JPH041270B2 - - Google Patents
Info
- Publication number
- JPH041270B2 JPH041270B2 JP401883A JP401883A JPH041270B2 JP H041270 B2 JPH041270 B2 JP H041270B2 JP 401883 A JP401883 A JP 401883A JP 401883 A JP401883 A JP 401883A JP H041270 B2 JPH041270 B2 JP H041270B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- valve
- pipe
- condenser
- cooling water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 117
- 239000000498 cooling water Substances 0.000 claims description 51
- 238000001816 cooling Methods 0.000 description 15
- 238000011001 backwashing Methods 0.000 description 13
- 238000005406 washing Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B9/00—Auxiliary systems, arrangements, or devices
- F28B9/04—Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は1管束2パス復水器における冷却水系
統に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling water system in a one-tube bundle two-pass condenser.
発電プラントにおいて、タービンで仕事を終え
たタービン排気は復水器へ導かれ、冷却されて凝
縮し、復水となつて再びボイラや熱交換器に導入
される。
In a power generation plant, the turbine exhaust gas that has completed its work in the turbine is led to a condenser, where it is cooled and condensed, becoming condensed water and being reintroduced to the boiler or heat exchanger.
復水器は、タービン排気量が少ない場合には1
復水器当り1管束構成とされ、また必要冷却水量
が少ない場合には、復水器の復水冷却管本数は少
なく、かつ冷却管長が長いことが必要とされるの
で、1管束を2区画に区分し、冷却水が管束内を
往復するようにした1管束2パス型の復水器が使
用される。 The condenser is 1 if the turbine displacement is small.
If the condenser is configured with one tube bundle and the required amount of cooling water is small, the number of condensate cooling pipes in the condenser is small and the length of the cooling pipes is required to be long, so one tube bundle is divided into two sections. A 1-tube bundle, 2-pass type condenser is used in which the cooling water is divided into two sections and the cooling water reciprocates within the tube bundle.
復水器の冷却水としては、通常、海水が使用さ
れるが、海水中には貝類や木片等の異物が含まれ
ているので、これらの異物が冷却管内に詰つた
り、冷却管の入口側を閉塞したりするおそれがあ
る。 Seawater is normally used as the cooling water for condensers, but seawater contains foreign objects such as shellfish and wood chips, so these foreign objects can clog the cooling pipes or block the entrances of the cooling pipes. There is a risk of blocking the side.
そのため、発電プラントでは、異物を除去する
目的で、冷却水を冷却管の逆方向から流す、いわ
ゆる逆洗運転が行なわれる。この逆洗運転の回数
は、異物の量によつても異なるが、多い場合には
1日1回の割合で行なわれる。 Therefore, in power plants, a so-called backwash operation is performed in which cooling water is flowed from the opposite direction of cooling pipes in order to remove foreign substances. The number of times this backwash operation is performed varies depending on the amount of foreign matter, but if there is a large amount, it is performed once a day.
逆洗運転を行なう系統では、4個のポートを備
え、内蔵された弁体の切換えによつて水流方向を
変化させる逆洗弁が使用されている。 In systems that perform backwash operation, a backwash valve is used that has four ports and changes the direction of water flow by switching a built-in valve body.
第1図は、この逆洗弁を備えた1管束2パス型
の復水器冷却水系統を示す。同図において、復水
器1は水室2と中間水室3を備えており、前記水
室2は仕切板4によつて入口水室2aと出口水室
2bとに区画されている。また、復水器1内に配
置された複数本の冷却管は入口水室2aと中間水
室3を連結する入口管束5aと、中間水室3と出
口水室2bを連結する出口管束5bに区分されて
いる。 FIG. 1 shows a one-tube bundle two-pass type condenser cooling water system equipped with this backwash valve. In the figure, a condenser 1 includes a water chamber 2 and an intermediate water chamber 3, and the water chamber 2 is divided by a partition plate 4 into an inlet water chamber 2a and an outlet water chamber 2b. Further, the plurality of cooling pipes arranged in the condenser 1 are divided into an inlet pipe bundle 5a that connects the inlet water chamber 2a and the intermediate water chamber 3, and an outlet pipe bundle 5b that connects the intermediate water chamber 3 and the outlet water chamber 2b. Separated.
正洗運転時において、取水ポンプ6によつて取
水管7に導入された冷却水は止弁8、逆洗弁9、
給水管10を経て入口水室2aに流入し、更に復
水器1内の入口束5a、中間水室3、出口管束5
b内を流れてタービン排気と熱交換を行なつた
後、出口水室2b、排水管11、逆洗弁9、放水
管12および第1の弁13を経て排出される。 During forward washing operation, the cooling water introduced into the water intake pipe 7 by the water intake pump 6 is passed through a stop valve 8, a backwash valve 9,
It flows into the inlet water chamber 2a through the water supply pipe 10, and further flows into the inlet bundle 5a, intermediate water chamber 3, and outlet tube bundle 5 in the condenser 1.
After exchanging heat with the turbine exhaust gas, the water is discharged through the outlet water chamber 2b, the drain pipe 11, the backwash valve 9, the water discharge pipe 12, and the first valve 13.
逆洗運転時には、第2図に示すように、逆洗弁
9の弁体9aを90゜回転させることにより冷却水
の流れの方向を逆転させる。すなわち、取水ポン
プ6によつて逆洗弁9に送込まれた冷却水は排水
管11から導入され、出口水室2b、出口管束5
b、中間水室3、入口管束5aの順に流れて熱交
換を行なつた後、入口水室2a、給水管10、逆
洗弁9、放水管12、第1の弁13を流れて排水
される。 During backwash operation, as shown in FIG. 2, the direction of flow of cooling water is reversed by rotating the valve body 9a of the backwash valve 9 by 90 degrees. That is, the cooling water sent to the backwash valve 9 by the water intake pump 6 is introduced from the drain pipe 11, and is then introduced into the outlet water chamber 2b and the outlet pipe bundle 5.
After flowing through the intermediate water chamber 3 and the inlet pipe bundle 5a in this order to exchange heat, the water flows through the inlet water chamber 2a, the water supply pipe 10, the backwash valve 9, the water discharge pipe 12, and the first valve 13 to be drained. Ru.
ところで、逆洗弁9が正洗状態から逆洗状態に
移行する際には、第3図に示すように、取水管7
から流入した冷却水が、抵抗の多い給水管10、
排水管11へは流入せずに直接、放水管12から
排水される状態を通過する。 By the way, when the backwash valve 9 shifts from the normal wash state to the backwash state, as shown in FIG.
The cooling water flowing in from the water supply pipe 10, which has a lot of resistance,
The water does not flow into the drain pipe 11, but directly drains from the water discharge pipe 12.
第4図は復水器1へ流入する冷却水流量が弁9
の弁体9aの変位に応じて変化する様子を示して
いる。この図から明らかなように、弁体9aが正
洗側に向いている時に100%正流として流れてい
た冷却水は弁体の変化に応じて徐々に減少し、一
旦流量零となつた後、逆洗側に流れ始め、100%
まで増加して行く。 Figure 4 shows that the flow rate of cooling water flowing into condenser 1 is determined by valve 9.
This shows how the valve body 9a changes depending on the displacement of the valve body 9a. As is clear from this figure, the cooling water that was flowing as a 100% normal flow when the valve body 9a was facing the forward flushing side gradually decreased as the valve body changed, and once the flow rate reached zero, , begins to flow to the backwash side, 100%
It increases until.
復水器はタービン排気を凝縮させる目的で設置
されているものであるから、前述のように冷却水
流量零の状態が短時間でも発生すると100%の負
荷を負担することができなくなり、真空度が低下
して発電プラントはトリツプすることになる。
The condenser is installed for the purpose of condensing the turbine exhaust, so if a state of zero cooling water flow occurs even for a short period of time, as mentioned above, it will not be able to bear 100% of the load, and the vacuum level will decrease. will drop and the power plant will trip.
この状態を避けるため、従来は、逆洗運転の開
始に先立つて発電プラントの設定負荷を30%程度
まで低下させた後、逆洗運転へ移行させるように
している。これは逆洗運転から正洗運転への移行
に際しても同様である。 To avoid this situation, conventionally, before starting backwash operation, the set load of the power plant is reduced to about 30%, and then the backwash operation is started. This also applies to the transition from backwash operation to forward wash operation.
しかしながら、逆洗運転や正洗運転への移行の
度毎に負荷を増加させることは発電プラントの運
転操作を複雑化する上、負荷操作は短時間では行
なえないため、年間を通しての発電プラントの熱
効率が低下し、プラント熱効率の向上を図る上で
の隘路となる。また、正、逆洗運転切換えのため
のプラント負荷操作は他の理由による負荷操作に
比較して回数が非常に多くなるため、発電プラン
トの信頼性を低下させる一因となる。 However, increasing the load each time the transition to backwashing or forward washing operation complicates the operation of the power plant, and load control cannot be performed in a short period of time, which improves the thermal efficiency of the power plant throughout the year. This results in a bottleneck in improving plant thermal efficiency. In addition, the number of plant load operations required to switch between forward and backwash operations is much greater than load operations for other reasons, which is a factor in reducing the reliability of the power plant.
本発明は上述した従来技術の欠点を除去すべく
なされたもので、逆洗運転および正洗運転への移
行時にプラント負荷を低下させる必要をなくした
復水器冷却水系統を提供することを目的とするも
のである。 The present invention has been made to eliminate the drawbacks of the prior art described above, and an object of the present invention is to provide a condenser cooling water system that eliminates the need to reduce the plant load when transitioning to backwash operation and forward wash operation. That is.
上記目的を達成するために、本発明は、互いに
区画された入口水室と出口水室とを中間水室を介
して管束で結んだ1管束2パス型の復水器への冷
却水系統に、弁体の位置によつて上記復水器へ供
給する冷却水の流れ方向の正逆の切換えをするた
めの逆洗弁を備え、冷却水を取水ポンプによつて
取り込む取水管の放出端と、上記入口水室に冷却
水を導入する給水管の吸込端と、上記出口水室か
ら冷却水を導出する排出管の放出端と、冷却水を
放水側に導く放水管の吸込端とを夫々上記逆洗弁
の4つの各ポートに接続した復水器冷却水系統に
おいて、上記放水管の途中に第1の弁を設けると
ともに、復水器の上記中間水室から引き出したバ
イパス配管の終端を第2の弁を介して上記放水管
の第1弁の下流側に接続したことを特徴とするも
のである。
In order to achieve the above object, the present invention provides a cooling water system for a condenser of a one-tube bundle two-pass type in which an inlet water chamber and an outlet water chamber that are separated from each other are connected by a tube bundle via an intermediate water chamber. , equipped with a backwash valve for switching the flow direction of the cooling water supplied to the condenser between forward and reverse depending on the position of the valve body, and a discharge end of the water intake pipe that takes in the cooling water by the water pump; , a suction end of a water supply pipe that introduces cooling water into the inlet water chamber, a discharge end of a discharge pipe that leads out cooling water from the outlet water chamber, and a suction end of a water discharge pipe that leads the cooling water to the water discharge side, respectively. In the condenser cooling water system connected to each of the four ports of the above-mentioned backwash valve, a first valve is provided in the middle of the above-mentioned water discharge pipe, and the terminal end of the bypass pipe drawn out from the above-mentioned intermediate water chamber of the condenser is It is characterized in that it is connected to the downstream side of the first valve of the water discharge pipe via a second valve.
本発明によれば、第1弁、第2弁の開閉操作に
よつて、冷却水の流れ方向の正逆の中立位置に逆
洗弁の弁体があるときでも、給水管、排水管を分
流して復水器に導入された冷却水がバイパス配管
から放出管に導出されることによつて、少なくと
も冷却水の正規の流量の半分は確保され、他方、
弁体が中立位置にあるとき以外は、正規の全流量
が復水器内を流れる。
According to the present invention, by opening and closing the first valve and the second valve, the water supply pipe and the drain pipe can be separated even when the valve body of the backwash valve is in the neutral position in the forward and reverse directions of the cooling water flow. By leading the cooling water that has been introduced into the condenser from the bypass pipe to the discharge pipe, at least half of the normal flow rate of the cooling water is secured, and on the other hand,
Normal full flow flows through the condenser except when the valve body is in the neutral position.
以下、第5図乃至第11図を参照して本発明の
実施例とその作用を説明する。なお、これらの図
において、白抜きの弁は開状態を示し、黒塗りの
弁は閉状態を示すものとする。
Embodiments of the present invention and their effects will be described below with reference to FIGS. 5 to 11. In addition, in these figures, white valves indicate an open state, and black valves indicate a closed state.
第5図において、復水器1は1管束2パス型復
水器を示し、この復水器1は水室2と中間水室3
とを備えており、水室2は仕切板4によつて入口
水室2aと出口水室2bとに区画されている。ま
た復水器1内に配置された複数本の冷却管の管束
によつて上記入口水室2aと出口水室2bとは中
間水室3を介して連通し、この管束は入口水室2
aと中間水室3とを連絡する入口管束5aと、中
間水室3と出口水室2bを連結する出口管束5b
とから成り立つている。 In FIG. 5, the condenser 1 shows a 1-tube bundle 2-pass type condenser, and this condenser 1 has a water chamber 2 and an intermediate water chamber 3.
The water chamber 2 is divided by a partition plate 4 into an inlet water chamber 2a and an outlet water chamber 2b. Further, the inlet water chamber 2a and the outlet water chamber 2b communicate with each other via the intermediate water chamber 3 by a tube bundle of a plurality of cooling tubes arranged in the condenser 1, and this tube bundle is connected to the inlet water chamber 2.
an inlet pipe bundle 5a that connects the intermediate water chamber 3 and the intermediate water chamber 3; and an outlet pipe bundle 5b that connects the intermediate water chamber 3 and the outlet water chamber 2b.
It is made up of.
次に、このような復水器1に冷却水を供給、排
出する冷却系統について説明する。取水ポンプ6
の吐出側には取水管7が接続され、その放出端
は、途中に止弁8を介して4つのポートを有する
逆洗弁9の一のポートに接続されている。この逆
洗弁9の他の2のポートは夫々上記入口水室2a
と吸水管10で接続されると共に、出口水室2b
と排水管11で接続されている。さらに、逆洗弁
9の残りのポートには放水管12が接続され、出
口端が放出側に導かれる一方、管路上には第1の
弁13が組込まれている。なお、逆洗弁9は、弁
体9aの回転位置によつて上記流路の切換を行う
ことによつて、復水器1内を循環する冷却水の流
れ方向の正逆を選択的に切換えることができる。 Next, a cooling system that supplies and discharges cooling water to such a condenser 1 will be explained. Water intake pump 6
A water intake pipe 7 is connected to the discharge side of the water intake pipe 7, and its discharge end is connected via a stop valve 8 in the middle to one port of a backwash valve 9 having four ports. The other two ports of this backwash valve 9 are respectively connected to the inlet water chamber 2a.
and the outlet water chamber 2b.
and is connected by a drain pipe 11. Further, a water discharge pipe 12 is connected to the remaining ports of the backwash valve 9, and the outlet end is guided to the discharge side, while a first valve 13 is installed on the pipe. Note that the backwash valve 9 selectively switches the flow direction of the cooling water circulating in the condenser 1 between forward and reverse by switching the flow path according to the rotational position of the valve body 9a. be able to.
しかして、本発明によれば、上記復水器1の中
間水室3よりバイパス配管15が導出され、その
管路の終端は、上記第1の弁13の下流側の放水
管12に接続され、このバイパス配管15上には
第2の弁16が組み込まれている。 According to the present invention, a bypass pipe 15 is led out from the intermediate water chamber 3 of the condenser 1, and the end of the pipe is connected to the water discharge pipe 12 downstream of the first valve 13. A second valve 16 is installed on this bypass piping 15.
次に正洗より逆洗に至る操作手順を第5図乃至
第11図を参照して説明するが、第5図は正洗時
の状態を示し、第11図が逆洗時の状態を示し、
第6図乃至第10図は通渡時の状態を示してい
る。 Next, the operating procedure from forward washing to backwashing will be explained with reference to Figs. 5 to 11. Fig. 5 shows the state during normal washing, and Fig. 11 shows the state during backwashing. ,
6 to 10 show the state at the time of delivery.
(1) 正洗時(第5図参照)
この状態では、止弁8および第1の弁13が
開かれ、第2の弁16は閉じられている。した
がつて、取水ポンプ6から取水管7内に導入さ
れた冷却水は、止弁8、逆洗弁9、給水管1
0、入口水室2aを通して復水器1内に導入さ
れ、入口管束5aでその外側を流れるタービン
排気から吸熱し、中間水室3を経て出口管束5
bを流れる際、再びタービン排気から吸熱した
後、排水管11、逆洗弁9、放水管12、第1
の弁13を経由して海中に排出される。(1) During normal washing (see Fig. 5) In this state, the stop valve 8 and the first valve 13 are opened, and the second valve 16 is closed. Therefore, the cooling water introduced into the water intake pipe 7 from the water intake pump 6 passes through the stop valve 8, the backwash valve 9, and the water supply pipe 1.
0, it is introduced into the condenser 1 through the inlet water chamber 2a, absorbs heat from the turbine exhaust gas flowing outside at the inlet tube bundle 5a, and passes through the intermediate water chamber 3 to the outlet tube bundle 5.
When flowing through b, after absorbing heat from the turbine exhaust again, the drain pipe 11, the backwash valve 9, the water discharge pipe 12, the first
is discharged into the sea via the valve 13.
(2) 通渡時(第6図乃至第10図に示した状態)
先ず第5図に示した状態から第2の弁16を
全開する。すると、入口管束5aより中間水室
3内に導入された冷却水は2分され、その一部
は出口管束5bを通して排水管11、逆洗弁
9、第1の弁13を経由して放水管12内を流
れ、残りの一部は中間水室3よりバイパス配管
15内を流れ、第2の弁16を通して放水管1
2内の流れに合流する。この出口管束5bには
冷却水の一部が流れるが入口管束5aには冷却
水の全量が流れる(第6図参照)。(2) During transit (state shown in FIGS. 6 to 10) First, from the state shown in FIG. 5, the second valve 16 is fully opened. Then, the cooling water introduced into the intermediate water chamber 3 from the inlet pipe bundle 5a is divided into two parts, and a part of it is passed through the outlet pipe bundle 5b, the drain pipe 11, the backwash valve 9, and the first valve 13 to the water discharge pipe. 12, and the remaining part flows from the intermediate water chamber 3 into the bypass pipe 15, and passes through the second valve 16 to the water discharge pipe 1.
Join the flow within 2. A portion of the cooling water flows through the outlet tube bundle 5b, while the entire amount of cooling water flows through the inlet tube bundle 5a (see FIG. 6).
次に逆洗弁9の弁体9aをそのままにして第1
の弁13を全閉する。すると、入口管束5aより
中間水室3内に導入された冷却水の全量がバイパ
ス配管15より流出し第2の弁16を通つて放水
管12内に排出され、この間出口管束5bを流れ
る冷却水の流量は零となる(第7図参照)。 Next, leaving the valve body 9a of the backwash valve 9 as it is, the first
Fully close valve 13. Then, the entire amount of cooling water introduced into the intermediate water chamber 3 from the inlet pipe bundle 5a flows out from the bypass pipe 15, passes through the second valve 16, and is discharged into the water discharge pipe 12, and during this time, the cooling water flowing through the outlet pipe bundle 5b The flow rate becomes zero (see Figure 7).
次いで逆洗弁9の弁体9aを第8図に示したよ
うに中立位置に切換えると、取水ポンプ6より止
弁8を通して逆洗弁9に流れ込んだ冷却水は、弁
体9aの両側を分流し、給水管10、および排水
管11内を平行して流れ、入口水室2aと出口水
室2bに流入し、入口管束5aと出口管束5b内
を矢視方向へ流れ、中間水室3内で合流し、バイ
パス配管15および第2の弁16を経由して放水
管12内へ流出する(第8図参照)。この状態で
は入口管束5aと出口管束5b内を冷却水の全流
量の50%ずつが流れ、出口管束5b内の逆洗が開
始される。 Next, when the valve body 9a of the backwash valve 9 is switched to the neutral position as shown in FIG. It flows in parallel in the sink, water supply pipe 10, and drain pipe 11, flows into the inlet water chamber 2a and outlet water chamber 2b, flows in the direction of the arrow in the inlet pipe bundle 5a and outlet pipe bundle 5b, and flows in the intermediate water chamber 3. and flows out into the water discharge pipe 12 via the bypass pipe 15 and the second valve 16 (see FIG. 8). In this state, 50% of the total flow rate of the cooling water flows through the inlet tube bundle 5a and the outlet tube bundle 5b, and backwashing in the outlet tube bundle 5b is started.
次いで逆洗弁9の弁体9aを時計方向に45゜回
動させ第9図に示した位置におくと、取水ポンプ
6から吐出される冷却水の全量が、止弁8、逆洗
弁9、排水管11を通して出口水室2b内に導入
され、その全量が出口管束5b内を逆洗方向に流
れ、中間水室3、バイパス配管15、第2の弁1
6を経由して放水管12より排出される(第9図
参照)。 Next, when the valve body 9a of the backwash valve 9 is rotated 45 degrees clockwise and placed in the position shown in FIG. , is introduced into the outlet water chamber 2b through the drain pipe 11, the entire amount flows in the outlet pipe bundle 5b in the backwash direction, and the intermediate water chamber 3, the bypass pipe 15, the second valve 1
6 and is discharged from the water discharge pipe 12 (see Fig. 9).
さらに第9図に示した状態から第1の弁13の
みを全開すると、出口管束5bを通して中間水室
3内に導入された冷却水の一部が、入口管束5a
内を逆洗方向に流れ、入口水室2a、給水管1
0、逆水弁9、第1の弁13および放水管12を
通して排出される。なお、この状態では、流量は
減少するが、残りの冷却水がバイパス配管15内
を流れ第2の弁16を経由して放水管12より排
出される(第10図参照)。 Furthermore, when only the first valve 13 is fully opened from the state shown in FIG.
Flows in the backwash direction inside the inlet water chamber 2a, water supply pipe 1
0, is discharged through the backwater valve 9, the first valve 13 and the water discharge pipe 12. In this state, although the flow rate decreases, the remaining cooling water flows through the bypass pipe 15 and is discharged from the water discharge pipe 12 via the second valve 16 (see FIG. 10).
最後に第10図に示した状態から第2の弁16
のみを全閉すると、バイパス配管15を経由した
排出が停止されるから、中間水室3内に導かれた
冷却水の全量が入口管束5a内を逆洗方向に流
れ、給水管10、逆洗弁9、第1の弁13、放水
管12を通して排出される。この状態では入口管
束5aと出口管束5b内を冷却水の全量がそれぞ
れ逆洗方向に流れる(第11図参照)。 Finally, from the state shown in FIG.
When only the water supply pipe 10 is fully closed, the discharge via the bypass pipe 15 is stopped, so the entire amount of cooling water introduced into the intermediate water chamber 3 flows through the inlet pipe bundle 5a in the backwash direction, and the water supply pipe 10 and the backwash flow are completely closed. It is discharged through the valve 9, the first valve 13 and the water discharge pipe 12. In this state, the entire amount of cooling water flows in the inlet tube bundle 5a and the outlet tube bundle 5b in the backwash direction (see FIG. 11).
なお、逆洗より正逆に至る弁操作は上述の操作
を逆に行えばよく、冷却水の流れも全く同様とな
る。 In addition, the valve operation from backwashing to normal/reversal can be performed by performing the above-mentioned operation in reverse, and the flow of cooling water will be exactly the same.
このように第8図に示す通渡時以外において
は、いずれも冷却水の全量が入口管束5a又は出
口管束5bのいずれか又は両方を常に流れること
になり、結果として復水器管束の半分以上は常に
正規の凝縮性能を発揮することになる。 In this way, the entire amount of cooling water always flows through either or both of the inlet tube bundle 5a and the outlet tube bundle 5b, except during the time of passage shown in FIG. 8, and as a result, more than half of the condenser tube bundle will always exhibit normal condensing performance.
ところで、発電プラントにおける復水器の真空
度は、一般に定格運転時において、
約720mmHgに設定されて運転されている。一
方、復水器の真空度以下による発電プラントのト
リツプ信号は、一般に600mmHg前後に設定されて
おり、定格運転時に対し100mmHg以上の余裕を有
している。したがつて、復水器の凝縮性能が一時
的に減少、復水器の真空度が低下してもトリツプ
信号発生迄に至らなければ特に大きな問題とはな
らない。性能検討によれば、逆洗通渡時の短時間
であれば復水器管束の半分が正規の凝縮性能を発
揮していれば、トリツプ信号発生迄の余裕のため
発電プラントの正規の運転が可能である。実際に
2管束を有し、逆洗弁を設置した復水器冷却水系
統を有する多くの発電プラントにおいては、逆洗
運転の過渡時に一方の管束には復水器への冷却水
供給が過渡時的に停止することになるが、他方の
一方が正規の凝縮性能を発揮するため、発電プラ
ントの負荷を低下させずに運転されている。 By the way, the degree of vacuum in a condenser in a power generation plant is generally set to about 720 mmHg during rated operation. On the other hand, the trip signal of a power plant due to the vacuum level of the condenser or less is generally set at around 600 mmHg, which has a margin of more than 100 mmHg compared to the rated operation. Therefore, even if the condensing performance of the condenser temporarily decreases and the degree of vacuum of the condenser decreases, it will not be a particular problem as long as the trip signal does not occur. According to the performance study, if half of the condenser tube bundle is exhibiting normal condensing performance for a short period of time during backwashing, normal operation of the power plant will not be possible due to the margin until the trip signal is generated. It is possible. In fact, in many power plants that have two pipe bundles and a condenser cooling water system equipped with a backwash valve, one pipe bundle has a transient supply of cooling water to the condenser during backwash operation. Although it will stop temporarily, the other one exhibits normal condensing performance, so it continues to operate without reducing the load on the power plant.
本発明においても、正洗から逆洗、または逆洗
から正洗においても、常に半分の管束は正規の凝
縮性能を発揮するため、発電プラントの負荷を低
下させることなく移行することが可能となる。 In the present invention, half of the tube bundles always exhibit the normal condensing performance from normal washing to backwashing, or from backwashing to normal washing, so it is possible to transition without reducing the load on the power plant. .
また、第8図に示す状態においても、復水器全
体の冷却水量は規定量確保されている。この時の
冷却管内流速は規定値の約半分である。一般に、
復水器の凝縮性能は、冷却面積に比例し、冷却管
内流速の1/2乗に比例することが知られてい
る。したがつて、第8図の状態は管束の半分が正
規の凝縮性能を発揮している状態(例えば第9図
の状態)と比較して約1.4倍の凝縮性能を有して
いることが解る。このことから、第8図に示す状
態においても過渡時の負荷変化は不要となる。 Further, even in the state shown in FIG. 8, the amount of cooling water in the entire condenser is maintained at a specified amount. At this time, the flow velocity in the cooling pipe is approximately half of the specified value. in general,
It is known that the condensing performance of a condenser is proportional to the cooling area and proportional to the 1/2 power of the flow rate in the cooling pipe. Therefore, it can be seen that the state shown in Figure 8 has a condensing performance approximately 1.4 times higher than the state in which half of the tube bundle is exhibiting normal condensing performance (for example, the state shown in Figure 9). . From this, even in the state shown in FIG. 8, there is no need to change the load during transients.
なお上述した実施例においては、バイパス配管
15の出口側を放水管12に合流接続したが、バ
イパス配管15を単独で直接放水側へ導いてその
管路上に第2の弁16を設けても良い。また、止
弁8、第1の弁13、第2の弁16をそれぞれソ
レノイド弁で構成し、シーケンシヤル制御によつ
て全自動的に操作することもできる。 In the above embodiment, the outlet side of the bypass pipe 15 is connected to the water discharge pipe 12, but the bypass pipe 15 may be directly led to the water discharge side and the second valve 16 may be provided on the pipe. . Further, the stop valve 8, the first valve 13, and the second valve 16 can each be constructed with a solenoid valve, and can be operated fully automatically by sequential control.
以上の説明から明らかなように、本発明によれ
ば、正洗状態から逆洗状態へまたは逆洗状態から
正洗状態へ移行する過渡時に発電プラントの負荷
を低下させる必要がないので、負荷変化回数が少
なくなり、プラントの運転操作が容易となる。ま
た、年間を通じての発電プラントの熱効率は増加
し、かつ発電プラントの信頼性が向上しプラント
寿命を延長できる。
As is clear from the above description, according to the present invention, there is no need to reduce the load of the power generation plant during the transition from the forward washing state to the backwashing state or from the backwashing state to the normal washing state. The number of times is reduced, making plant operation easier. Additionally, the thermal efficiency of the power plant throughout the year is increased, and the reliability of the power plant is improved, extending the plant life.
第1図は従来の復水器冷却系統を示した系統
図、第2図はその逆洗時における作動説明図、第
3図は従来の復水器冷却系統における逆洗弁の弁
体の中立位置を示した説明図、第4図は逆洗弁の
弁位置と冷却水流量の関係を示した線図、第5図
は本発明による復水器冷却系統の正洗時の状態を
示した系統図、第6図乃至第10図は正洗時から
逆洗時に移行する途中の状態を示した過渡時にお
ける系統図、第11図は本発明による復水器冷却
系統の逆洗時の状態を示した系統図である。
1……復水器、2a……入口水室、2b……出
口水室、3……中間水室、5a……入口管束、5
b……出口管束、6……取水ポンプ、7……取水
管、9……逆洗弁、10……給水管、11……排
水管、12……放水管、13……第1の弁、15
……バイパス配管、16……第2の弁。
Figure 1 is a system diagram showing a conventional condenser cooling system, Figure 2 is an explanatory diagram of its operation during backwashing, and Figure 3 is the neutral state of the valve body of the backwash valve in the conventional condenser cooling system. An explanatory diagram showing the position, Fig. 4 is a diagram showing the relationship between the valve position of the backwash valve and the flow rate of cooling water, and Fig. 5 shows the state of the condenser cooling system during normal washing according to the present invention. System diagrams, Figures 6 to 10 are system diagrams during transition showing the state in the middle of transition from normal washing to backwashing, and Figure 11 is a state of the condenser cooling system during backwashing according to the present invention. FIG. 1... Condenser, 2a... Inlet water chamber, 2b... Outlet water chamber, 3... Intermediate water chamber, 5a... Inlet pipe bundle, 5
b... Outlet pipe bundle, 6... Water intake pump, 7... Water intake pipe, 9... Backwash valve, 10... Water supply pipe, 11... Drain pipe, 12... Water discharge pipe, 13... First valve , 15
...Bypass piping, 16...Second valve.
Claims (1)
間水室を介して管束で結んだ1管束2パス型の復
水器への冷却水系統に、弁体の位置によつて上記
復水器へ供給する冷却水の流れ方向の正逆の切換
えをするための逆洗弁を備え、冷却水を取水ポン
プによつて取り込む取水管の放出端と、上記入口
水室に冷却水を導入する給水管の吸込端と、上記
出口水室から冷却水を導出する排水管の放出端
と、冷却水を放水側に導く放水管の吸込端とを
夫々上記逆洗弁の4つの各ポートに接続した複水
器冷却水系統において、 上記放水管の途中に第1の弁を設けるととも
に、復水器の上記中間水室から引き出したバイパ
ス配管の終端を第2の弁を介して上記放水管の第
1の弁の下流側に接続したことを特徴とする複水
器冷却水系統。[Claims] 1. The position of a valve body in a cooling water system to a one-tube bundle, two-pass type condenser, in which an inlet water chamber and an outlet water chamber, which are separated from each other, are connected by a tube bundle via an intermediate water chamber. a discharge end of a water intake pipe that takes in cooling water by a water pump, and a backwash valve for switching the flow direction of the cooling water supplied to the condenser between forward and reverse; The suction end of the water supply pipe that introduces cooling water into the water chamber, the discharge end of the drain pipe that leads the cooling water from the outlet water chamber, and the suction end of the water discharge pipe that leads the cooling water to the water discharge side are respectively connected to the backwash valve. In the double water unit cooling water system connected to each of the four ports, a first valve is provided in the middle of the water discharge pipe, and a second valve is installed at the end of the bypass pipe led out from the intermediate water chamber of the condenser. A double water device cooling water system, characterized in that it is connected to the downstream side of the first valve of the water discharge pipe through the water discharge pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP401883A JPS59129385A (en) | 1983-01-13 | 1983-01-13 | Cooling water system for condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP401883A JPS59129385A (en) | 1983-01-13 | 1983-01-13 | Cooling water system for condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59129385A JPS59129385A (en) | 1984-07-25 |
JPH041270B2 true JPH041270B2 (en) | 1992-01-10 |
Family
ID=11573228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP401883A Granted JPS59129385A (en) | 1983-01-13 | 1983-01-13 | Cooling water system for condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59129385A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0622305U (en) * | 1992-07-07 | 1994-03-22 | 紀雄 中西 | Lower body underwear with diaper storage |
JP2013076489A (en) * | 2011-09-29 | 2013-04-25 | Toshiba Corp | Heat exchanger |
CN105910454A (en) * | 2016-05-17 | 2016-08-31 | 山东泓奥电力科技有限公司 | Direct high back pressure heat supply system of indirect air cooling unit |
-
1983
- 1983-01-13 JP JP401883A patent/JPS59129385A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59129385A (en) | 1984-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61276698A (en) | Heat exchanger | |
CN113404563A (en) | Low-pressure cylinder cutting heat supply unit low-heating and back-heating system | |
JPH041270B2 (en) | ||
US4561255A (en) | Power plant feedwater system | |
JPS5995383A (en) | Cooling water system for condenser | |
JPH037869B2 (en) | ||
JPH01155917A (en) | Rotary type strainer | |
JPS62202973A (en) | Heat pump of multi-circuit | |
US6276446B1 (en) | Recooling system | |
JPS6162799A (en) | Back-washing device in double flow type condensor | |
JPS58152196A (en) | Blade opening angle controlling apparatus for movable blade type circulating water pump | |
JPH07151492A (en) | Cooling water cooler | |
JP3944319B2 (en) | Condenser cooling pipe cleaning device | |
JPS6269095A (en) | Control unit for controlling flow amount of cooling water of condenser | |
RU2169891C2 (en) | Steam turbine condenser | |
JPH05126492A (en) | Cleaning method for condenser for steam plant | |
JPH0571700A (en) | Sea water flow passage facility | |
JPS6262185A (en) | Operation of water circulating device for condenser | |
SU1657851A1 (en) | Systems of cooling boilers for converter gases | |
JPS6134073B2 (en) | ||
JPS5916711Y2 (en) | Condenser cooling pipe cleaning device | |
JPS62245083A (en) | Auxiliary equipment cooling system | |
CN114593521A (en) | Two kinds of multisource heat pump water heaters and step combined system thereof | |
JPH08105667A (en) | Air conditioner | |
JPH05296001A (en) | Steam pipeline |