JPS59129385A - Cooling water system for condenser - Google Patents

Cooling water system for condenser

Info

Publication number
JPS59129385A
JPS59129385A JP401883A JP401883A JPS59129385A JP S59129385 A JPS59129385 A JP S59129385A JP 401883 A JP401883 A JP 401883A JP 401883 A JP401883 A JP 401883A JP S59129385 A JPS59129385 A JP S59129385A
Authority
JP
Japan
Prior art keywords
valve
water
pipe
condenser
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP401883A
Other languages
Japanese (ja)
Other versions
JPH041270B2 (en
Inventor
Katsuya Oi
大井 勝也
Nagao Kei
慶 永雄
Yasuo Ishikawa
石川 保雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP401883A priority Critical patent/JPS59129385A/en
Publication of JPS59129385A publication Critical patent/JPS59129385A/en
Publication of JPH041270B2 publication Critical patent/JPH041270B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To unnecessitate to reduce a load on a plant at the time of transferring to a back washing operation or to a forward washing operation, by a method wherein a back washing valve connecting a water-supplying pipe and a water-discharging pipe to each other and a bypass pipe led out from a rear water chamber are provided for a 1- tube-nest 2-pass condenser. CONSTITUTION:The water-supplying pipe 10 and the water-discharging pipe 11 in the 1-tube-nest 2-pass condenser are connected to each other by the back washing valve 9 provided with 4 ports, and the first valve 13 is incorporated in the water-discharging pipe 12 on the downstream side of the valve 9. The bypass pipe 15 is led out from the rear water chamber 3, and the second valve 16 is incorporated in the pipe 15, the outlet end of which is led to the water-discharging side. In a back washing condition, a stop valve 8 and the first valve 13 are opened, while the second valve 16 is closed. Therefore, cooling water introduced into a cooling water pipe 7 through an intake pump 6 is introduced into the condenser 1 through the stop valve 8, the back washing valve 9, the pipe 10 and an inlet water chamber 2a, absorbs heat at an inlet tube nest 5a from a turbine exhaust gas flowing on the outside of the tube nest 5a, then again absorbs heat when flowing through a tube nest 5b after flowing through the rear water chamber 3, and is discharged through the first valve 13.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は/管束コバス復水器における冷却水系統に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cooling water system in a tube bundle cobus condenser.

〔発明の技術的背景〕[Technical background of the invention]

発電プラントにおいて、タービンで仕事を終えたタービ
ン排気は復水器へ導かれ、冷却されて凝縮し、抱水とな
って再びボイラや熱交換器に導入される。
In a power generation plant, the turbine exhaust gas that has completed its work in the turbine is led to a condenser, where it is cooled and condensed to form water, which is then reintroduced into the boiler or heat exchanger.

復水器は、タービン排気吐が少ない場合には/復水器尚
りl管束構成とされ、また必要冷却水針が少ない場合に
は、復水器冷却管本数は少なく、かつ冷却管長が長いこ
とが必要とされるので、/管束を2区画に区分し、冷却
水が管束内で往後するようにした/管束ユパス型の復水
器が使用される。
When the turbine exhaust discharge is small, the condenser has a single tube bundle configuration, and when the number of required cooling water needles is small, the number of condenser cooling pipes is small and the length of the cooling pipes is long. Therefore, a tube bundle Upass type condenser is used, in which the tube bundle is divided into two sections and the cooling water flows back and forth within the tube bundle.

復水器の冷却水としては、通常、海水が使用されるが、
海水中には貝類や木片等の異物が含まれているので、こ
れらの異物が冷却管内に詰ったり、冷却管の人口側を閉
塞したりするおそれがある。
Seawater is usually used as cooling water for condensers, but
Since seawater contains foreign substances such as shellfish and wood chips, there is a risk that these foreign substances may clog the cooling pipes or block the artificial side of the cooling pipes.

そのため、発電プラントでは、異物を除去する目的で、
冷却水を冷却管の逆方向から流す、いわゆる逆洗運転が
行なわれろ。この逆洗運転の回数は、異物の皺によって
も異なるが、多い場合に&ま787回の割合で行なわれ
る。
Therefore, in power plants, in order to remove foreign matter,
A so-called backwash operation, in which cooling water flows from the opposite direction of the cooling pipes, should be performed. The number of times this backwashing operation is performed varies depending on the wrinkles of the foreign material, but in most cases, it is performed at a rate of 787 times.

逆洗運転を行なう系統では、V個のボートを備え、内蔵
された弁体の切換えによって水流方向を変化させる逆洗
弁が使用されている。
In a system that performs backwash operation, a backwash valve is used that is equipped with V boats and changes the direction of water flow by switching a built-in valve body.

第1図は、この逆洗弁を備えた/管束λ・くス型4水器
の冷却水系統を示す。同図において、復水器/は前部水
宇!と後部水室3をイハラえており、^ゴ部水室βはイ
1切板グによって入口氷室、28と出口氷室、21)と
に区分されている。捷だ、ゆ水gR/ P9に配置され
た複数本の冷却管は入口氷室28と後部水室3を連結す
る入口管束、3′aと、後部Aく室3と出口水室ハを連
結する出口管束jbにV分′されている。
FIG. 1 shows the cooling water system of a /tube bundle λ/cross-type four-water tank equipped with this backwash valve. In the same figure, the condenser/ is the front water tank! The rear water chamber β is divided into an inlet ice chamber, 28, and an outlet ice chamber, 21) by a cutting board. The multiple cooling pipes arranged in P9 connect the inlet pipe bundle 3'a that connects the inlet ice chamber 28 and the rear water chamber 3, and the rear A chamber 3 and the outlet water chamber c. It is separated by V' from the outlet tube bundle jb.

■−洗違転時において、取水ポンプ乙によって冷却水配
管7に導入された冷却水は止弁g、逆洗弁7、配管10
を経て入口氷室28に流入し、更にゆ水器/内の入口管
束3−a、、後部水室3、出口管束S1:l内を流れて
タービン排気と熱交換を行ブCつた後、出口氷室2b、
配管//、逆洗弁ヂ、配管/2および第1の弁13を経
て排水される。
- At the time of a washing failure, the cooling water introduced into the cooling water pipe 7 by the water intake pump B is transferred to the stop valve g, the backwash valve 7, and the pipe 10.
It flows into the inlet ice chamber 28 through the water heater, flows through the inlet pipe bundle 3-a in the water heater, the rear water chamber 3, and the outlet pipe bundle S1:1, exchanges heat with the turbine exhaust gas, and then exits. Himuro 2b,
The water is drained through the pipe//, the backwash valve, the pipe/2, and the first valve 13.

逆洗運転時には、第2図に示すように、逆洗弁りの弁体
7aをqO官転させろことにより冷却水の流れの方向を
逆転させる。すなわち、取水ポンプ乙によって逆洗弁7
に送込まれた冷却水は配管//から流出し、出口氷室、
2b、出口管束夕b、後部水室3、入口管束jaのIl
[ijに流れて熱交換を行なった後、入口氷室ja、配
管/θ、逆洗弁り、配管/、2、第1の弁/3を流れて
排水される。
During backwash operation, as shown in FIG. 2, the direction of the flow of cooling water is reversed by rotating the valve body 7a of the backwash valve qO. In other words, the backwash valve 7 is activated by the water intake pump B.
The cooling water sent to the pipe flows out from the outlet ice chamber,
2b, outlet tube bundle b, rear water chamber 3, inlet tube bundle ja
[After flowing through ij and performing heat exchange, it flows through inlet ice chamber ja, piping /θ, backwash valve, piping /, 2, and first valve /3 to be drained.

ところで、逆洗弁りが正洗状態から逆洗状態に移行する
際には、第3図に示すように、冷却水配管7かも流入し
た冷却水が、抵抗の多い配管10゜//へは流入せずに
直接、配管12から排水される状態を辿過する。
By the way, when the backwash valve shifts from the normal wash state to the backwash state, as shown in Fig. 3, the cooling water that has also flowed into the cooling water pipe 7 is diverted to the pipe 10° where there is a lot of resistance. A state in which water is drained directly from the pipe 12 without flowing in is traced.

第グ図は復水器/へ流入する冷却水流吐が弁りの弁体り
aの変位に応じて変化する様子を示している。この図か
ら明らかなように、弁体か正洗側に向いている時に10
o %正流として流れていた冷却水は弁体の変位に応じ
て徐々に減少し、一旦流量”零となった仮、逆洗側に流
れ始め、700%丑で増加して行く。
Figure 3 shows how the flow of cooling water flowing into the condenser/condenser changes depending on the displacement of the valve body a of the valve. As is clear from this figure, when the valve body is facing the normal flush side, the
The cooling water that was flowing as a forward flow gradually decreases according to the displacement of the valve body, and once the flow rate reaches zero, it begins to flow to the backwash side and increases by 700%.

〔背姐技術の問題点〕[Problems with back technology]

復水器はタービン排気を凝縮させる目的で設置されてい
るものであるから、前述のように冷却水流計容の状態が
短時間でも発生すると100%負荷を負担することがで
きなくなり、真空度が低下して発電プラントはトリップ
することになる。
The condenser is installed for the purpose of condensing the turbine exhaust gas, so if the condition of the cooling water flow meter occurs even for a short time as mentioned above, it will not be able to bear 100% of the load, and the degree of vacuum will decrease. This will cause the power plant to trip.

この状態を避けるため、従来は、逆洗運転の開始に先立
って発電プラントの設定負荷を30係程度寸で低下させ
た後、逆洗運転へ移行させろようにしている。これは逆
洗運転から正洗運転への移行に際しても同様である。
In order to avoid this situation, conventionally, the set load of the power generation plant is lowered by about a factor of 30 before starting the backwash operation, and then the backwash operation is started. This also applies to the transition from backwash operation to forward wash operation.

しかしながら、逆洗運転や正洗運転への移行の度毎に負
荷を増減させることは発電プラントの運転操作を複雑化
する上、負荷操作は短時間では行なえないため、年間ケ
通しての発電プラントの熱効率が低下し、プラント熱効
率の向上を図る上での隘路となる。また、正、逆洗運転
切換えのためのプラント負荷操作は他の理由による負荷
操作に比較して回数が非常に多くなるため、発電プラン
トの信頼性確率を低下させる一因となる。
However, increasing or decreasing the load each time the transition to backwash operation or forward wash operation complicates the operation of the power plant, and load control cannot be performed in a short period of time. The thermal efficiency of the plant decreases, which becomes a bottleneck in improving plant thermal efficiency. In addition, the number of plant load operations for switching between forward and backwash operations is much greater than load operations for other reasons, which is a factor in lowering the reliability probability of the power plant.

〔発明の目的〕[Purpose of the invention]

本発明は上述した従来技術の欠点を除去すべくなされた
もので、逆洗運転および正洗運転への移行時にプラント
負荷を低下させる必要をなくした復水器の冷却水系統を
提供することを目的とするものである。
The present invention has been made to eliminate the drawbacks of the prior art described above, and aims to provide a cooling water system for a condenser that eliminates the need to reduce the plant load when transitioning to backwash operation and forward wash operation. This is the purpose.

上記目的を達成するために、本発明は、取水ポンプから
給水配管に導入された冷却水を入口氷室を通して復水器
の入口管束に導き、゛この入口管束から流出した冷却水
を後部水室を通して出口管束に潜入し、この出口管束か
ら出口水室内に流出した冷却水を排水配管を通して排出
するようにした/管束2バス復水器において;上記給水
配管と抽水配管とを四つのボートを備えた逆洗弁で連結
し、この逆洗弁の下流側の刊水配管上に第1の弁を組込
む一方、上記後部氷室よりバイパス配管を導出し、この
バイパス配管の管路上に第2の弁を組込みその出口端を
放水側へ導いたことを特徴とするものである。
In order to achieve the above object, the present invention introduces the cooling water introduced into the water supply pipe from the water intake pump into the inlet pipe bundle of the condenser through the inlet ice chamber, and directs the cooling water flowing out from the inlet pipe bundle through the rear water chamber. The cooling water that infiltrated the outlet pipe bundle and flowed out from this outlet pipe bundle into the outlet water chamber was discharged through the drainage pipe./In the pipe bundle 2 bus condenser; The above water supply pipe and water extraction pipe were equipped with four boats. Connected by a backwash valve, a first valve is installed on the water pipe downstream of this backwash valve, and a bypass pipe is led out from the rear ice chamber, and a second valve is installed on the pipe of this bypass pipe. It is characterized in that the outlet end of the built-in pipe is guided to the water discharge side.

〔発明の実施例〕[Embodiments of the invention]

以下、第5図ないし第1/図を参照して本発明の実施例
とその作用を説明する。なお、これらの図において、白
抜きの弁は開状態を示し、黒塗りの弁は閉状態を示すも
のとする。
Hereinafter, embodiments of the present invention and their effects will be described with reference to FIGS. 5 to 1. In addition, in these figures, white valves indicate an open state, and black valves indicate a closed state.

第5図において、腹水器/は/管束!バス型復水器を示
し、この復水器/は前部水室λと後部水室3とを備えて
おり、前部氷室、2は仕切板ゲによって入口氷室!aと
出口氷室、21)とに区分されている。また復水器/内
に配置b’された複数本の冷却管は入口氷室、2aと後
部水室3とを理路する入■」管束′jaと、後部水室3
と出口水54.2’Dを連結する出1コ管束tbとから
成り立っている。丑た、取水ポンプtの吐出側には冷却
水配管7が接続され、その出口端には、途中に止弁gを
介して逆洗弁りが接続されている。この逆洗弁りと上記
入口氷室、2aとは給水配管10で接続されろと共に、
逆洗弁りと出口氷室、2’l)とは排水配管//で接続
されている。さらに、逆洗弁りの出口ポートには排水配
管/=が接続され、出口端が放水側に導かれる一方、管
路上には第1の弁13が組込まれている。なお、逆洗弁
りはVつのボートを有し、弁体りaの位置。
In Figure 5, ascitic organ / is / tube bundle! The bus-type condenser is equipped with a front water chamber λ and a rear water chamber 3, and the front ice chamber 2 is an inlet ice chamber separated by a partition plate. It is divided into a and an outlet ice chamber, 21). In addition, a plurality of cooling pipes arranged inside the condenser are connected to an inlet pipe bundle 'ja' which connects the inlet ice chamber 2a and the rear water chamber 3, and the rear water chamber 3.
and an outlet pipe bundle tb that connects the outlet water 54.2'D. A cooling water pipe 7 is connected to the discharge side of the water intake pump t, and a backwash valve is connected to the outlet end of the pipe via a stop valve g. This backwash valve valve and the inlet ice chamber 2a are connected by a water supply pipe 10, and
The backwash valve and the outlet ice chamber (2'l) are connected by a drainage pipe. Further, a drainage pipe /= is connected to the outlet port of the backwash valve, and the outlet end is led to the water discharge side, while a first valve 13 is installed on the pipe. The backwash valve has V boats, and the valve body is located at a position.

ρよって流路の切換が行われる。The flow path is switched according to ρ.

しかして、本発明によれば、上記復水器/の後部水室3
よりバイパス配管ノ5が導出され、その管端ば、上記第
1の弁t3の下流側の排水配管lコに接続され、管路上
には第2の弁/6が組み込まれている。
According to the invention, the rear water chamber 3 of the condenser/
A bypass pipe 5 is led out, and its pipe end is connected to the drainage pipe 1 on the downstream side of the first valve t3, and a second valve 6 is installed on the pipe.

次に正洗より逆洗に至る操作手順を第5図乃至第1/図
を参照七゛C説明するが、第5図は正洗時の状態を示し
、ilf、 71図が逆洗時の状態を示し、第z図乃至
第70図は過渡時の状態を示している。
Next, the operating procedure from forward washing to backwashing will be explained with reference to Fig. 5 to Fig. 1/7. Fig. 5 shows the state during normal washing, and Fig. 71 shows the state during backwashing. FIGS. z to 70 show states during transition.

/)正洗時(g(、5図参照) この状態では、止弁とおよび第1の弁/3が開かれ、第
一の弁/Aは閉じられている。したがって、取水ポンプ
乙から冷却水配管7内に導入された冷却水は、止弁g、
逆洗弁り、給水配管10、入口氷室、2aを通して復水
器/内に導入され、入口管束jaでその外側を流れるタ
ービン排気から吸熱し、後部水室3を経て出口管束tb
を流れる際、再びタービン排気から吸熱した後、抽水配
管//、逆洗弁り、排水配管12、第1の弁/3を経由
して海中に排出される。
/) During normal washing (g (see Figure 5) In this state, the stop valve and the first valve /3 are open, and the first valve /A is closed. Therefore, the cooling from the water intake pump B The cooling water introduced into the water pipe 7 is connected to the stop valve g,
It is introduced into the condenser/condenser through the backwash valve, the water supply pipe 10, the inlet ice chamber 2a, absorbs heat from the turbine exhaust gas flowing outside of it in the inlet tube bundle ja, passes through the rear water chamber 3, and enters the outlet tube bundle tb.
When flowing through the water, the water absorbs heat from the turbine exhaust again, and then is discharged into the sea via the extraction pipe, the backwash valve, the drain pipe 12, and the first valve/3.

2)過渡時(第2図乃至第70図に示した状態)先ず第
5図に示した状態から第一の弁/Aを全開する。すると
、入口管束jaより後部水室3内に導入された冷却水は
一分され、その一部は出口管束、5′bを通して排水配
管//、逆洗弁り、第1の弁/3を経由して排水配管1
2内を流れ、残りの一部は後部水室3よりバイパス配管
lS内を流れ、第一の弁/6を通して排水配管/2内の
流れに合流する。この間出口管束5′l:lKは冷却水
の一部が流れるが人口管束jaには冷却水の全針が流れ
る(第2図参照)。
2) During transition (states shown in FIGS. 2 to 70) First, the first valve /A is fully opened from the state shown in FIG. Then, the cooling water introduced into the rear water chamber 3 from the inlet pipe bundle ja is divided into parts, and a part of it is passed through the outlet pipe bundle 5'b to the drain pipe //, the backwash valve, and the first valve /3. Drainage pipe 1 via
The remaining part flows through the bypass pipe IS from the rear water chamber 3, and joins the flow in the drain pipe /2 through the first valve /6. During this time, a portion of the cooling water flows through the outlet tube bundle 5'l:lK, but all of the cooling water flows through the artificial tube bundle ja (see FIG. 2).

次に逆洗弁りの弁体りaをその捷5にして第1の弁13
を全閉する。すると、入口管束、5aより後部氷室3内
にzh入された冷却水の余暇がバイパス配管15より流
出し第一の弁/6を通って排水配管/コ内に排出され、
この間出口管束、rbを流れる冷却水の流敵は零となる
(第7図参照)。
Next, change the valve body a of the backwash valve to its handle 5 and open the first valve 13.
fully close. Then, the cooling water that was introduced into the rear ice chamber 3 from the inlet pipe bundle 5a flows out from the bypass pipe 15, passes through the first valve 6, and is discharged into the drain pipe.
During this time, the amount of cooling water flowing through the outlet tube bundle, rb, becomes zero (see FIG. 7).

次いで逆洗弁りの弁体りaを第r図に示したように中立
位置に切換えると、取水ポンプ6より止弁gを通して逆
洗弁7に流れ込んだ冷却水は、弁体りaの両側を分流し
、給水配管10、および排水配管//内を並行して流れ
、入口氷室、2aと出口氷室、2bに流入し、入口管束
jaと出口管束j’b内を矢視方向へ流れ、後部水室3
内で合流し、バイパス配管/Sおよび第2の弁/6を経
由して排水配管/、2内へ流出する(第g図参照)。こ
の状態では入口管束taと出口管束jb内を冷却水の全
流吐の50%づつが流れ、出口管束jb内の逆洗が開始
される。
Next, when the valve body a of the backwash valve is switched to the neutral position as shown in Fig. is divided, flows in parallel in the water supply pipe 10 and the drainage pipe //, flows into the inlet ice chamber 2a and the outlet ice chamber 2b, flows in the direction of the arrow in the inlet pipe bundle ja and the outlet pipe bundle j'b, Rear water chamber 3
and flows out into the drainage pipe/2 via the bypass pipe/S and the second valve/6 (see Fig. g). In this state, 50% of the total amount of cooling water flows through each of the inlet tube bundle ta and the outlet tube bundle jb, and backwashing in the outlet tube bundle jb is started.

次いで逆洗弁りの弁体9aを時計方向にlI!i″回動
させ第り図に示した位置におくと、取水ポンプ2から吐
出される冷却水の全針が、止弁g、逆洗弁り、排水配管
l/を通して出口氷室2b内に導入され、その全量が出
口管束jb内を逆洗方向に流れ、後部水室3、バイパス
配管15、第一の弁/6を経由して排水配管tlより排
出される(第り図参照)。
Next, turn the valve body 9a of the backwash valve clockwise! When the needles of the cooling water discharged from the water intake pump 2 are turned i'' and placed in the position shown in the figure, all the needles of the cooling water discharged from the water intake pump 2 are introduced into the outlet ice chamber 2b through the stop valve g, the backwash valve, and the drain pipe l/. The entire amount flows through the outlet pipe bundle jb in the backwashing direction, passes through the rear water chamber 3, the bypass pipe 15, and the first valve/6, and is discharged from the drain pipe tl (see Figure 3).

さらに第7図に示した状態から俯/の弁13のみを全開
すると、出口管束j′r:Iを通して後部水室3内に導
入された冷却水の一部が、入口管束ja内を逆洗方向に
流れ、入口氷室、2a、給水配管IO1逆洗弁り、第1
の弁13および排水配管/2を通して排出される。なお
、この状態では、流計は減少するが、残りの冷却水がバ
イパス配管15内を流れ第2の弁/lを経由して排水配
管/ユより排出される(第1O図参照)。
Furthermore, when only the downward valve 13 is fully opened from the state shown in FIG. Flow in the direction, inlet ice chamber, 2a, water supply pipe IO1 backwash valve, 1st
is discharged through the valve 13 and the drain pipe/2. In this state, although the flow meter decreases, the remaining cooling water flows through the bypass pipe 15 and is discharged from the drain pipe /U via the second valve /l (see Figure 1O).

最後に第70図に示した状態から第2の弁/乙のみを全
閉すると、バイパス配管/Sを経由した排水が停止され
るから、後部水室3内に導かれた冷却水の全隘が入口管
束ja内を逆洗方向に流れ、給水配管IO1逆洗升?、
第1の弁13、わト水配智/コを通して排水される。こ
の状態では入口管束jaと出口管束jb内を冷却水の全
叶がそれぞれ逆洗方向に流れる(第1/図参照)。
Finally, when only the second valve/B is fully closed from the state shown in FIG. flows in the backwash direction inside the inlet pipe bundle ja, and the water supply pipe IO1 backwash square? ,
The water is drained through the first valve 13, Watosui Saichi/ko. In this state, all of the cooling water flows in the backwash direction within the inlet tube bundle ja and the outlet tube bundle jb (see Figure 1).

なお、逆洗より正洗に至る弁操作は上述の操作を逆に行
えばよく、冷却水の流れも全く同様となる。
In addition, the valve operation from backwashing to forward washing can be performed by performing the above-mentioned operation in reverse, and the flow of cooling water is also the same.

このように第r図に示す過渡時以外においては、いずれ
も冷却水の全鼠が入口管束ja又は出口管束jl)のい
ずれか又は両方を常に流れることになり、結果として復
水器管束の半分以上は常に正規の凝縮性能を発揮するこ
とになる。
In this way, except during the transient period shown in Fig. In this case, regular condensing performance will always be exhibited.

ところで、発電プラントにおける4水器の真空(・土、
一般に定格運転特約7.20 WmHF!、に設定され
て運転されている。一方、復水器の真空度以下による発
電プラントのトリップ信号は、一般に乙QOw、iHg
By the way, the vacuum of four water vessels (earth, soil,
Generally, the rated operation special clause is 7.20 WmHF! , is set and operated. On the other hand, trip signals in power plants due to less than the vacuum level of the condenser are generally OQOw, iHg
.

前後に設定されており、定格運転時に対し100100
t以上の余裕を有している。したがって、復水器の凝縮
性能が一時的に減少し、復水器の真空度が低下してもト
リップ信号発生迄に至らなければ特に大きな問題とはな
らない。性能検討によれば、逆洗過渡時の短時間であれ
ば復水器管束の半分が正規の凝縮性能を発揮していれば
、トリップ信号発生迄の余裕のため発電プラントの正規
の運転が可能である。実際に2管束を有し、逆洗弁を設
置した多くの発電プラントにおいては、逆洗運転の過渡
時に一方の管束には復水器への冷却水供給が過渡的に停
止することになるが、他の一方が正規の凝縮性能を発揮
するため、発電プラントの負荷を低下させずに運転され
ている。
It is set around 100100 for rated operation.
It has a margin of more than t. Therefore, even if the condensing performance of the condenser temporarily decreases and the degree of vacuum of the condenser decreases, this does not pose a particular problem as long as the trip signal does not occur. According to performance studies, if half of the condenser tube bundle exhibits normal condensing performance for a short period of time during a backwash transient, normal operation of the power plant is possible due to the margin until the trip signal is generated. It is. In fact, in many power plants that have two pipe bundles and are equipped with backwash valves, the supply of cooling water to the condenser to one pipe bundle is temporarily stopped during a transient period of backwash operation. , the other one exhibits normal condensing performance, so it is operated without reducing the load on the power plant.

本発明においても、正洗から逆洗、または逆洗から正洗
へ移行する近渡時においても、常に半分の管束は正規の
凝縮性能を発揮するため、発電プラントの負荷を低下さ
せることなく移行することが可能となる。
In the present invention, even when transitioning from forward washing to backwashing or from backwashing to normal washing, half of the tube bundles always exhibit normal condensing performance, so the transition can be made without reducing the load on the power plant. It becomes possible to do so.

捷た、第g図に示す状態においCも、抱水器全体の冷却
水吐は規定@確保されている。この時の冷却管内流速は
規定値の約半分である。一般に、復水器の凝縮性能は、
冷却面積に比例し、冷却管内流速の4乗に比例すること
が知られている。したがって、第g図の状態は管束の半
分が正規の凝縮性能を発揮している状態(例えは第り図
の状態)と比較して約7.j倍の凝縮性能を有している
ことが解る。このことから、第r図に示す状態において
も過渡時の負荷変化は不要となる。
Even in the broken state shown in Fig. g, the cooling water outlet of the entire water container is maintained as specified. At this time, the flow velocity in the cooling pipe is approximately half of the specified value. Generally, the condensing performance of a condenser is
It is known that it is proportional to the cooling area and proportional to the fourth power of the flow velocity in the cooling pipe. Therefore, the state shown in Fig. g is approximately 7.5% compared to the state in which half of the tube bundle is exhibiting normal condensing performance (for example, the state shown in Fig. 3). It can be seen that the condensation performance is j times higher. Therefore, even in the state shown in Fig. r, there is no need to change the load during a transient period.

なお上述した実施例においては、バイパス配管15の出
口側を暇1水配%12に合流接続したが、バイパス配管
15を単独で直接放水側へ導いてその管路上に第コの弁
/6を設けても良い。また、止弁r、第1 (D 弁i
、3、第2の弁/Aをそれぞれンレノイド弁で構成し、
シーケンシャル制@ VCよって全自動的に操作するこ
ともできろ。
In the above-described embodiment, the outlet side of the bypass pipe 15 was connected to the 1st water pipe % 12, but the bypass pipe 15 was directly led to the water discharge side and the No. 6 valve was installed on the pipe. It may be provided. In addition, stop valve r, first (D valve i
, 3. Each of the second valves/A is composed of an lenoid valve,
It can also be operated fully automatically using a sequential system @ VC.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、正洗
状態から逆洗状態へまたは逆洗状態から正洗状態へ移行
する過渡時に発電プラントの負荷を低下させる必要がな
いので、負荷変化回数が少なくなり、プラントの連転操
作が容易となる。また、年間を通じての発電プラントの
熱効率は増加し、かつ発電プラントの信頼性が向上しプ
ラント寿命を延長できる。
As is clear from the above description, according to the present invention, there is no need to reduce the load of the power generation plant during the transition from the forward washing state to the backwashing state or from the backwashing state to the normal washing state. The number of times is reduced, making continuous operation of the plant easier. Additionally, the thermal efficiency of the power plant throughout the year is increased, and the reliability of the power plant is improved, extending the plant life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の復水器の冷却系統を示した系統図、第2
図はその逆洗時における作動説明図、第3図は従来の復
水器冷却系統における逆洗弁の弁体の中立位置を示した
説明図、第グ図は逆洗弁の弁位置と冷却水流1の関係を
示した線図、第5図は本発明による復水器の冷却系統の
正洗時の状態を示した系統図、机z図乃至第70図は正
洗時から逆洗時に移行する途中の状態を示した過渡時に
おけろ系統図、第1/図は本発明による復水器の冷却系
統の逆洗時の状態を示した系統図である。 /・・・復水器1.2a・・・入口氷室、2D・出口氷
室、3・・・後部氷室、ja・入口管束、jb・出口管
束、2・・取水ポンプ、り・逆洗弁、10・給水配管、
//・抽水配管、/、2−わ1゛水配管、/3・・第1
の弁、15・バイバヌ配管、/6・卯λの弁。 出願人代理人  猪  股     清第1 M 粥2図 栴3図    半4図 ′$15図 第8図 第11図
Figure 1 is a system diagram showing the cooling system of a conventional condenser.
Figure 3 is an explanatory diagram of the operation during backwashing, Figure 3 is an explanatory diagram showing the neutral position of the valve body of the backwash valve in a conventional condenser cooling system, and Figure 3 is the valve position and cooling of the backwash valve. A line diagram showing the relationship of water flow 1, Fig. 5 is a system diagram showing the state of the cooling system of the condenser according to the present invention during normal washing, and Figs. FIG. 1 is a system diagram showing a state during backwashing of the cooling system of a condenser according to the present invention. /... Condenser 1.2a... Inlet ice chamber, 2D/Outlet ice chamber, 3... Rear ice chamber, JA/Inlet tube bundle, JB/Outlet tube bundle, 2... Water intake pump, Ri/Backwash valve, 10. Water supply piping,
//・Water piping, /, 2-1゛Water piping, /3...1st
valve, 15. Baibanu piping, /6. Rabbit λ valve. Applicant's agent Kiyoshi Inomata 1st M Congee 2 Figure 3 Half 4 figures '$15 Figure 8 Figure 11

Claims (1)

【特許請求の範囲】[Claims] 取水ポンプから給水配管に導入された冷却水を入口氷室
を通して復水器の入口管束に導き、この入口管束から流
出した冷却水を後部氷室を通して出口管束に導入し、こ
の出口管束から出口水室内に流出した冷却水を排水配管
を通して排出するようにした/管束ユパス復水器におい
て;上記給水配管と排水配管とを四つのボートを備えた
逆洗弁で連結し、この逆洗弁の下流側の排水配管−Fに
第1の弁を組込む一方、上記後部氷室よりバイパス配管
を導出し、このバイパス配管の管路上に第二の弁を組込
みその出口端を放水側へ導いたことを特徴とする復水器
の冷却水系統。
The cooling water introduced into the water supply piping from the water intake pump is guided through the inlet ice chamber to the inlet tube bundle of the condenser, and the cooling water flowing out from this inlet tube bundle is introduced into the outlet tube bundle through the rear ice chamber, and from this outlet tube bundle into the outlet water chamber. Outflowed cooling water is discharged through drainage piping/in the tube bundle Yupas condenser; the above water supply piping and drainage piping are connected by a backwash valve equipped with four boats, and the downstream side of this backwash valve is A first valve is installed in the drainage pipe-F, while a bypass pipe is led out from the rear ice chamber, and a second valve is installed on the pipe path of the bypass pipe, and its outlet end is guided to the water discharge side. Condenser cooling water system.
JP401883A 1983-01-13 1983-01-13 Cooling water system for condenser Granted JPS59129385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP401883A JPS59129385A (en) 1983-01-13 1983-01-13 Cooling water system for condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP401883A JPS59129385A (en) 1983-01-13 1983-01-13 Cooling water system for condenser

Publications (2)

Publication Number Publication Date
JPS59129385A true JPS59129385A (en) 1984-07-25
JPH041270B2 JPH041270B2 (en) 1992-01-10

Family

ID=11573228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP401883A Granted JPS59129385A (en) 1983-01-13 1983-01-13 Cooling water system for condenser

Country Status (1)

Country Link
JP (1) JPS59129385A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622305U (en) * 1992-07-07 1994-03-22 紀雄 中西 Lower body underwear with diaper storage
JP2013076489A (en) * 2011-09-29 2013-04-25 Toshiba Corp Heat exchanger
CN105910454A (en) * 2016-05-17 2016-08-31 山东泓奥电力科技有限公司 Direct high back pressure heat supply system of indirect air cooling unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622305U (en) * 1992-07-07 1994-03-22 紀雄 中西 Lower body underwear with diaper storage
JP2013076489A (en) * 2011-09-29 2013-04-25 Toshiba Corp Heat exchanger
CN105910454A (en) * 2016-05-17 2016-08-31 山东泓奥电力科技有限公司 Direct high back pressure heat supply system of indirect air cooling unit

Also Published As

Publication number Publication date
JPH041270B2 (en) 1992-01-10

Similar Documents

Publication Publication Date Title
CN113404563B (en) Low-pressure cylinder cutting heat supply unit low-heating and back-heating system
JP5739302B2 (en) Condenser cooling water system
JPS59129385A (en) Cooling water system for condenser
CN209689091U (en) A kind of mixed water control system of Novel middle-temperature water
US4561255A (en) Power plant feedwater system
JPS5995383A (en) Cooling water system for condenser
JPS6122724B2 (en)
JPH074208A (en) Steam turbine with steam-steam reheater and usage thereof
CN206300402U (en) A kind of high-pressure cooling water system
JPH07305997A (en) Cooling system equipment
CN217541641U (en) Built-in seawater backwashing device of marine heat exchanger
JPS62202973A (en) Heat pump of multi-circuit
JP3759083B2 (en) Steam turbine plant
JP7040269B2 (en) Drain collection system
JP3597683B2 (en) Nuclear power plant
JPH07151492A (en) Cooling water cooler
JPH037869B2 (en)
SU1657851A1 (en) Systems of cooling boilers for converter gases
JPS63238397A (en) Condenser cooling pipe cleaning device
JPS6134073B2 (en)
JPH0545076A (en) Condenser water circulating device
JPS62245083A (en) Auxiliary equipment cooling system
JPH0663607B2 (en) Turbine plant with feedwater heater drain injection device
CS204461B1 (en) Connection for optimal operation of the vapour-current pump of condensing and bleeder turbines
JPS60138493A (en) Water-level equalizing piping device for plurality of apparatus