velocity ■
is only the X component and V = 2πfu (where f is the frequency)
It is. Therefore, when the surface of the moving body 100 is brought into pressure contact with this surface, since the surface of the moving body contacts only the vertices A-A, the moving body 100 moves in the direction of the arrow N due to the frictional force with the vibrator 200. It will drive in the direction.

矢印N方向の移動体100の速度は振動数fに比例する
。又加圧接触による摩擦駆動を行うため縦振巾Uばかり
でなく横振巾Wにも依存する。即ち移動体100の速度
は楕円運動の大きさに比例し、楕円運動の大きい方が速
度が速い。従って移動体速度は電歪素子に加える電圧に
比例する。
The speed of the moving body 100 in the direction of arrow N is proportional to the frequency f. Furthermore, since frictional drive is performed by pressurized contact, it depends not only on the vertical oscillation width U but also on the lateral oscillation width W. That is, the speed of the moving body 100 is proportional to the size of the elliptical motion, and the larger the elliptical motion is, the faster the speed is. Therefore, the speed of the moving body is proportional to the voltage applied to the electrostrictive element.

第5図は振動子200と、該振動子を振動させるために
該振動子に接着等で固着した例えばPzT等の電歪素子
12a・12bの配列と、定在波および進行性振動波の
発生状態の相関関係を示すものである。
FIG. 5 shows a vibrator 200, an arrangement of electrostrictive elements 12a and 12b, such as PzT, fixed to the vibrator by adhesive or the like in order to vibrate the vibrator, and generation of standing waves and progressive vibration waves. It shows the correlation between states.

電歪素子12aと12bは振動体200の共振周波数か
ら最も効率よく弾性波を得ることのできる様な間隔で振
動体200の裏面に貼りつけである。即ち電歪素子12
a1112bは12a又は12bだけを駆動すると振動
子200が共振するような状態、すなわち定在波が存在
するような配置がとられ、電歪素子12aによる定在波
長と、電歪素子12bによる定在波長ぼ等しく、互いの
定在波に対して900位相のずれるすなわち入(波長)
/4の物理的位置(ピッチ)になるように配置されてい
る。
The electrostrictive elements 12a and 12b are attached to the back surface of the vibrating body 200 at such intervals that elastic waves can be most efficiently obtained from the resonant frequency of the vibrating body 200. That is, the electrostrictive element 12
a1112b is arranged so that when only 12a or 12b is driven, the vibrator 200 resonates, that is, a standing wave exists, and the standing wavelength by the electrostrictive element 12a and the standing wave by the electrostrictive element 12b are arranged. The wavelengths are approximately equal and are 900 degrees out of phase with respect to each other's standing waves.
They are arranged at a physical position (pitch) of /4.

尚、説明の便宜上この第5図に於ける電歪素子12a−
12bは第3図の素子12aと素子12bを群として分
けて配列したものではなく、単位素子12aと12bと
を交互に配列しであるが、両者は各素子群或は個々の素
子の物理的位置関係は上記の関係を満足させてあり、互
いに等価である。
For convenience of explanation, the electrostrictive element 12a- in FIG.
12b is not an arrangement in which the elements 12a and 12b in FIG. The positional relationship satisfies the above relationship and is equivalent to each other.

17はこのモータの駆動用電源(供電回路)であり、電
歪素子12a・12bに対してv−v0sinωtとい
う電圧を供給する。駆動時は電歪素子12aにリード線
18aを介してv=■05inωtの電圧が加わる。又
電歪素子12bには配線18bを介して90°位相器1
9によりV=VOsin(ωt±π/2)の電圧がリー
ド線18bを介して加えられる。
Reference numeral 17 denotes a power source (power supply circuit) for driving this motor, which supplies a voltage of v-v0 sin ωt to the electrostrictive elements 12a and 12b. During driving, a voltage of v=05inωt is applied to the electrostrictive element 12a via the lead wire 18a. Further, a 90° phase shifter 1 is connected to the electrostrictive element 12b via a wiring 18b.
9, a voltage of V=VOsin(ωt±π/2) is applied via the lead wire 18b.

+、−は移動体100の移動方向により切換る。即ち9
00位相器19によって+900位相をずらす場合と、
−90°位相をずらす場合によって移動体進行方向が異
なる。
+ and - are switched depending on the moving direction of the moving body 100. That is 9
When the phase is shifted by +900 by the 00 phase shifter 19,
The moving direction of the moving body differs depending on the case where the phase is shifted by -90°.

第5図のグラフ(イ)は電歪素子12aだけにV、= 
v6 s i nωtの交流電圧を印加した場合、同(
ロ)は電歪素子12bだ(すにV=V、5in(ωt−
π/2)の交流電圧を印加した場合に夫々振動子200
に生じる定在波による振動状5mを示す。
The graph (a) in FIG. 5 shows that only the electrostrictive element 12a has V, =
When an AC voltage of v6 sin ωt is applied, the same (
b) is the electrostrictive element 12b (V=V, 5in(ωt-
When an AC voltage of π/2) is applied, each vibrator 200
This figure shows a 5-meter vibration caused by standing waves.

グラフ(ハ)、(ニ)、(ホ)、(へ)は電歪素子12
a及び12bに対して夫々上記電圧V=V□sinωを
及びV=V6 s i n (ωt−π/2)を同時に
印加した場合の振動子200の振動状態(進行性振動波
発生状態)を示すもので、グラフ(ハ)はt=2nπ/
ω、同(ニ)はL=π/2ω+2nπ/ω、同(ホ)は
t=π/ω+2nπ/ω、グ、ラフ(へ)はt=3π/
2ω+2nπ/ωの時を示す。進行性振動波は右方向に
進むが、振動子200の駆動面の任意の質点A(第4図
)は反時計方向の楕円運動を行う。したがって振動子駆
動面に圧接される移動体100は左方向に移動する。
Graphs (c), (d), (e), and (f) are electrostrictive elements 12
The vibration state of the vibrator 200 (progressive vibration wave generation state) when the voltages V=V□sinω and V=V6sin(ωt-π/2) are simultaneously applied to a and 12b, respectively. The graph (c) is t=2nπ/
ω, same (d) is L=π/2ω+2nπ/ω, same (e) is t=π/ω+2nπ/ω, g, rough (he) is t=3π/
It shows the time of 2ω+2nπ/ω. The progressive vibration wave travels to the right, but any mass point A (FIG. 4) on the drive surface of the vibrator 200 performs an elliptical motion in the counterclockwise direction. Therefore, the movable body 100 pressed against the vibrator drive surface moves to the left.

グラフ(イ)・(ロ)の定在波状態では、振動子200
の摩擦駆動伝達面上の部具外の質点では横振動、すなわ
ち第7図でいうと上下運動だけである。振動子200に
圧接された移動体100の間の摩擦面状態は静止摩擦状
態でなく、動摩擦状態であり、接触面積を小さくする。
In the standing wave state of graphs (a) and (b), the vibrator 200
At the mass point outside the component on the frictional drive transmission surface, there is only lateral vibration, that is, vertical movement as shown in FIG. The state of the friction surface between the movable body 100 pressed against the vibrator 200 is not a static friction state but a dynamic friction state, which reduces the contact area.

従って移動体200を外力によて移動方向に動かす際に
、定在波を発生させることにより定在波がない場合に比
べて小さい力で動かすことが可能である。
Therefore, when moving the moving body 200 in the movement direction by an external force, by generating a standing wave, it is possible to move the moving body 200 with a smaller force than when there is no standing wave.

第1〜3図の実施例に於て振動リング10は上記の原理
に於ける振動子200に該当し、第2の可動部材たる摩
擦部材13aを含む回動リング13は移動体100に該
当する。
In the embodiment shown in FIGS. 1 to 3, the vibration ring 10 corresponds to the vibrator 200 in the above principle, and the rotating ring 13 including the friction member 13a, which is the second movable member, corresponds to the moving body 100. .

又上記の原理に於て移動体100側に電歪素子を配設し
て振動子兼移動体とし、振動子200を単なる固定部材
としても移動体100は移動運動する。従って第1〜3
図の実施例に於て回動リング13側に電歪素子12aψ
12bを配設して該リングを振動子兼回動リングとし、
振動リンクlOを単なる固定のリング部材にしてもよい
Further, based on the above principle, an electrostrictive element is disposed on the movable body 100 side to serve as a vibrator and a movable body, and the movable body 100 moves even when the vibrator 200 is used as a mere fixed member. Therefore, 1st to 3rd
In the illustrated embodiment, an electrostrictive element 12aψ is provided on the rotating ring 13 side.
12b is arranged so that the ring serves as a vibrator and rotating ring,
The vibration link IO may be simply a fixed ring member.

第3図に於て電歪素子12a及び12bの群は夫々複数
並べずに単体の素子を部分的に分極処理して構成したも
のにしてもよい。
In FIG. 3, the groups of electrostrictive elements 12a and 12b may be constructed by partially polarizing a single element instead of arranging a plurality of them.

かくして本発明は絞り駆動、即ち絞り羽根を作動させる
可動部材の駆動を上記のように電歪素子を利用した振動
波モータ機構で行うようにしたから、従来の電磁力を利
用したモータ等を駆動源とするものと比較すると、構造
が簡単であり、巻線もなく、効果も良くしかも減速機構
も不要で、全体の絞り装置δ構成を簡素・コンバク(・
なものにすることができる。そして振動波モータ機構の
駆動力を増速機構を介して絞り羽根作動部材に伝達する
ようにしたから高応答性を有するもので、コンパクトで
高性能の電気制御式絞り装置を安価に量産することかで
可能となり、所期の目的がよく達成される。
Thus, in the present invention, the diaphragm drive, that is, the driving of the movable member that operates the diaphragm blades, is performed by the vibration wave motor mechanism using the electrostrictive element as described above. Compared to the source, the structure is simple, there is no winding, the effect is good, and there is no need for a speed reduction mechanism, and the overall aperture device δ configuration is simplified and combined (・
can be made into something. Since the driving force of the vibration wave motor mechanism is transmitted to the aperture blade actuating member via the speed increasing mechanism, it has high responsiveness, and it is possible to mass-produce a compact and high-performance electrically controlled aperture device at low cost. This makes it possible and the intended purpose is well achieved.

第6図はTTL開放測光カメラの測光との関連に於て前
記絞り駆動用振動波モータを正逆駆動する制御回路の一
例を示すものである。
FIG. 6 shows an example of a control circuit for driving the diaphragm driving vibration wave motor forward and backward in relation to photometry of a TTL open photometry camera.

尚本例のものはカメラレリーズボタンを第2段階のスト
ロークに分け、第1ストロークで測光演算および振動波
モータの回転体5を定在波振動状態にし、第2ストロー
クで投影シーケンススタートおよび進行性振動波による
回転体駆動を行う。
In this example, the camera release button is divided into two strokes, the first stroke performs photometry calculations and puts the rotating body 5 of the vibration wave motor into a standing wave vibration state, and the second stroke starts the projection sequence and progresses. The rotating body is driven by vibration waves.

又電源として直流電源を用い、その直流電圧を周波電圧
に変換して電歪素子に印加してモータ駆動を行うように
したものである。
Further, a DC power source is used as the power source, and the DC voltage is converted into a frequency voltage and applied to the electrostrictive element to drive the motor.

受光素子SPC・オペアンプ20等からなる回路19は
被写体輝度を電気信号に変化する測光回路で、その出力
端に輝度情報(Bv値)に相応した電気信号を出力する
。可変抵抗器21・22は投影情報入力手段を形成し、
不図示の投影装置はの外部から設定可能なフィルム感度
情報(Sv値〕と設定露出情報(例えばシャッター秒時
値Tv)を入力し、設定値に応じた電気信号を出力する
A circuit 19 consisting of a light receiving element SPC, an operational amplifier 20, etc. is a photometric circuit that converts subject brightness into an electric signal, and outputs an electric signal corresponding to brightness information (Bv value) to its output terminal. The variable resistors 21 and 22 form projection information input means,
A projection device (not shown) inputs settable film sensitivity information (Sv value) and set exposure information (for example, shutter time value Tv) from the outside, and outputs an electrical signal according to the set values.

23は露出演算を行う増幅器であり、制御すべき絞り値
Av、開放絞り値Avoとすると開放位、′ξからの絞
り込む絞り値△Avは △Av=Av−Av o 、 、 、 、 、  (1
)となるニ 一方開放絞りで光りを測光するため、受光素子S’P 
Cに入射する光量即ちSPCの出力値Bv。
23 is an amplifier that performs exposure calculation, and if the aperture value Av to be controlled is the open aperture value Avo, the aperture value △Av to be stopped down from the open position and 'ξ is △Av=Av-Avo, , , , , (1
), the light receiving element S'P
The amount of light incident on C, ie, the output value Bv of SPC.

は、被写体輝度をByとすると、 Bvo=Bv−Avo 、、、、、(2)となる。ここ
でアペックス演算式 %式% を変形すると (1)・(2)式より (By−Avo)+5v−Tv+Av−Avo=ΔAv
となりオペアンプ23の出力値となる。この出力値ΔA
vによって自動絞りユニットの絞り込み段数が設定され
る。24はアナログ−デジタル変換器で、演算器23に
よって演算された絞り段数イ言号△Avをデジタル信号
に変換する。
If the subject brightness is By, then Bvo=Bv-Avo, (2). Here, if we transform the apex calculation formula % formula %, from formulas (1) and (2), (By-Avo)+5v-Tv+Av-Avo=ΔAv
This becomes the output value of the operational amplifier 23. This output value ΔA
The number of aperture stages of the automatic aperture unit is set by v. 24 is an analog-to-digital converter which converts the aperture stage number ΔAv calculated by the calculator 23 into a digital signal.

25はパルス発生回路を示し、電極25a上を移動する
摺動子25b及び抵抗26等で構成されている。摺動子
25aは絞り羽根作動環5と一体に回動しくし歯状の電
極25aに対して側1多動する毎にパルスを発生する。
Reference numeral 25 denotes a pulse generation circuit, which is composed of a slider 25b that moves on the electrode 25a, a resistor 26, and the like. The slider 25a rotates integrally with the aperture blade operating ring 5, and generates a pulse every time the side 1 moves more than the comb tooth-shaped electrode 25a.

27は抵抗26を介して電源に接続される電極25aか
らの信号力1らチャタリング成分を除去するチャタリン
グ吸1又回路である。
Reference numeral 27 denotes a chattering absorbing circuit for removing chattering components from the signal power 1 from the electrode 25a connected to the power source via the resistor 26.

28は絞り作動信号により絞り動作を制御する回路で、
そのうち30はフリップフロ・ンプ回路力1らなり、シ
ャツタレリーズの第1段目のストロークに連動した電源
信号Cに依ってセ、ントされイ言号Q2を出力し絞り制
御開始信号A4こ依ってリセットされ信号同2を出力す
る。29もフリップフロ・ンプ回路からなりレリーズの
第2段目のストロ−りに連動した絞りの制御開始信号A
に依ってセツ、トされ信号Q1を出力し、露光制御完了
信号Bによってリセットされ信号Q1を出力する。31
は単安定マルチバイブレーク回路で回路29のQ1出力
に応じて極めて短い単パルスを発生させるものである。
28 is a circuit that controls the aperture operation using an aperture operation signal;
30 of them are made up of the flip-flop circuit power 1, which is set by the power signal C linked to the first stroke of the shirt release and outputs the aperture control start signal Q2. It is reset and outputs signal 2. 29 also includes a flip-flop circuit, and outputs an aperture control start signal A linked to the second stroke of the release.
It is set and turned on by the exposure control signal B and outputs the signal Q1, and is reset by the exposure control completion signal B and outputs the signal Q1. 31
is a monostable multi-by-break circuit which generates an extremely short single pulse in response to the Q1 output of the circuit 29.

32はブリセッタブルダ、ウンカウタで、回路29のQ
1出力によりリセットされ、Q1出力による単安定マル
チ31の出力信号によってアナログデジタル変換器24
の出力データーをプリセットされ、チャタリング吸収回
路27の出力に基づきプリセットされたデーターをダウ
ンカウントし、カウントが終了するとキャリー出力を行
う。
32 is a brisettaburda, uncounter, and Q of circuit 29
1 output, and the analog-to-digital converter 24 is reset by the output signal of the monostable multi 31 by the Q1 output.
The output data of the chattering absorption circuit 27 is preset, the preset data is counted down based on the output of the chattering absorption circuit 27, and when the count is completed, a carry output is performed.

SWは絞りが開放状態にあるときは閉じられ絞り羽根が
少しでも絞られた時は開かれるスイッチである。
SW is a switch that is closed when the aperture is open and opened when the aperture blades are narrowed down even slightly.

34はパルス発生回路であり、発振器37の出力は分周
器36とノット回路43を介して分周器35に入力され
る。パルス発生回路34は電源信号Cによって作動し、
このような回路構成により互いに90°位相の異なるパ
ルス波を発生する。
34 is a pulse generation circuit, and the output of the oscillator 37 is inputted to the frequency divider 35 via the frequency divider 36 and the NOT circuit 43. The pulse generation circuit 34 is activated by the power signal C,
Such a circuit configuration generates pulse waves having phases different by 90° from each other.

38は電歪素子12a@12bを駆動するドライ/へ一
回路であり複数のトランジスタ・抵抗・ノット回路等に
よってプッシュプル回路を構成する。39はプッシュプ
ル回路を経て電歪素子12aに、40は12bに電圧を
印加するだめの電源S(直流)を開閉するスイッチング
トランジスタである。
Reference numeral 38 denotes a dry/total circuit for driving the electrostrictive element 12a@12b, and constitutes a push-pull circuit with a plurality of transistors, resistors, knot circuits, etc. 39 is a switching transistor that opens and closes a power source S (direct current) for applying voltage to the electrostrictive element 12a and 40 to apply voltage to the electrostrictive element 12b through a push-pull circuit.

その他ANDI・A N D、 2・AND3は夫々ア
ンド回路、ORはオア回路、EXORはエクスクルージ
プリイアオア回路で各々公知のものである。
In addition, ANDI.AND, 2.AND3 are respectively AND circuits, OR is an OR circuit, and EXOR is an exclusion-prior-or circuit, which are all well-known.

上記構成のカメラでの投影は、次ずシャ・ンタレリーズ
の第1段ストロークで電源が投入され測光およびパルス
発生回路等各回路が作動する。
For projection with the camera configured as described above, the power is turned on at the first stroke of the shutter release, and various circuits such as the photometry and pulse generation circuits are activated.

回路19に於て、被写体輝度と設定投影情報Tt値・S
v値に基づいて演算器23で絞り制御段数△Avが算出
され、そのΔAvは変換器24によってディジタル値に
変換される。
In the circuit 19, the subject brightness and set projection information Tt value/S
Based on the v value, the aperture control stage number ΔAv is calculated by the arithmetic unit 23, and the ΔAv is converted into a digital value by the converter 24.

回路30はレリーズ第1段の信号Cによりセット状態に
おかれ、Q2出力°“H”信号によりオア回路ORの出
力を°“H″にしトランジスタ40を閉状態にする。ま
た互2出力の゛L゛LoによってAND3は”L”信号
を出しI・ランジスタ39を開状態にする。従って電歪
素子12bには電圧が印加されるが電歪素子12aには
印加されない。
The circuit 30 is placed in the set state by the signal C of the first stage of release, and the output of the OR circuit OR is set to "H" by the Q2 output "H" signal, thereby closing the transistor 40. Furthermore, the AND3 outputs an "L" signal and opens the I transistor 39 due to the two outputs "L" and "Lo". Therefore, a voltage is applied to the electrostrictive element 12b, but not to the electrostrictive element 12a.

パルス発生回路34の信号Cによる作動により、分周器
36の出力パルスは電歪素子12bのプッシュプル回路
に入力するため、電歪素子12bは振動するが、電歪素
子12aは前記の如く電圧が印加されないため振動しな
い。従って振動リング10は定在波を生じるだけで振動
エネルギが貯えられる。
When the pulse generating circuit 34 is activated by the signal C, the output pulse of the frequency divider 36 is input to the push-pull circuit of the electrostrictive element 12b, so the electrostrictive element 12b vibrates, but the electrostrictive element 12a does not generate voltage as described above. It does not vibrate because no is applied. Therefore, the vibration ring 10 stores vibration energy only by generating standing waves.

レーリズの第2段ストローク動作によって発生する絞り
制御開始信号Aに基づき、回路30はリセット状態にお
かれQ2出力は°“Lo“信号に、Q2は°“H”信号
になり、また回路29はセット状態におかれQ+比出力
H”信号に、Ql比出力”L”信号になる。Ql比出力
リセット端子に与えられていたカウンタ32はリセット
解除され同時にQ+比出力よるパイブレーク回路31の
出力信号に基づき、プリセットデーター人力より変換器
24の前記のデジタル値をプリセットする。
Based on the diaphragm control start signal A generated by the second stroke operation of the Rayris, the circuit 30 is put into a reset state, the Q2 output becomes the ° "Lo" signal, Q2 becomes the ° "H" signal, and the circuit 29 becomes the ° "Lo" signal. In the set state, the Q+ ratio output becomes the H" signal and the Ql ratio output becomes the "L" signal. The counter 32 that was applied to the Ql ratio output reset terminal is released from reset, and at the same time the pie break circuit 31 outputs the Q+ ratio output. Based on the signal, the digital value of the converter 24 is preset using preset data manually.

オア回路EXORには分周器35から信号1が送られて
おり、そこにQ1出力が入力すると分周回路36に対し
て90°位相が進むパルスを出力する。また出力Q、が
AND2にも入力する為AND2の出力は”H”信号に
なりOR出力が”H”信号にな1lAND3に入力する
と共にトランジスタ40を閉状態に保つ。AND3の仕
入力もQ2出力が°“H”信号であるので、ANDの出
力は°H”となりトランジスタ39も閉状態になる。
Signal 1 is sent from the frequency divider 35 to the OR circuit EXOR, and when the Q1 output is input thereto, it outputs a pulse whose phase advances by 90 degrees to the frequency divider circuit 36. Since the output Q is also input to AND2, the output of AND2 becomes an "H" signal, and the OR output becomes an "H" signal, which is input to AND3 and keeps the transistor 40 closed. As for the input of AND3, since the Q2 output is a "H" signal, the output of AND3 becomes "H" and the transistor 39 is also closed.

従って電歪素子12a会12bに夫々900位相の異な
った駆動周波電圧が供給されそれぞれ振動することによ
って振動リング10に進行性振動波が生じ、これにより
回動リングJ3が回動駆動され、絞り羽根作動環5が羽
根絞り込み方向に回動して絞り羽根6を開放位置から絞
り込む。
Therefore, drive frequency voltages with 900 different phases are supplied to the electrostrictive elements 12a and 12b, and the vibrations generate progressive vibration waves in the vibration ring 10. This causes the rotation ring J3 to rotate, and the aperture blades The operating ring 5 rotates in the blade narrowing direction to narrow the aperture blades 6 from the open position.

この絞り羽根作動環5の回転によってスイッチSWは開
状態になり、ざらにくし歯スイッチ25aφ25bはオ
ン・オフを繰り返し、チャタリング吸収回路27を通じ
て絞り羽根作動環5の回転角に相応した数のパルスをカ
ウンタ32によりプリセットされた絞り制御段数まで順
次ダウンカウントを行う。カウンター32のカウントが
“′0″になるとキャリ出力°“H”信号が出されAN
D2の出力は“L”信号になりORに入力する。ORの
他端子の入力も L”信号となっているためORの出方
は ” L ”となり、AND 3の出力も L゛にな
る。
This rotation of the aperture blade operating ring 5 opens the switch SW, and the rough comb-tooth switch 25aφ25b repeats on and off, and sends a number of pulses corresponding to the rotation angle of the aperture blade operating ring 5 through the chattering absorption circuit 27. The counter 32 sequentially counts down to the preset number of aperture control stages. When the count of the counter 32 reaches "0", a carry output ° "H" signal is output and the AN
The output of D2 becomes an "L" signal and is input to the OR. Since the input to the other terminal of the OR is also an "L" signal, the output of the OR becomes "L", and the output of AND3 also becomes "L".

従ってトランジスタ39・4oが共に開状態になり電源
供給が止まる。
Therefore, both transistors 39 and 4o are opened, and power supply is stopped.

このため絞り羽根作動環5はその位置で止まり絞り羽根
6は最適絞り口径まて絞り込まれることになる。このと
きの絞り羽根6によって制iflされる絞り値は開放絞
り値Avoから絞り制御段数ΔAyだけ絞り込まれた絞
り値即ち Avo+ΔAv=Av となる。
Therefore, the aperture blade operating ring 5 stops at that position, and the aperture blade 6 is narrowed down to the optimum aperture diameter. The aperture value controlled by the aperture blades 6 at this time is an aperture value that is narrowed down by the number of aperture control steps ΔAy from the open aperture value Avo, that is, Avo+ΔAv=Av.

次いでシャッターの作動によりフィルム面への露光が終
了すると露光制御完了信号Bに訳、りて回路29はリセ
ントされQ1出力は“′L”信号になり、一方Q+出力
は”H”信号となってAND 1に入力する。またスイ
ッチSWが開状態であるのでAND 1出力はパH°“
信号になりORに入力する。
Next, when the exposure of the film surface is completed by the operation of the shutter, the exposure control completion signal B is generated, and the circuit 29 is reset and the Q1 output becomes the "'L" signal, while the Q+ output becomes the "H" signal. Enter AND1. Also, since the switch SW is open, the AND 1 output is
It becomes a signal and is input to OR.

従ってORの出力は°゛H”になりAND3に入力する
と共にトランジスタ40を閉じる。回路30の互、出力
はH”であるので前記ORの ”H”出力と共にAND
3の出力を°゛H″にし、トランジスタ39も閉じる。
Therefore, the output of the OR becomes ``H'', which is input to the AND3 and closes the transistor 40.Since both outputs of the circuit 30 are ``H'', the output is ANDed with the ``H'' output of the OR.
The output of the transistor 3 is set to ``H'', and the transistor 39 is also closed.

従って電歪素子12a・12b共に電源を供給する。回
路29のQ+比出力”L”のため分周器35の出力はE
XORで反転する為に分周器36のパルスに対して90
0位相の遅れた信号になり出力される。
Therefore, power is supplied to both the electrostrictive elements 12a and 12b. Since the Q+ ratio output of the circuit 29 is "L", the output of the frequency divider 35 is E.
90 for the pulse of frequency divider 36 to invert with XOR
A signal with a delayed 0 phase is output.

従って電歪素子12a・12bの振動による前記とは逆
方向の進行性振動波による回動リング10・絞り作動環
5の逆転によって絞りが再び開放される。開放位置まで
回転するとスイッチSWは閉じられANDIに”L”信
号が入力される。するとORの入力がすべて”L”信号
になるため出力が°L゛になりトランジスタ39−40
を開状態にし電歪素子12a・12bへの給電を断ち、
絞り羽根6は開放位jδで止まる。
Therefore, the diaphragm is opened again by the reversal of the rotary ring 10 and the diaphragm operating ring 5 due to the progressive vibration wave in the opposite direction to that described above caused by the vibration of the electrostrictive elements 12a and 12b. When rotated to the open position, the switch SW is closed and an "L" signal is input to ANDI. Then, all the inputs of the OR become "L" signals, so the output becomes °L, and the transistors 39-40
is opened to cut off the power supply to the electrostrictive elements 12a and 12b,
The aperture blades 6 stop at the open position jδ.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図は一部切
欠き正面図、第2図は第1図■−■線(こ沿う拡大断面
図、第3図は羽根ケース裏板及び振動吸収部材を除いた
状態の背面図、第4図t±移動原理模型図、第5図は振
動子と、電歪素子の配列と、定在波及び進行性振動波の
発生状態の相関図、第6図は制御回路の一例。 1は羽根ケース裏板、3は同表板、5は絞り羽根作動環
、6は絞り羽根、10は振動リング、12a・12bは
電歪素子、13は回動リング、16弾性小ローラ。 第5図 ZOO 第4図
The drawings show one embodiment of the present invention, in which Fig. 1 is a partially cutaway front view, Fig. 2 is an enlarged sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is a back plate of the blade case. and a back view with the vibration absorbing member removed, Figure 4 is a model diagram of the movement principle, Figure 5 is the correlation between the arrangement of the vibrator and electrostrictive element, and the generation state of standing waves and progressive vibration waves. Figure 6 shows an example of the control circuit. 1 is the back plate of the blade case, 3 is the front plate, 5 is the aperture blade operating ring, 6 is the aperture blade, 10 is the vibration ring, 12a and 12b are the electrostrictive elements, 13 is a rotating ring and 16 elastic small rollers. Fig. 5 ZOO Fig. 4

Claims (2)

【特許請求の範囲】[Claims] (1)絞り口径を形成する絞り羽根、 該絞り羽根を作動させる第1の可動部材、電歪素子によ
り振動する振動部材、 該振動部材に常時摩擦圧接させた第2の可動部材、 電歪素子に対する給電に基づき振動部材に生じる進行性
振動波により駆動される上記第2の可動部材の運動を増
速しで前記第1の可動部材伝達する増速機構、 とからなることを特徴とするカメラ等に於ける絞り装置
(1) Aperture blades that form an aperture diameter, a first movable member that operates the aperture blades, a vibrating member that vibrates by an electrostrictive element, a second movable member that is constantly friction-welded to the vibrating member, and an electrostrictive element. a speed increasing mechanism that increases the speed of the motion of the second movable member driven by progressive vibration waves generated in the vibrating member based on power supply to the first movable member, and transmits the motion to the first movable member. Squeezing device in etc.
(2)前記増速機構は第1及び第2の可動部材間に挾ま
せて、光軸を中心として配置された複数の弾性を有する
コロと、第2の可動部材に固定され、前記コロを回転可
能に支持する複数の軸とよりなる特許請求の範囲(1)
項に記載のカメラ等に於ける絞り装置。
(2) The speed increasing mechanism includes a plurality of elastic rollers placed between the first and second movable members and arranged around the optical axis, and is fixed to the second movable member, and the rollers are fixed to the second movable member. Claim (1) consisting of a plurality of rotatably supported shafts
A diaphragm device in the camera etc. described in 2.
JP58005593A 1983-01-17 1983-01-17 Diaphragm device in camera or the like Granted JPS59129841A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58005593A JPS59129841A (en) 1983-01-17 1983-01-17 Diaphragm device in camera or the like
US06/570,352 US4491401A (en) 1983-01-17 1984-01-13 Diaphragm device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58005593A JPS59129841A (en) 1983-01-17 1983-01-17 Diaphragm device in camera or the like

Publications (2)

Publication Number Publication Date
JPS59129841A true JPS59129841A (en) 1984-07-26
JPH0466007B2 JPH0466007B2 (en) 1992-10-21

Family

ID=11615527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58005593A Granted JPS59129841A (en) 1983-01-17 1983-01-17 Diaphragm device in camera or the like

Country Status (1)

Country Link
JP (1) JPS59129841A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029316A (en) * 2001-07-16 2003-01-29 Sony Corp Position controller and control method used for image pickup device
JP2003029315A (en) * 2001-07-16 2003-01-29 Sony Corp Controller and control method used for image pickup device
EP1560066A1 (en) * 2004-01-20 2005-08-03 Samsung Electronics Co., Ltd. Motor-driven diaphragm for a camera
JP2009031663A (en) * 2007-07-30 2009-02-12 Nidec Copal Corp Diaphragm apparatus for camera

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029316A (en) * 2001-07-16 2003-01-29 Sony Corp Position controller and control method used for image pickup device
JP2003029315A (en) * 2001-07-16 2003-01-29 Sony Corp Controller and control method used for image pickup device
EP1560066A1 (en) * 2004-01-20 2005-08-03 Samsung Electronics Co., Ltd. Motor-driven diaphragm for a camera
JP2009031663A (en) * 2007-07-30 2009-02-12 Nidec Copal Corp Diaphragm apparatus for camera

Also Published As

Publication number Publication date
JPH0466007B2 (en) 1992-10-21

Similar Documents

Publication Publication Date Title
US4491401A (en) Diaphragm device
US4513219A (en) Vibration wave motor
US4560263A (en) Drive system for a vibration wave motor for lens control
US4495432A (en) Piezoelectric vibration wave motor with sloped drive surface
US4793689A (en) Lens barrel with vibration wave motor
JPH0518082B2 (en)
JPH041598B2 (en)
JPS59129841A (en) Diaphragm device in camera or the like
JPH0472470B2 (en)
JPH0514510B2 (en)
JPH0474952B2 (en)
JPS59129840A (en) Diaphragm device in camera or the like
US5467158A (en) Film winding/rewinding mechanism of camera
JPH0748087B2 (en) Lens barrel using vibration motor
JPS59106886A (en) Drive system for vibration wave motor
JPS59111117A (en) Oscillatory wave motor driving type lens barrel
JPH0410607B2 (en)
JPS63108223A (en) Number of revolution detection mechanism for surface wave motor
JPH04163413A (en) Rotating cylinder driving device of photographing lens barrel
JPS60252312A (en) Lens driving device
JP2006047835A (en) Electret shutter and imaging module
JPH0943476A (en) Lens driving mechanism for lens interchangeable camera
JP2910198B2 (en) Camera shutter mechanism
JPH1098889A (en) Ultrasonic motor device
JPH112752A (en) Vibration actuator driving device and lens barrel