JPS59129803A - Metal coated optical fiber - Google Patents

Metal coated optical fiber

Info

Publication number
JPS59129803A
JPS59129803A JP58006011A JP601183A JPS59129803A JP S59129803 A JPS59129803 A JP S59129803A JP 58006011 A JP58006011 A JP 58006011A JP 601183 A JP601183 A JP 601183A JP S59129803 A JPS59129803 A JP S59129803A
Authority
JP
Japan
Prior art keywords
optical fiber
metal
alloy
coated
coated optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58006011A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Ryozo Yamauchi
良三 山内
Koichi Inada
稲田 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58006011A priority Critical patent/JPS59129803A/en
Publication of JPS59129803A publication Critical patent/JPS59129803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate coating by a dipping method and to improve corrosion resistance by using a specified alloy for coating the outer circumference of a bare optical fiber. CONSTITUTION:An alloy consisting >=70at% Au or Pt and an element of group IIIB, IVb, or Vb of the periodic table is used for coating the outer circumference of a bare optical fiber. Its alloy compsn. is selected from combinations of Au and Al, Au and In, Au and Si, Au and Ge, Au and Sb, Pt and Sb, Pt and Si, etc. Since these alloys can be easily applied to the fiber by the dipping method even at low temps., thermal shock given to the fiber is reduced and does not damage it. The alloy is not corroded under corrosive environmental conditions, and therefore it can enhance reliability.

Description

【発明の詳細な説明】 この発明は、光ファイバ裸線の外周面に合金の複機を施
し六金属被覆光ファイバに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber coated with a hexagonal metal by applying an alloy complex to the outer peripheral surface of a bare optical fiber.

光ファイバは広帯域、低損失、高容量などの特長を有し
ておシ、その用途が拡大されつつある。
Optical fibers have features such as broadband, low loss, and high capacity, and their uses are being expanded.

ところで光ファイバは、その製造に際して、光ファイバ
裸線の表面に微細傷を生じると著しく強度の低下を来す
ため細心の注意が払われている。しかし、光フアイバ裸
線表面に微視的な表面欠陥力玉生じることは防げない。
By the way, when manufacturing optical fibers, great care is taken because minute scratches on the surface of the bare optical fibers will significantly reduce the strength. However, the formation of microscopic surface defects on the surface of the bare optical fiber cannot be prevented.

このため微小な表面欠陥が空気中の水分などと反応、・
して大きくならないように光ファイバ裸線の表面を被覆
保護する必要がある。通常はこの目的のためにシリコー
ンゴムなどが被覆されているが、さらに耐浸性、長期信
頼性が要求される場合には、金属あるいはセラミックス
(Si3N4など)の密封性の被覆が行なわれている。
As a result, minute surface defects react with moisture in the air,
It is necessary to protect the surface of the bare optical fiber by coating it to prevent it from becoming larger. Usually, it is coated with silicone rubber or the like for this purpose, but if further water resistance and long-term reliability are required, a hermetic coating of metal or ceramics (such as Si3N4) is used.

光ファイバ裸線に金属を被覆する方法としては化学蒸着
法(C,V、D、)、物理蒸着法(P、V、D、) 、
スパンタ法、ディップ法などが行なわれている。中でも
ディップ法は2〜30μmの厚い被覆を筒速で連続して
行うことができ、かつ簡便であるため工業的に適した金
属被覆の方法とされている。
Methods for coating bare optical fibers with metal include chemical vapor deposition (C, V, D,), physical vapor deposition (P, V, D,),
Spunter method, dip method, etc. are used. Among them, the dipping method is considered to be an industrially suitable method for metal coating because it can form a thick coating of 2 to 30 μm continuously at a cylinder speed and is simple.

しかL/、ディップ法は溶融した金属の中に光ファイバ
裸線を通すことによって光ファイバ裸線の外周に金属被
覆を行うものなので、被覆される金属の融点は光ファイ
バ裸線の耐えられる温度以下で々ければならない。5i
n2を主成分とする光ファイバ裸線の場合、SiO2の
融点は約/700℃、歪点は約/100℃でアシ、これ
に安全性を考慮すると、光ファイバ裸線に被覆する金属
の融点は200℃以下であることが望ましい。このため
ディップ法によって被覆することのできる金属は、Zn
、InXPb、Sn、Atやこれらの合金等に限られて
いる。ところが、これらはいずれも耐食性が劣っている
から、ディップ法によって製造した従来の金属被覆光フ
ァイバは金属被覆自体の腐食に不安を残していた。
However, since the dipping method coats the outer periphery of the bare optical fiber with metal by passing the bare optical fiber through molten metal, the melting point of the coated metal is the temperature that the bare optical fiber can withstand. Must be less than or equal to. 5i
In the case of bare optical fiber whose main component is SiO2, the melting point of SiO2 is approximately /700°C and the strain point is approximately /100°C. Considering safety, the melting point of the metal coating the bare optical fiber is It is desirable that the temperature is 200°C or less. Therefore, the metal that can be coated by the dip method is Zn.
, InXPb, Sn, At, and alloys thereof. However, since all of these have poor corrosion resistance, conventional metal-coated optical fibers manufactured by the dip method have concerns about corrosion of the metal coating itself.

この発明は、上記事情に鑑みてなされたもので、耐食性
に優れ、ディップ法によって容易に形成することのでき
る金属被覆層が光フアイバ裸線表面に施された金属被覆
光ファイバを提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and aims to provide a metal-coated optical fiber in which a metal coating layer, which has excellent corrosion resistance and can be easily formed by a dipping method, is applied to the surface of a bare optical fiber. This is the purpose.

以下、図面を参照して、この発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第7図は、この発明の金属被覆光ファイバの一例を示す
もので、図中符号1は金属被粉光ファイバである。この
金属被核光ファイバ1は、5i02を主体とする光ファ
イバ裸線2の外周面に金属被覆層3が形成されたもので
ある。この金属被覆層3は、70at%以上のAu又は
ptと、30atチ以下の周期表で1llb族、vb族
、vb族に分類される元素との合金からなるものである
FIG. 7 shows an example of a metal-coated optical fiber of the present invention, and reference numeral 1 in the figure indicates a metal-coated optical fiber. This metal-coated optical fiber 1 has a metal coating layer 3 formed on the outer peripheral surface of a bare optical fiber 2 mainly made of 5i02. This metal coating layer 3 is made of an alloy of 70 at % or more of Au or PT and elements classified into the 1llb group, the Vb group, and the Vb group in the periodic table of 30 at % or less.

Auは、酸化に対して最も安全な金属で、突気、水とは
高温においても反応せず、酸に対しても安定で王水、セ
レン酸等の特殊な酸以外には溶けることはない。また、
PtもAuと同様に安定で酸素とは直接化合せず、王水
でどの特殊な酸以外には溶けない。ところが、このよう
に化学的に安定な物質は融点が高い場合が多く、Au1
Ptの場合もその融点はAu(1063℃)、Pt(/
767℃)と高温であシ、このためAuやptをディッ
プ法によって光ファイバ裸線2に被覆することはできな
い。しかし一般に物質に不純物を加えるとその融点が下
ることが知られてお’) 、A u %ptに関しても
他の元素を混入し合金とすればその融点が低下すること
が確、認されている。中でもAu又はptと、llb族
、vb族、vb族の元素との合金は、ilb族、vb族
、vb族の元素の含有量が少ない範囲で融点の低下が顕
著なので、Au又はptにこれらの元素を加えた合金は
、ディップ法によって被覆する金属として好ましいもの
となる。特にA u −A Z XA u −I n 
1A u −S i NAu−Ge、Au−8n、Au
−8b、Pt−8bおよびPt−8tの組合せによるも
のは、第7図(a)〜(h)に示すように、Au又はp
tの含有量が多い範囲で極小共融点を有し、かつ耐食性
も良好なので、この発明の金属被覆層3に好適な合金で
ある。また、この発明の金属被覆光ファイバ1を製造す
る際、金属被覆層3は非常圧薄い膜なので、光ファイバ
裸線2に被覆された合金はすみやかに冷却され、金属被
覆層30組識はきわめて微細な構造となる。したがって
合金中のAu又はptの含有量が7t7at%以上であ
れば、Au−?Ptの化学的な安定性から得られる耐食
性を大きく損うことがなく耐食性に優れた金属被覆層3
となる。
Au is the safest metal against oxidation, does not react with air or water even at high temperatures, is stable against acids, and will only dissolve in special acids such as aqua regia and selenic acid. . Also,
Like Au, Pt is stable, does not combine directly with oxygen, and is only soluble in aqua regia, which is a special acid. However, such chemically stable substances often have high melting points, and Au1
In the case of Pt, its melting point is Au (1063℃), Pt (/
767° C.), and therefore it is impossible to coat the bare optical fiber 2 with Au or PT by the dip method. However, it is generally known that adding impurities to a substance lowers its melting point, and it has been confirmed that the melting point of A u %pt also decreases when other elements are mixed in to form an alloy. . Among these, alloys of Au or PT with elements of the ILB group, VB group, and VB group have a remarkable decrease in melting point in a range where the content of ILB group, VB group, and VB group elements is small. An alloy to which the above elements are added is preferable as a metal to be coated by the dip method. Especially A u -A Z XA u -I n
1A u -S i NAu-Ge, Au-8n, Au
-8b, Pt-8b and Pt-8t, as shown in Figures 7(a) to (h),
This alloy is suitable for the metal coating layer 3 of the present invention because it has a minimal eutectic point in a range where the t content is high and also has good corrosion resistance. Further, when manufacturing the metal coated optical fiber 1 of the present invention, since the metal coat layer 3 is a very thin film, the alloy coated on the bare optical fiber 2 is quickly cooled, and the structure of the metal coat layer 30 is extremely small. It becomes a fine structure. Therefore, if the content of Au or pt in the alloy is 7t7at% or more, Au-? Metal coating layer 3 with excellent corrosion resistance without significantly impairing the corrosion resistance obtained from the chemical stability of Pt
becomes.

なお、第2図に示した状態図からもわかるように、Au
又はptと他の元素との比を変えれば、それに従って合
金が溶融する温度は変化する。この性質を利用すれば、
Au又はptと他の元素<ht、In、s tなど)と
の比を変えることによって金属被覆層3の耐熱性を、共
融点と純物質の融点との間で自由に選択することが可能
である。
Furthermore, as can be seen from the phase diagram shown in Fig. 2, Au
Alternatively, if the ratio of pt to other elements is changed, the temperature at which the alloy melts changes accordingly. By using this property,
By changing the ratio of Au or pt to other elements <ht, In, st, etc.), the heat resistance of the metal coating layer 3 can be freely selected between the eutectic point and the melting point of the pure substance. It is.

例えば、第2図(a)に示したAu−At0状能図によ
れば合金中のAuの含有量の比率を100&tチから7
♂at%まで順次変化させると、それに従ってAu−A
A合金の融点は7063℃から12!′Cまで液相線に
沿って変化する。ただし、光ファイバ裸線の耐熱性を考
慮すれば、合金の融点は♂θO℃以下であることが望ま
しい。
For example, according to the Au-At0 state diagram shown in Figure 2(a), the ratio of the Au content in the alloy is from 100 &t
When sequentially changing up to ♂at%, Au-A
The melting point of Alloy A is 12 from 7063℃! 'C along the liquidus line. However, in consideration of the heat resistance of the bare optical fiber, it is desirable that the melting point of the alloy is ♂θO°C or lower.

第3図は、この金属被覆光ファイバ1を製造するのに用
いられる装置の要部を示すものである。
FIG. 3 shows the main parts of the apparatus used to manufacture this metal-coated optical fiber 1.

70at%以上のAu又はptとJOat%以下のll
b族、vb族、vb族の元素からなる合金はディップ装
置4の溶解炉5に投入され高温で溶融される。溶融され
た合金は、溶解炉5に連設された保持炉6に流入し、こ
こで温度を調整されさらに細い導管7を通ってディップ
部8に流れ込む。
Au or pt of 70at% or more and ll of JOat% or less
An alloy consisting of elements of group B, group VB, and group VB is charged into a melting furnace 5 of a dip device 4 and melted at a high temperature. The molten alloy flows into a holding furnace 6 connected to the melting furnace 5, where its temperature is regulated, and further flows into a dip section 8 through a narrow conduit 7.

これらの内部は還元性又は中性の雰囲気に保たれている
。ディップ部8は耐熱性材料(金属、酸化物、ホウ化物
、炭化物、窒化物、石英ガラス、カーボン、アルミナ、
白金など)からなるものであシ、その上部と下部に各々
所定の大きさの孔9゜10が設けられている。5iOz
からなる光フアイバ母材11から紡糸された光ファイバ
裸線2は、ディップ部8の上部の孔9から導入され、下
部の孔10から引き出されることによって、ディップ部
8に蓄えられた溶融合金が被覆され、金属被覆層3が形
成された金属被覆光ファイバ1となる。
The interior of these is maintained in a reducing or neutral atmosphere. The dip part 8 is made of heat-resistant materials (metals, oxides, borides, carbides, nitrides, quartz glass, carbon, alumina,
It is made of metal (such as platinum) and has holes 9° and 10 of a predetermined size in its upper and lower parts, respectively. 5iOz
The bare optical fiber 2 spun from the optical fiber base material 11 made of The metal coated optical fiber 1 is coated with the metal coat layer 3 formed thereon.

以下、実施例を示し、この発明を具体的に説明する。EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例 1〕 石英系材料よシなシ、コアにGeがドープされた屈折率
差/%の光フアイバ母材11を、2200℃に加熱しな
がら紡糸し、外径7.23μmの光ファイバ裸a2とし
た。この光ファイバ裸a2をディプ装置4のディップ部
8に導入しAu94を卑l514wt%の組成の合金を
2θμmの厚さで被覆した。ディンプ装置4のディップ
部8の上部の孔9の径はl簡、下部の孔10の径は0j
tranで、ディップ部8を通過する光ファイバ裸線2
の速厩は毎分30mでおった。また、デインプ装置4の
各部の温度は、溶解炉5をノ000℃、保持炉6を39
0℃、ディップ部8を3i0℃に保持し、ディップ部4
に蓄えられた溶融合金の深さは/rran強に保った。
[Example 1] An optical fiber base material 11 made of a quartz-based material and having a core doped with Ge and having a refractive index difference/% is spun while being heated to 2200°C to form an optical fiber with an outer diameter of 7.23 μm. It was made into a bare A2. This bare optical fiber a2 was introduced into the dip part 8 of the dipping device 4, and coated with an alloy of Au94 having a composition of 514 wt% base l to a thickness of 2θ μm. The diameter of the hole 9 at the top of the dip part 8 of the dipping device 4 is 1, and the diameter of the hole 10 at the bottom is 0j.
Bare optical fiber 2 passing through dip section 8 in tran
The speed of the train was 30 meters per minute. Further, the temperature of each part of the deimping device 4 is as follows: the melting furnace 5 is set at 000°C, and the holding furnace 6 is set at 39°C.
0°C, dip part 8 is maintained at 3i0°C, dip part 4 is
The depth of the molten alloy stored in was kept at just over /rran.

以上の操作によって作られたAu−8i金属被覆光フア
イバ1の伝送損失は、シリコーンゴムを被覆された光フ
ァイバの伝送損失が、波長aysμmの光の場合ユjd
B/bでおるのに対して二♂dB/−であった。
The transmission loss of the Au-8i metal-coated optical fiber 1 made by the above operations is as follows: when the transmission loss of the silicone rubber-coated optical fiber is for light with a wavelength of ays μm,
It was 2♂dB/- compared to B/b.

とのAu−8t金属被覆光フアイバIの耐食性が向上し
たことを確認するために外径/2jμmの光ファイバ裸
線にシリコーンゴムを厚さ4i20μmに、ナイロンを
厚さ200μmに順次被覆した有機フート光ファイバと
外径7.2〕μmの光ファイバ裸線に厚さコθμmのS
nからなる金属被覆を施したSn金属被覆光ファイバを
比較対象として、次の(1)〜(3)の条件に置いた後
で引張強度を調べた。
In order to confirm that the corrosion resistance of the Au-8t metal-coated optical fiber I was improved, an organic foot was prepared in which a bare optical fiber with an outer diameter of 2Jμm was sequentially coated with silicone rubber to a thickness of 4×20μm and nylon to a thickness of 200μm. An optical fiber with a thickness of θμm is attached to a bare optical fiber with an outer diameter of 7.2μm.
Sn metal-coated optical fibers coated with a metal consisting of n were subjected to the following conditions (1) to (3) for comparison, and then their tensile strength was examined.

(11μθ℃の蒸留水中に、20時間 (2)  グO℃の水道水中に、2(17時間(3) 
 グO℃の水道水中に3θ日間上記(1)伐)(3)の
条件に置かれた光ファイバは各々70本作成し、引張強
度試験は引張速度JOrtm/分沸点距離3θOrrr
mで行なった。
(20 hours (2) in distilled water at 11 μθ℃) 2 (17 hours (3) in tap water at 0℃)
Seventy optical fibers were each placed in tap water at a temperature of
I did it with m.

その結果を下表に示す。The results are shown in the table below.

(単位;kg/本) Sn金属被覆光ファイバをμO℃水道水に30日間浸漬
した、(3)の条件のものを観察したところ、Sn金属
被覆層に腐食が認められた。Au−5i金属被覆光フア
イバlの場合、Au−8iの金属被覆層3に腐食は認め
られず、上表に示したように顕著な引張強度の低下もな
かった。
(Unit: kg/piece) When the Sn metal-coated optical fiber was immersed in μO°C tap water for 30 days under the condition (3), corrosion was observed in the Sn metal coating layer. In the case of the Au-5i metal coated optical fiber 1, no corrosion was observed in the Au-8i metal coat layer 3, and as shown in the table above, there was no significant decrease in tensile strength.

また、このAu−8i金属被覆光フアイバ1とSn金属
被覆光ファイバをjNの希塩酸、3Nの希硫酸、3Nの
希硝酸に浸漬したところSn金属被覆層3は4t♂時間
経過後でも顕著な変化は見られなかった。
Furthermore, when the Au-8i metal-coated optical fiber 1 and the Sn metal-coated optical fiber were immersed in JN dilute hydrochloric acid, 3N dilute sulfuric acid, and 3N dilute nitric acid, the Sn metal coating layer 3 showed a remarkable change even after 4t♂ hours had passed. was not seen.

〔実施例 2〕 実施例1と同様の装置を用いて、外径/j01Enの光
ファイバ裸線にAuり7 wt %、S i 3 wt
%部の温度は溶解炉2をノ100℃、保持炉3をrao
℃、ディップ部4を♂θo℃とした。また光ファイバ裸
線2がデインプ部4を通過した速度は毎分26mであっ
た。
[Example 2] Using the same apparatus as in Example 1, a bare optical fiber with an outer diameter of /j01En was coated with Au at 7 wt% and Si at 3 wt%.
The temperature of the melting furnace 2 is 100℃, and the temperature of the holding furnace 3 is rao.
℃, and the dip part 4 was set to ♂θo℃. Further, the speed at which the bare optical fiber 2 passed through the dimpled portion 4 was 26 m/min.

以上の操作によって作成されたAu−8t金属被覆光フ
アイバを、実施例1に示した(11(2)(3)の環境
条件下に置いた後、実施例1と同様の引張試験を行なっ
た。その結果、弘θ℃の水道水に30日間浸漬した(3
)の条件のものでも、実施例1の結果と同じく顕著な強
度の低下は見られなかった。
The Au-8t metal-coated optical fiber prepared by the above procedure was placed under the environmental conditions (11 (2) and (3)) shown in Example 1, and then subjected to the same tensile test as in Example 1. As a result, the samples were immersed in tap water at Hiro θ℃ for 30 days (3
), no significant decrease in strength was observed as in the results of Example 1.

また、とのAu−8t金属被覆光フアイバ1の引張強度
を温度を変えて測定したところ、3!θ℃まで変化は見
られなかった。なお、この!;′7wtチのAuとJw
tチのSiよシなる金属被覆層3が溶解した温度は7り
0℃であった。
Furthermore, when the tensile strength of the Au-8t metal coated optical fiber 1 was measured at different temperatures, it was 3! No change was observed up to θ°C. Furthermore, this! ;'7wt Chi's Au and Jw
The temperature at which the metal coating layer 3 made of Si was melted was 70°C.

以上説明したように、この発明の金属被覆光ファイバは
、光ファイバ裸線の外周面に、70at%以上のAU又
はptとmb族、■b族、vb族の元素とからなる合金
を被覆したものなので、金属被覆層の耐食性が優れてお
シ、腐食性の環境下でも、金属被覆層が腐食されて光フ
ァイバ裸線の保護に支障を来すことはなく長期信頼性の
優れた光ファイバとなる。また、この発明の金属被覆光
ファイバの金属被覆層をディンプ法によって形成する場
合、低温で形成することができるから、光ファイバ裸線
に与える熱的ショックが小なくて済み、光ファイバ裸線
を傷めることがない。さらに、合金中のmb族、■b族
、・vb族の元素の含有量を変えることによって、合金
の融点を変えることができるから、金属被覆光ファイバ
の金属被覆層に所望の耐熱性を付与することができる。
As explained above, in the metal-coated optical fiber of the present invention, the outer peripheral surface of the bare optical fiber is coated with an alloy consisting of 70 at% or more of AU or PT and elements of the MB group, the ■B group, and the VB group. The metal coating layer has excellent corrosion resistance, and even in corrosive environments, the metal coating layer will not corrode and affect the protection of the bare optical fiber, making it an optical fiber with excellent long-term reliability. becomes. Furthermore, when the metal coating layer of the metal coated optical fiber of the present invention is formed by the dipping method, it can be formed at a low temperature, so there is less thermal shock given to the bare optical fiber. It won't hurt. Furthermore, by changing the content of elements of the mb group, the b group, and the vb group in the alloy, the melting point of the alloy can be changed, so the desired heat resistance can be imparted to the metal coating layer of the metal coated optical fiber. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は金属被覆光ファイバの断面図、第2図(a)〜
01)は金属被覆層を形成する一部の合金の状態図で(
a)はA11−At、(b)はAu−In、(c)はA
u−8i、(d)はAu−Qe、(e)ijA u −
S n、 (f)はAu−8b、(g)HPt−8b、
(h)UPt−8i。 第3図は金属被覆光ファイバの金属被覆層を形成するデ
ィップ装置の説明図である。 1・・・・・・金属被覆光ファイバ 2・・・・・・光ファイバ裸線 3・・・・・・金属被覆層 第1図 ! 第3図 ++ 一252図    ・・% AU                a−%    
          InW+%
Figure 7 is a cross-sectional view of a metal coated optical fiber, Figures 2(a) -
01) is a phase diagram of some alloys that form metal coating layers (
a) is A11-At, (b) is Au-In, (c) is A
u-8i, (d) is Au-Qe, (e) ijA u −
S n, (f) is Au-8b, (g) HPt-8b,
(h) UPt-8i. FIG. 3 is an explanatory diagram of a dipping device for forming a metal coating layer of a metal coated optical fiber. 1... Metal coated optical fiber 2... Bare optical fiber 3... Metal coated layer Figure 1! Figure 3 ++ - Figure 252...% AU a-%
InW+%

Claims (1)

【特許請求の範囲】 l 光フアイバ裸線外周面に金属被覆が施された金属被
覆光ファイバにおいて、被覆される金属を、70at%
以上の金(Au)又は白金(Pt)と周期表のmb族、
■b族、vb族の元素との合金としたことを特徴とする
金属被覆光ファイバ。 二 合金の成分の組合せが、AuとAl、AuとIn。 AuとSi、AuとQe、Auと5n1Auと3b。 ptとsbおよびptとSiからなる群の中から選ばれ
るものである特許請求の範囲第7項記載の金属被覆光フ
ァイバ。
[Claims] l In a metal-coated optical fiber in which a metal coating is applied to the outer peripheral surface of a bare optical fiber, the coated metal is 70 at%.
The above gold (Au) or platinum (Pt) and the mb group of the periodic table,
(2) A metal-coated optical fiber characterized by being alloyed with elements of the B group and VB group. 2. The combination of alloy components is Au and Al, Au and In. Au and Si, Au and Qe, Au and 5n1Au and 3b. 8. The metal-coated optical fiber according to claim 7, wherein the metal-coated optical fiber is selected from the group consisting of pt and sb and pt and Si.
JP58006011A 1983-01-18 1983-01-18 Metal coated optical fiber Pending JPS59129803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58006011A JPS59129803A (en) 1983-01-18 1983-01-18 Metal coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58006011A JPS59129803A (en) 1983-01-18 1983-01-18 Metal coated optical fiber

Publications (1)

Publication Number Publication Date
JPS59129803A true JPS59129803A (en) 1984-07-26

Family

ID=11626770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006011A Pending JPS59129803A (en) 1983-01-18 1983-01-18 Metal coated optical fiber

Country Status (1)

Country Link
JP (1) JPS59129803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140935U (en) * 1990-05-14 1990-11-26
JP2016500834A (en) * 2012-09-27 2016-01-14 ダウ グローバル テクノロジーズ エルエルシー Metallized optical fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474446A (en) * 1977-11-25 1979-06-14 Sumitomo Electric Ind Ltd Production of optical transmission fiber
JPS55124104A (en) * 1979-03-16 1980-09-25 Furukawa Electric Co Ltd:The Optical transmission body for infrared transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474446A (en) * 1977-11-25 1979-06-14 Sumitomo Electric Ind Ltd Production of optical transmission fiber
JPS55124104A (en) * 1979-03-16 1980-09-25 Furukawa Electric Co Ltd:The Optical transmission body for infrared transmission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140935U (en) * 1990-05-14 1990-11-26
JPH0449154Y2 (en) * 1990-05-14 1992-11-19
JP2016500834A (en) * 2012-09-27 2016-01-14 ダウ グローバル テクノロジーズ エルエルシー Metallized optical fiber
US10475555B2 (en) 2012-09-27 2019-11-12 Dow Global Technologies Llc Metallized optical fiber

Similar Documents

Publication Publication Date Title
Anderegg Strength of glass fires
TWI461492B (en) Firmly adhering silicon nitride-containing release layer
US4053011A (en) Process for reinforcing aluminum alloy
CN102589286A (en) Crucible for melting silicon and release agent used to the same
EP0063580B1 (en) Metallic clad capillary tubing
US9533915B2 (en) Method and apparatus for processing optical fiber under microgravity conditions
JPS603025B2 (en) Manufacturing method of glass fiber for infrared transmission
JPS59129803A (en) Metal coated optical fiber
WO1998030509A1 (en) Artificial mineral wool composition
KR20020014693A (en) Process for producing a coating on a refractory structural member
JP4646395B2 (en) Metal material for glass melting treatment and method for producing the same
US5953478A (en) Metal-coated IR-transmitting chalcogenide glass fibers
JPS6134132A (en) Production of composite material
JPS61136941A (en) Manufacture of metal-coated optical fiber
KR20190122672A (en) Alloy for Fiber-Forming Plates
El-Dahshan et al. The oxidation and hot corrosion behavior of tungsten-fiber reinforced composites
JPS62258704A (en) Separating membrane for fluid
JPS63206441A (en) Wear-resistant cu alloy combining high strength with high toughness
US5162271A (en) Method of forming a ductile fiber coating for toughening non-oxide ceramic matrix composites
Chen et al. Research on high-temperature wettability between SiO2Al2O3CaOMgO glass melt droplets and platinumrhodium alloy
US4293335A (en) Roll for manufacturing float glass
IT8224463A1 (en) High temperature corrosion and wear resistant alloy
JPS602641A (en) Amorphous nickel alloy having high resistance to pitting corrosion, crevice corrosion and general corrosion
JPS62212228A (en) Platinum container for high temperature
JPH08260077A (en) Electric resistance alloy having high resistance temperature, coefficient, its production and sensor device