JPS59129794A - Production of zn-fe alloy electroplated steel sheet - Google Patents

Production of zn-fe alloy electroplated steel sheet

Info

Publication number
JPS59129794A
JPS59129794A JP369683A JP369683A JPS59129794A JP S59129794 A JPS59129794 A JP S59129794A JP 369683 A JP369683 A JP 369683A JP 369683 A JP369683 A JP 369683A JP S59129794 A JPS59129794 A JP S59129794A
Authority
JP
Japan
Prior art keywords
plating
layer
alloy
film
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP369683A
Other languages
Japanese (ja)
Inventor
Nobukazu Suzuki
鈴木 信和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP369683A priority Critical patent/JPS59129794A/en
Publication of JPS59129794A publication Critical patent/JPS59129794A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the burning by acid on the non-plating surface of a steel strip and to improve chemical convertibility in the stage of subjecting one surface of the steel strip to plating by electroplating a Zn-Fe alloy on the inlet side of a plating line on the other surface then passing the steel strip in a non-conducting state through the plating soln. CONSTITUTION:A Zn-Fe alloy is electroplated on the other surface of a steel strip as well on the inlet side of a plating line to form a protective film in the stage of subjecting one surface of the steel strip to the intended Zn-Fe alloy electroplating. When the other surface of the steel strip is thereafter passed through the plating state in a non-conducting state, the Zn-component in the above-described protective film is preferentially dissolved and the protective film is enriched with Fe. If the time when the strip passes in the plating soln. in the non-conducting state is suitably selected, the Fe-component in the protective film is made adequate on the outlet side of the plating line. The burning by acid on the other side, that is, non-plating surface is thus prevented and chemical convertibility is improved. More particularly, the steel sheet which is plated on both sides in multiple layers at different thickness and have the corrosion preventive layer and the layer improved in the adhesion of the paint coated film is obtd.

Description

【発明の詳細な説明】 本発明は、Zn−Fe合金メッキ鋼板の製造方法に関し
、特に、防食層および塗膜密着性向上層として多層のZ
n−Fe合金電気メツキ層を有する差厚多層両面電気メ
ツキ鋼板に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a Zn-Fe alloy plated steel sheet, and in particular, a method for producing a Zn-Fe alloy plated steel sheet, in particular, a method for manufacturing a Zn-Fe alloy plated steel sheet, and in particular, a method for manufacturing a Zn-Fe alloy plated steel sheet.
The present invention relates to a differential thickness multilayer double-sided electroplated steel sheet having an n-Fe alloy electroplated layer.

従来ヨリ、Znメッキ鋼材は、Znの持つ優れた防食機
能のために自動車、家電製品、建材等に広く使用されて
きたが、Znメッキ表面は一般に塗装面子食性が悪く、
塗膜の防食機能を十分に第1」用できない問題がある。
Conventionally, Zn-plated steel materials have been widely used in automobiles, home appliances, building materials, etc. due to the excellent anti-corrosion function of Zn, but Zn-plated surfaces generally have poor corrosion resistance on painted surfaces,
There is a problem in that the anti-corrosion function of the coating film cannot be fully utilized.

特に、最近自動車用途を中IBに1ノン酸亜鉛−鉄系化
成処理が普及してきた力玉、この処理は亜鉛表面に対し
ては効果75よなく、塗装を含めた総合的な防食性にお
いてznメッキ剣同材はl・ずしも好ましいものではな
くなってきた。
In particular, recently, a zinc-iron acid chemical conversion treatment has become popular for medium IB automotive applications. Plated swords made of the same material are no longer desirable.

ところが、Zn系メッキ鋼材のうち合金イし亜鉛メッキ
鋼材は例外的に良好な塗装耐食性を有してお9、最近で
は電気Znメッキまたは溶融Znメッキを施した鋼材を
熱処理して得られるZn−Fe系・合金メッキが普及す
るようになった。このZ n −F e系合金メッキは
、前述の如<Znメッキを熱処理して得るほか、特開昭
56−142885号公報、同56−133488号公
報、同57’−51283号公報に開示されているよう
に電気メッキによっても得ることができる。
However, among Zn-based plated steel materials, alloy galvanized steel materials have exceptionally good paint corrosion resistance9, and recently Zn-based zinc-plated steel materials, which are obtained by heat-treating steel materials subjected to electrolytic Zn plating or hot-dip Zn plating, have been developed. Fe-based/alloy plating has become popular. This Zn-Fe alloy plating can be obtained by heat treating Zn plating as described above, as well as by methods disclosed in JP-A-56-142885, JP-A-56-133488, and JP-A-57'-51283. It can also be obtained by electroplating.

Zn−Fe系合金メッキを電気メッキによって得る場合
、一般にメッキ浴としては、低pH(pH= 1〜3)
の硫酸浴が用いられる。このようなメッキ浴中で片面電
気メッキを行なうと、非メッキ面は浴中に存在する遊離
H2S 04、及びFe3+イオンにより鋼板表面が溶
解し、表面が黒色化したり、場合によってはピノティン
グが生じる現象(以下、酸やけと称する)が生じる。こ
のような酸やけが生じると、外観を著しく損ない商品価
値が低下すると同時に、化成処理性も著しく劣化するこ
とになる。
When obtaining Zn-Fe alloy plating by electroplating, the plating bath generally has a low pH (pH = 1 to 3).
A sulfuric acid bath is used. When single-sided electroplating is performed in such a plating bath, the surface of the steel plate on the non-plated side will be dissolved by the free H2S04 and Fe3+ ions present in the bath, resulting in blackening of the surface and, in some cases, pinoting. A phenomenon (hereinafter referred to as acid burn) occurs. When such acid burn occurs, the appearance is significantly impaired and the commercial value is reduced, and at the same time, the chemical conversion treatment properties are also significantly deteriorated.

このため、Zn−Fe系合金メッキにおける片面電気メ
ッキの対策が望まれていた。そこで、本発明者らは、酸
やけを生じた非メッキ面をH2SO4電解  ゛によっ
て変色表面を除去することや、ナイロンブラシ等により
研削することを検討した。
For this reason, a countermeasure for single-sided electroplating in Zn-Fe alloy plating has been desired. Therefore, the inventors of the present invention have considered removing the discolored surface of the non-plated surface with acid burns using H2SO4 electrolysis or grinding it with a nylon brush or the like.

その結果、外観的には変色した表面を回復することは可
能であったが、リン酸亜鉛処理等の化成処理性は回復で
きないことを確認した。本発明者らは、さらに進んで、
酸やけの外観を防止するとともに化成処理性にも優れた
非メッキ面を形成することができるZn−Fe系合金電
気メツキ方法について研究したところ、銅帯のメッキに
際し非メッキ面にも保護メッキを施すとともに、非メツ
キ面側のメッキ皮膜の最終組成をFe IJソチとする
ことにより、メッキ時における非メツキ面側の酸やけを
防止しかつ化成処理性を向上させることができることを
知見し、本発明を成すに到った。
As a result, although it was possible to restore the discolored surface in terms of appearance, it was confirmed that chemical conversion treatments such as zinc phosphate treatment could not be restored. The inventors go further,
After researching a Zn-Fe alloy electroplating method that can prevent the appearance of acid burns and form a non-plated surface with excellent chemical conversion treatment properties, it was found that protective plating is also applied to the non-plated surface when plating copper strips. In addition, we discovered that by making the final composition of the plating film on the non-plated side Fe IJ Sochi, it is possible to prevent acid burns on the non-plated side during plating and improve chemical conversion treatment properties. He came up with an invention.

本発明の目的は、非メッキ面の酸やけを防止しかつその
化成処理性を改善することができるZn−Fe系合金電
気メツキ鋼板、特に防食層と塗膜密着性向上層とを有す
る差厚多層両面メッキ鋼板の製造方法を提供することに
ある。
The object of the present invention is to provide a Zn-Fe alloy electroplated steel sheet that can prevent acid burns on the non-plated surface and improve its chemical conversion properties, particularly a differential thickness steel sheet that has an anti-corrosion layer and a layer that improves paint film adhesion. An object of the present invention is to provide a method for manufacturing a multilayer double-sided plated steel sheet.

すなわち、第1の発明によれば、銅帯の一方の面に目的
とするZn−Fe合金電気メッキを施すに際し、銅帯の
他方の面に対してもメンキラインの入側においてZn−
Fe合金電気メンキを施して保護皮膜を形成し、その後
上記他方の面を非通電状態でメッキ液中を通過させるこ
とにより上記保護皮膜中のZn分を優先的に溶解させ、
それによって上記他方の面上の皮膜をFe IJノチの
ものとすることを特徴とするZn−Fe合金電気メツキ
鋼板の製造方法が提供される。
That is, according to the first invention, when applying the desired Zn-Fe alloy electroplating to one surface of the copper strip, Zn-Fe alloy is also applied to the other surface of the copper strip at the entry side of the menki line.
Fe alloy electroplating is applied to form a protective film, and then the other surface is passed through a plating solution in a non-energized state to preferentially dissolve the Zn content in the protective film,
Thereby, there is provided a method for manufacturing a Zn--Fe alloy electroplated steel sheet, characterized in that the coating on the other surface is made of Fe IJ.

第2の発明によれば、防食層用および塗膜密着性向上層
用メツキセルを順次配設したメツキラインにおいて、銅
帯の一方の面に対しては上記メツキセルを順次通過させ
ることによって防食層および塗膜密着性向上層用Zn−
1;’e合金電気メッキ皮膜を形成し、銅帯の他方の面
に対しては、上記一方の面に対する防食層用メッキに際
し、防食層用メツキセルにおいてZ n −F e合金
電気メノキヲ施して保護皮膜を形成し、その後下流側の
各メツキセルを非通電状態で通過させることにより上記
他方の面上の保護皮膜中のZn分を優先的に溶解させ、
それによって上記他方の面上にFe’Jソチの塗膜密着
性向上層を形成することを特徴とするZn−Fe合金電
気メツキ鋼板の製造方法が提供される。
According to the second invention, in the plating line in which the Metxel for the anti-corrosion layer and the layer for improving paint film adhesion are sequentially arranged, the anti-corrosion layer and the coating are made by passing the Metxel sequentially on one side of the copper strip. Zn- for film adhesion improving layer
1; Form an 'e alloy electroplating film, and protect the other side of the copper strip by applying Z n -F e alloy electroplating in a corrosion protection layer metxel when plating the above one side for the corrosion protection layer. A film is formed, and then the Zn component in the protective film on the other surface is preferentially dissolved by passing through each downstream Metsuki cell in a non-energized state,
Thereby, there is provided a method for manufacturing a Zn--Fe alloy electroplated steel sheet, characterized in that a Fe'J Sochi coating film adhesion improving layer is formed on the other surface.

第6の発明によれば、防食層用および塗膜密着性向上層
用メンキセルを順次配設したメツキラインにおいて、銅
帯の一方の面に対しては上記メツキセルを順次通過させ
ることによって防食層および塗膜密着性向上層用Zn−
Fe合金電気メツキ皮膜を形成し、銅帯の他方の面に対
′しては、上記一方の面に対する防食層用メッキに際し
、防食層用メツキセルの一部においてZn−Fe合金電
気メッキを施して保護皮膜を形成し、その後下流側の防
食層用メンキセルを非通電状態で通過させることにより
上記他方の面上の保護皮膜を溶解させ、次いで塗膜密着
性向上層用メツキセルにおいてFe IJノチのZn−
Fe合金電気メッキを施すことを特徴とするZn−Fe
合金電気メツキ鋼板の製造方法が提供される。
According to the sixth invention, in the plating line in which the MENKI CEL for the anti-corrosion layer and the coating film adhesion improving layer are successively arranged, the MEN KICEL for the anti-corrosion layer and the coating film adhesion improving layer are sequentially passed through one side of the copper strip, thereby forming the anti-corrosion layer and coating. Zn- for film adhesion improving layer
A Fe alloy electroplating film is formed, and on the other side of the copper strip, Zn-Fe alloy electroplating is applied to a part of the corrosion protection layer metal cell when plating the corrosion protection layer on the above one surface. A protective film is formed, and then the protective film on the other surface is dissolved by passing it through the downstream MENKI CEL for the corrosion protection layer in a non-energized state, and then Zn of Fe IJ Nochi −
Zn-Fe characterized by applying Fe alloy electroplating
A method of manufacturing an alloy electroplated steel sheet is provided.

鋼板に対するZn−1’i’e合金電気メッキは、耐食
性を目的とする防食層と塗装性を目的とする塗膜密着性
向上層との2層または2層以上の多層から構成されるこ
とが多い。防食層はZnリッチ、好ましくはFe≦40
係、特に好ましくばl’i’ e=30係のZn−Fe
合金組成を有し、多層メッキ構造の内層を構成する。一
方、塗膜密着性向上層はFe’)ノチ、好ましくはFe
260%、特に好ましくはFe=90係のZn−Fe合
金組成を有し、外層を構成する。
Zn-1'i'e alloy electroplating on steel plates can be composed of two layers or a multilayer of two or more layers: an anticorrosion layer for corrosion resistance and a coating adhesion improving layer for paintability. many. The anticorrosion layer is Zn rich, preferably Fe≦40
Zn-Fe, particularly preferably l'i' e = 30
It has an alloy composition and constitutes the inner layer of a multilayer plating structure. On the other hand, the coating film adhesion improving layer is made of Fe'), preferably Fe'
It has a Zn--Fe alloy composition of 260%, particularly preferably Fe=90, and constitutes the outer layer.

上記のような多層のZ n −F e合金電気メッキを
鋼帯に施すためには、複数個のメツキセルから成るメツ
キラインにおいて、入側の数セルで内層のメッキを行な
い、出側のセルにおいて外層のメッキを行なうのが普通
である。このため、内層および外層を成す各メッキ皮膜
の組成に応じたメツXキ浴が、内層用および外層用メツ
キセルにそれぞれ満たされている。
In order to apply multilayer Zn-Fe alloy electroplating to a steel strip as described above, in a plating line consisting of a plurality of plating cells, the inner layer is plated in several cells on the inlet side, and the outer layer is plated in the outlet cell. It is common to perform plating. For this reason, the inner layer and outer layer mesh cells are each filled with a plating bath corresponding to the composition of each plating film forming the inner layer and the outer layer.

いま、このようなメツキラインにおいて鋼帯の片面にの
み防食層を形成しようとする場合、非メッキ面ではメツ
キラインの各メンキセル通過中にメッキ浴により酸やけ
を生じ、化成処理性が劣化されることが生じる。そこで
、本発明では、非メッキ面の酸やけ防止しかっ化成処理
性を向上させるために、次のような手段を採っている。
If an anti-corrosion layer is to be formed on only one side of the steel strip in such a plating line, acid burns may occur on the non-plated surface due to the plating bath during each menki cell of the plating line, and the chemical conversion treatment properties may deteriorate. arise. Therefore, in the present invention, the following measures are taken in order to improve the acid burn prevention and chemical conversion treatment property of the non-plated surface.

(1)  内層用メソキセルの最初の数セルにおいて、
非メッキ面にも内層用のメッキ浴を用いて防食用皮膜た
とえばFe≦40係の合金組成を有するZn−Fe合金
メッキ皮膜を析出せしめ、その後のメツキセルにおいて
無通電状態で非メッキ面を通過させる。一般に、Z n
 −F e合金メッキは無通電状態でメッキ浴中に浸漬
されると、合金メッキ中のZn( 分が優先的にメッキ浴中に溶解し、合金メッキの付着量
が減少するとともに合金メッキ中のFe分が相対的に増
加する。そこで、非メッキ面における内層用メソキセル
でのZ n −F e合金メッキ付着量とその後の無通
電状態でのメッキ浴浸漬時間を適宜選ぶことによって、
メツキライン出側において、非メッキ面のZn−Fe合
金メッキ皮膜の組成をFeリンチ、好ましくはFe26
0%とすることができる。
(1) In the first few cells of Methoxel for the inner layer,
An anti-corrosion film, for example, a Zn-Fe alloy plating film having an alloy composition of Fe≦40, is deposited on the non-plated surface using the plating bath for the inner layer, and then passed through the non-plated surface in a non-electrified state in the subsequent Metsuki cell. . In general, Z n
- When Fe alloy plating is immersed in a plating bath without electricity, the Zn in the alloy plating will preferentially dissolve into the plating bath, reducing the amount of alloy plating and reducing the amount of Zn in the alloy plating. The Fe content increases relatively.Therefore, by appropriately selecting the amount of Zn-Fe alloy plating on the non-plated surface with the inner layer methoxel and the subsequent immersion time in the plating bath in a non-energized state,
On the exit side of the plating line, the composition of the Zn-Fe alloy plating film on the non-plated surface is changed to Fe lynch, preferably Fe26.
It can be set to 0%.

(2)内層用メンキセルの最初の数セルにおいて、上記
(1)と同様に非メッキ面にも防食用皮膜たとえばFe
540%の合金組成を有するZn−Fe合金メッキ皮膜
を5 y/77L”以下の付着量で析出せしめ、その後
の内層用メンキセルにおいて無通電状態でメッキ浴中を
通過させることにより、メッキ皮膜を溶解させて付着量
を1.5 y /m2以下とする。その後、外層用メツ
キセルにおいて、非メッキ面にもメッキ面と同様にFe
 17ノチたとえばFe260%のZn−Fe合金メッ
キを5縮2以下の付着量で電析せしめる。内層用メツキ
セルにおける非メッキ面へのメッキの伺着量を3y/T
L2以下としたのは、その後のメッキ皮膜の溶解過程に
おいて溶出するZn量がメッキ付着量によって変化しな
いとすれば、メッキ旬着景が3y/m2を超える場合に
は皮膜中のZn分が相対的に増カ牝、P値が低下するの
で好ましくない。ま/ヒ、この場合、メッキ皮膜の付着
量が1.5’/m2以下となるまで溶解させるのは、残
存皮膜のFe分を相対的に上昇させるためである。外層
用メツキセルにおけるメッキの付着量を5ゲタ以下とし
たのは経済的な理由がらである。
(2) In the first few cells of the inner layer Menkicell, an anticorrosive coating such as Fe is applied on the non-plated surface as in (1) above.
A Zn-Fe alloy plating film having an alloy composition of 540% is deposited at a deposition amount of 5 y/77L" or less, and then the plating film is dissolved by passing through the plating bath in the inner layer Menkicell without electricity. to reduce the adhesion amount to 1.5 y/m2 or less.After that, in the outer layer Metsuki cell, Fe is applied to the non-plated surface in the same way as the plated surface.
For example, 17 notches of Zn--Fe alloy plating containing 60% Fe are electrodeposited with a deposition amount of 5 shrinkage 2 or less. The amount of plating deposited on the non-plated surface of Metsukicell for inner layer is 3y/T.
The reason for setting it below L2 is that if the amount of Zn eluted during the subsequent dissolution process of the plating film does not change depending on the amount of plating deposited, if the plating peak is over 3y/m2, the Zn content in the film will be relatively low. This is not preferable because it will increase the number of females and decrease the P value. In this case, the purpose of dissolving the plating film until the adhesion amount becomes 1.5'/m2 or less is to relatively increase the Fe content of the remaining film. The reason why the amount of plating deposited in the outer layer Metxel was set to 5 geta or less was for economical reasons.

上記(1)、(2)の両方法において、鋼帯のメッキ面
すなわち防食用メッキの対象面に対しては、銅帯をメツ
キラインの入側から出側へ走行させるに従って、防食用
の内層および塗膜密着性向上用の外層を順次形成せしめ
るものである。そして、(1)の場合には、片面におい
て、防食用のZn’)ノチ、女子ましくはFe≦60%
のZn −’F e合金皮ハ@力為らなる内層と塗膜密
着性向上用のFeリッチ、り子ましくはFe≧60係の
Zll−Fe合金皮膜75為らなる外j脅とを有し、他
面において、Fe1Jソチ好ましくはFe≧60係のZ
n−Fe合金層からなる塗膜密着性+S上層を有する鋼
板が製造される。一方、(2)の場合には、メッキ面に
ついては(1)と実質的に同じである75玉、非メッキ
面においてはZnリッチの内層ii残存し、その上にF
eリッチ好捷しくはFe≧60%のZn−Fe合金皮膜
からなる外層を有するものである。
In both methods (1) and (2) above, the plated surface of the steel strip, that is, the surface to be coated with anti-corrosion coating, is coated with an inner layer of anti-corrosion coating and An outer layer for improving paint film adhesion is sequentially formed. In the case of (1), one side is coated with Zn') for corrosion protection, preferably Fe≦60%.
Zn-Fe alloy coating 75 has an inner layer consisting of an inner layer and an Fe-rich Zll-Fe alloy coating 75 with Fe≧60 for improving paint film adhesion. On the other hand, Fe1J Sochi preferably has Z of Fe≧60.
A steel plate having a coating adhesion +S upper layer made of an n-Fe alloy layer is produced. On the other hand, in case (2), 75 balls remain on the plated surface, which is substantially the same as in (1), and on the non-plated surface, Zn-rich inner layer ii remains, and on top of that, F
Preferably, the e-rich material has an outer layer made of a Zn--Fe alloy film with Fe≧60%.

なお、上記(1)、(2)の方法に−おいて、もし可會
しであれば、内層用メソキセルにおいて非メッキ面に析
出させたメッキ皮膜を、その後の無通電メツキセルの出
側において刊着量が0となるように溶フ實させてもよい
In addition, in methods (1) and (2) above, if possible, the plating film deposited on the non-plated surface of the inner layer methoxel can be printed on the exit side of the subsequent non-energized methoxel. Melting may be carried out so that the amount of coating becomes 0.

上記したように、本発明の方法によれば、銅帯の一方の
面にのみメッキを施す際に、他の面にイ呆護メッキを設
けてメッキ液による酸やけを防止することができ、かつ
非メッキ面における最外層をFe’)ノチのZn−1’
i’e合金皮膜で形成したので、塗装耐食性特に塗膜密
着性に優れた非メッキ面を提供することができる。
As described above, according to the method of the present invention, when plating only one side of the copper strip, protective plating can be provided on the other side to prevent acid burn due to the plating solution. And the outermost layer on the non-plated surface is Fe') notched Zn-1'
Since the i'e alloy film is formed, it is possible to provide a non-plated surface with excellent paint corrosion resistance, especially paint film adhesion.

なお、上記説明では、Zn= Fe合金メッキが内層お
よび外層のみから成る場合を示したが、本発明は2層以
上の多層メッキ鋼板にも適用することかできる。
In the above description, the case where the Zn=Fe alloy plating consists of only an inner layer and an outer layer is shown, but the present invention can also be applied to a multilayer plated steel sheet having two or more layers.

次に、本発明の効果を実施例により説明する。Next, the effects of the present invention will be explained using examples.

実施例1 第1図は通常の電気メツキ装置の設置配置図を示し、ア
ンコイラ−1から捲戻される銅帯はアルカリ電解脱脂槽
2で脱脂され、水洗槽6で水洗され、次に酸洗槽4で酸
洗され、水洗槽5で水洗後、電気メツキ槽6で片面メッ
キされる。メッキ槽6はA−にの11槽に分離され、A
−Hの8槽が内層メッキ用であり、1〜にの6槽が外層
メッキ用である。まだ、H槽と1槽の間に水洗槽7があ
り、銅帯に付着した内層メッキ液を水洗する。更に、電
気メツキ槽6を通過した後、水洗槽8で水洗し、乾燥機
9で乾燥され、リコイラー10で捲取られる。
Embodiment 1 Figure 1 shows the installation layout of a normal electroplating device, in which the copper strip uncoiled from the uncoiler 1 is degreased in an alkaline electrolytic degreasing tank 2, washed with water in a washing tank 6, and then transferred to a pickling tank. After being pickled in step 4, washed with water in a washing tank 5, and plated on one side in an electroplating tank 6. The plating tank 6 is divided into 11 tanks A-,
Eight tanks -H are for inner layer plating, and six tanks 1 to 2 are for outer layer plating. There is still a washing tank 7 between the H tank and the 1st tank, which washes away the inner layer plating solution adhering to the copper strip. Furthermore, after passing through the electroplating tank 6, it is washed with water in a washing tank 8, dried in a drier 9, and rolled up in a recoiler 10.

第1図に示す連続式電気メッキ装置を用い、銅帯として
rl】900+n+n、板厚0.8 amを用い、Zn
−Fe系2層゛亀気メッキを行なった。Zn−FeZ層
ノノキのメッキ浴組成を第1表に示す。なお、浴中のF
e3+濃度は、両塔ともに3.0〜3.5 t/lの範
囲内でコントロールした。
Using the continuous electroplating apparatus shown in Fig. 1, using a copper strip of rl]900+n+n and a plate thickness of 0.8 am, Zn
-Fe-based two-layer ``glaze plating'' was performed. Table 1 shows the composition of the plating bath for the Zn-FeZ layer. In addition, F in the bath
The e3+ concentration was controlled within the range of 3.0 to 3.5 t/l in both columns.

第1表 銅帯の走行速度としては50m/xπで走行させ、メッ
キ面の付着量として内層は25′?/m2、外層は57
/TL2となるべく電流密度をコントロールした。
The running speed of the copper strip in Table 1 was 50 m/xπ, and the amount of adhesion on the plated surface was 25'? /m2, outer layer is 57
/TL2 The current density was controlled as much as possible.

その結果、メッキ面には内層としてFe50%、Zn7
0%、外層、とじてFe90%、Zn1[]%めメッキ
が各2’597m2.55F /@’得られた。
As a result, the inner layer of the plated surface was 50% Fe and 7 Zn.
0%, outer layer, and 90% Fe and 1[]% Zn plating were obtained, each 2'597 m2.55F/@'.

しかし、非メッキ面は、約35 sec間内層用及び外
層用メッキ浴中に浸漬されたため、非メツキ表面は黒色
に変色し、かつ部分的にピノティング(深さ0.1 m
m、径0.1 mm )が生じた。
However, since the non-plated surface was immersed in the inner layer and outer layer plating baths for about 35 seconds, the non-plated surface turned black and was partially pinoted (0.1 m deep).
m, diameter 0.1 mm).

そこで、メッキ槽6A又は6A、6Bにてメッキ面にメ
ッキを施すと同時に、非メッキ面にも同一浴により、各
種電流密度により電気メッキを施し、その後、6B〜6
に間又は60〜6に間は非メッキ面にはメッキを施さず
に浸漬状態としだ。
Therefore, while plating the plated surface in the plating bath 6A or 6A, 6B, electroplating is applied to the non-plated surface at various current densities in the same bath, and then
The non-plated surface was left unplated and left in an immersed state between 60 and 60.

その結果、非メッキ面の酸やけは防止することができた
As a result, acid burns on the non-plated surface could be prevented.

その後、この銅帯を採取して非メッキ面のメッキ絹成、
付着量を調査すると共に、第2表に示す条件で非メッキ
面に化成処理及びカチオン電着を施した。
After that, this copper strip is collected and plated silk is formed on the non-plated side.
In addition to investigating the amount of adhesion, chemical conversion treatment and cationic electrodeposition were performed on the non-plated surface under the conditions shown in Table 2.

第2表 化成処理性は、化成皮膜の外観、伺着量、P値(Pho
sphophyl l ite /Phosphoph
yl l ite + Hope ite )を調査し
た。一方、塗装後の耐食性は、塗膜のクロスカット部の
塩水噴霧960)ir后のテープ剥離「1って評価した
。その結果を第6表に示す。
Table 2 shows the chemical conversion treatment properties, including the appearance of the chemical conversion film, the amount of adhesion, and the P value (Pho).
Phosphyl ite /Phosphoph
yl lite + Hope ite) was investigated. On the other hand, the corrosion resistance after coating was evaluated as "1" when the tape was peeled off after salt water spray irradiated on the cross-cut portion of the coating film.The results are shown in Table 6.

実施例2 同様にして、非メッキ面へのメッキを6Aのメッキ槽で
各種電流密度でメッキを施し、6B〜6H間で浸漬状態
で非メッキ面への酸やけを防止し、更に、61〜6Kに
てメッキ面と同時に非メッキ面にも外層用メッキを析出
させた。その後、実施例1と同様に化成処理性及び塗装
耐食性を評価した。
Example 2 In the same manner, plating was applied to the non-plated surface at various current densities in a 6A plating tank, and the non-plated surface was immersed between 6B and 6H to prevent acid burn, and At 6K, outer layer plating was deposited on the non-plated surface as well as the plated surface. Thereafter, chemical conversion treatment properties and coating corrosion resistance were evaluated in the same manner as in Example 1.

その結果を第6表に示す。The results are shown in Table 6.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は鋼帯の電気メツキ装置を示す説明図である。 1・・・アンコイラ−2アルカリ電解脱脂槽6・・・水
洗槽     4・・・酸洗槽5・・・水洗槽    
 6・・電気メンキライン6A〜6K・・電気メツキセ
ル 7,8・・・水洗槽9・・・乾燥機     10
・・・リコイジーテ−7−1 代理人  弁理士  永 井 義 灸“i゛旨H9j、
The drawing is an explanatory view showing a steel strip electroplating device. 1... Uncoiler - 2 Alkaline electrolytic degreasing tank 6... Washing tank 4... Pickling tank 5... Washing tank
6... Denki Menki Line 6A-6K... Denki Metsuki Cell 7, 8... Washing tank 9... Dryer 10
・・・Rikoi Gite-7-1 Agent Patent Attorney Yoshi Nagai
)

Claims (1)

【特許請求の範囲】 (1)銅帯の一方の面に目的とするZn−Fe合金電気
メッキを施すに際し、銅帯の他方の面に対してもメツキ
ラインの入側においてZ n −F e合金′市気メッ
キを施して保護皮膜を形成し、その後上記他方の面を非
通電状態でメッキ液中を通過させることにより上記保護
皮膜中のZn分を優′先的に溶解させ、それによって上
記他方の面上の皮膜をp61Jッチのものとすることを
特徴とするZ n −F e合金電気メッキ鋼板の製造
方法。 (2)防食層用および塗膜密着性向上層用メツキセルを
順次配設したメツキラインにおいて、銅帯の一方の面に
対しては上記メンキセルを順次通過させることによって
防食層および塗膜密着性向上層用Zn−Fe合金電気メ
ツキ皮膜を形成し、銅帯の他方の面に対しては、上記一
方の面に対する防食層用メッキに際し、防食層用メツキ
セルにおいてZ n  F e合金電気メッキを施して
保護皮膜を形成し7、その後下流側の各メツキセルを非
通電状態で通過させることにより上記他方の面上の保護
皮膜中のZn分を優先的に溶解させ、それによって上記
他方の面一ヒにFeリッチの塗膜密着性向上層を形成す
ることを特徴とするZn−Fe合金′屯気メッキ鋼板の
製造方法。 (6)防食層用および塗膜密着性向上層用メツキセルを
順次配設したメツキラインにおいて、銅帯の一方の而に
対しては上記メツキセルを順次通過させることによって
防食層および塗膜密着性向上層用7. n −F e合
金電気メッキ皮膜を形成し、銅帯の他方の面に対しては
、上記一方の面に対する防食層用メッキに際し、防食層
用メツキセルの一部においてZn−Fe合金電気メッキ
を施して保護皮膜を形成し、その後下流側の防食層用メ
ツキセルを非通電状態で通過させることにより上記他方
の面上の保護皮膜を溶解させ、次いで塗膜密着性向上層
用メツキセルにおいてFcリッチのZn−Fe合金電気
メッキを施すことを特徴tするZn、−Fe合全電気メ
ッキ鋼板の製造方法。
[Claims] (1) When electroplating a desired Zn-Fe alloy on one surface of a copper strip, a Zn-Fe alloy is also applied to the other surface of the copper strip on the entry side of the plating line. 'A protective film is formed by plating in the air, and then the other surface is passed through a plating solution in a non-energized state to preferentially dissolve the Zn in the protective film. A method for producing a Zn-Fe alloy electroplated steel sheet, characterized in that the coating on the other surface is of p61J. (2) In the plating line in which the METSUKI CEL for the anti-corrosion layer and the layer for improving paint film adhesion are sequentially arranged, one side of the copper strip is coated with the METSUKI CEL for the anti-corrosion layer and the adhesion improving layer for the paint film. A Zn-Fe alloy electroplating film is formed on the other side of the copper strip, and the other side of the copper strip is protected by ZnFe alloy electroplating in a corrosion-protection layer Metsukicell when the above-mentioned one side is plated for the anti-corrosion layer. A film is formed 7, and then the Zn component in the protective film on the other surface is preferentially dissolved by passing through each of the downstream metxcells in a non-energized state, thereby dissolving Fe on the other surface. A method for producing a Zn--Fe alloy' air-plated steel sheet, characterized by forming a rich coating film adhesion-improving layer. (6) In the plating line in which the METSUKI CEL for the anti-corrosion layer and the layer for improving paint film adhesion are sequentially arranged, one side of the copper strip is made to pass through the METSU KEL in sequence to form the anti-corrosion layer and the layer for improving paint film adhesion. 7. n-Fe alloy electroplating film is formed, and on the other side of the copper strip, Zn-Fe alloy electroplating is performed on a part of the corrosion protection layer metsuki cell when plating the corrosion protection layer on the above one side. After that, the protective film on the other surface is dissolved by passing it through the Metsuki Cell for the corrosion protection layer on the downstream side in a non-energized state, and then Fc-rich Zn is passed through the Metsuki Cell for the coating film adhesion improving layer. A method for manufacturing a Zn, -Fe alloy electroplated steel sheet, characterized by applying -Fe alloy electroplating.
JP369683A 1983-01-13 1983-01-13 Production of zn-fe alloy electroplated steel sheet Pending JPS59129794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP369683A JPS59129794A (en) 1983-01-13 1983-01-13 Production of zn-fe alloy electroplated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP369683A JPS59129794A (en) 1983-01-13 1983-01-13 Production of zn-fe alloy electroplated steel sheet

Publications (1)

Publication Number Publication Date
JPS59129794A true JPS59129794A (en) 1984-07-26

Family

ID=11564540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP369683A Pending JPS59129794A (en) 1983-01-13 1983-01-13 Production of zn-fe alloy electroplated steel sheet

Country Status (1)

Country Link
JP (1) JPS59129794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465290A (en) * 1987-08-15 1989-03-10 Rasselstein Ag Electroplating of steel strip with metal, especially, zinc or zinc alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465290A (en) * 1987-08-15 1989-03-10 Rasselstein Ag Electroplating of steel strip with metal, especially, zinc or zinc alloy

Similar Documents

Publication Publication Date Title
US5236574A (en) Electroplating of hot-galvanized steel sheet and continuous plating line therefor
JPS59232275A (en) Cold rolled steel sheet having excellent phosphate treatability and its production
JPS59129794A (en) Production of zn-fe alloy electroplated steel sheet
US3523067A (en) Selective galvanizing of steel strip
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
JPH0225439B2 (en)
JPH0256437B2 (en)
JPS6028918B2 (en) Post-treatment method for non-plated side of single-sided zinc-based electroplated steel sheet
JPH01108396A (en) Production of galvannealed steel sheet for coating by cationic electrodeposition
JP2947633B2 (en) Nickel / chromium-containing galvanized steel sheet / steel material for coating base and its manufacturing method
JP3048388B2 (en) Manufacturing method and cooling equipment for galvannealed steel sheet
CA1241572A (en) Galvanizing procedure and galvanized product thereof
JPH045753B2 (en)
JPH0841681A (en) Production of nickel-zinc alloy-plated steel sheet
JPH0369996B2 (en)
EP0545908B1 (en) Electroplating of hot-galvanized steel sheet and continuous plating line therefor
JPS59190385A (en) Production of one-side zinc-nickel alloy electroplated steel plate
JPH01219200A (en) Method and apparatus for producing single surface plated steel strip
JPH04268078A (en) Treatment before coating of al series sheet for automobile body
JP2980990B2 (en) Cooling method and cooling equipment for galvannealed steel sheet
JPS6134520B2 (en)
JPS61261497A (en) Clad steel plate and method and apparatus for producing said plate
JP3643473B2 (en) Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method
JPS6213595A (en) Production of one-side electroplated steel sheet
JP2587721B2 (en) Manufacturing method of zinc-plated aluminum plate