JPS59129324A - Control device for combustion - Google Patents

Control device for combustion

Info

Publication number
JPS59129324A
JPS59129324A JP58006124A JP612483A JPS59129324A JP S59129324 A JPS59129324 A JP S59129324A JP 58006124 A JP58006124 A JP 58006124A JP 612483 A JP612483 A JP 612483A JP S59129324 A JPS59129324 A JP S59129324A
Authority
JP
Japan
Prior art keywords
fan motor
control circuit
temperature
combustion
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58006124A
Other languages
Japanese (ja)
Inventor
Toru Shimomura
徹 下村
Shinichi Murashige
村重 伸一
Takeshi Yamada
武 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP58006124A priority Critical patent/JPS59129324A/en
Publication of JPS59129324A publication Critical patent/JPS59129324A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/10Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught
    • F23N1/102Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To contrive to prevent a change in the temperature in effluent hot-water when the voltage in power supply source is fluctuated, by providing a control circuit which calculates the target revolution number of a fan motor and a circuit which detects the actual number of revolutions of a fan motor. CONSTITUTION:The primary control circuit 22, a number of revolutions detector 23, and the secondary control circuit 24 are provided in a combustion controlling device. The primary control circuit 22 calculates the target number of revolutions of a fan motor 5 by the temperature detecting signal from a temperature sensor 2 and the temperature setting signal from a temperature setter 3, and puts out the calculated result to the circuit 24. The number of revolution detector 23 detects the actual number of revolutions of a fan motor 5. On the other hand, the secondary control circuit 24 calculates to put out a phase controlling signal from a phase controlling circuit 24b which is not shown, by the signals from the number of revolutions detector 23 and from the control circuit 22, respectively. The number of revolutions of a fan motor 5 and the gas feed rate to a burner 4 are controlled by the phase controlling signals from the control circuit 24. With such an arrangement, a combustion control device which has good response property and no change in the temperature in effluent hot-water even if the voltage in power source is fluctuated, can be obtained.

Description

【発明の詳細な説明】 (イ)発明の分野 この発明、ば、熱交換器の出湯温度と目標温度との偏差
から所定の制御量をPID演算によって求め、この制御
量によシフアンモータ駆動信号の位相を変えて回転数を
制御し、どれによりバーナでの燃焼量を出湯量に応じて
制御し出湯温度を目標温度に保持する燃焼制御装置、特
に位相制御に特  。
Detailed Description of the Invention (a) Field of the Invention In this invention, for example, a predetermined control amount is determined by PID calculation from the deviation between the hot water outlet temperature of the heat exchanger and the target temperature, and this control amount is used to control the shift fan motor drive signal. A combustion control device that controls the rotation speed by changing the phase, controls the amount of combustion in the burner according to the amount of hot water released, and maintains the hot water temperature at a target temperature, especially for phase control.

熾をイ」する柩焼制御装置に関する。This invention relates to a coffin ware control device that controls heat.

(ロ)発明の背景 第1図はこの発明の前提とな妬 この発明等が実施され
る燃焼制御装置を備えた湯沸器の基本構成を示す図であ
る。同図において1は熱交換器。
(B) Background of the Invention FIG. 1 is a diagram showing the basic configuration of a water heater equipped with a combustion control device in which the present invention is implemented. In the figure, 1 is a heat exchanger.

2は熱交換器2の出湯温度を検出するサーミスタ。2 is a thermistor that detects the hot water temperature of the heat exchanger 2;

乙は目標温度を設定する温度設定器、4はバーナ。B is a temperature setting device that sets the target temperature, and 4 is a burner.

5はバーナ4に空気を供給するファンモータ、6はサー
ミスタ2で検出される湯温信号と温度設定器乙の目標温
度設定信号との偏差からファンモータ5の回[1云数を
制御する制御回゛賂、7はバーナ4へのガス供給路に設
けられ、ファンモータ5の送風空気印に応じて弁開度が
変シ、バーナ4に供給するガス圧が上記空気圧に比例す
るよう作動する均圧弁である。
5 is a fan motor that supplies air to the burner 4; 6 is a control that controls the number of times of the fan motor 5 based on the deviation between the hot water temperature signal detected by the thermistor 2 and the target temperature setting signal of the temperature setting device B; A rotary valve 7 is provided in the gas supply path to the burner 4, and operates so that the valve opening changes according to the blowing air mark of the fan motor 5, and the gas pressure supplied to the burner 4 is proportional to the air pressure. It is a pressure equalizing valve.

8は熱交換面1に至る水入口に設けられ、熱交換器1へ
の水流を検出し、@高信号を制御回路乙に入力する流量
検出器、9・10は均圧弁7に至るガス供給路に設けら
れ、ガスの供給を入・切する元バルブおよびガスガバナ
、11はバーナ4に対し9点火火花を発生する点火器、
12は点火動作によって正常に着火したか否かを検出す
る炎検出器、13はファンモータ5の作動確認を行なう
だめの風圧スイッチである。
8 is a flow rate detector installed at the water inlet leading to the heat exchange surface 1 to detect the water flow to the heat exchanger 1 and input a high signal to the control circuit B; 9 and 10 are gas supplies leading to the pressure equalization valve 7 a source valve and a gas governor installed in the road to turn on and off the gas supply; 11 an igniter that generates 9 ignition sparks for the burner 4;
Reference numeral 12 is a flame detector for detecting whether or not the ignition is normally ignited by the ignition operation, and reference numeral 13 is a wind pressure switch for checking the operation of the fan motor 5.

第2図は、上記第1図の制御回路6が行う湯温制御の動
作系統を示すブロック図であり、この制御系はフィード
バックループにより構成されている。以下第1図、第2
図を参照して上記湯沸器の基本動作について説明する。
FIG. 2 is a block diagram showing an operational system for hot water temperature control performed by the control circuit 6 shown in FIG. 1, and this control system is constituted by a feedback loop. Figures 1 and 2 below
The basic operation of the water heater will be explained with reference to the drawings.

□ まず、流量検出器8によって熱交換器1の水流が検出さ
れると、制御回路6は元バルブ9を開にするとともに5
点火器1.1を作動させる。同時にファンモータ5を駆
動する。そしてファンモータ5の送風量が所定の値に向
かって増大し、それに伴ないその空気圧に比例して均圧
弁7の弁開度が増加し、バーナ4のガス燃焼が所定の状
態に向かい成長する。ここで熱交換器1の出湯温度が上
昇するとサーミスタ2により検出され制御回路6は第2
図に示す制御系統にしたがい動作を行なう。
□ First, when the water flow in the heat exchanger 1 is detected by the flow rate detector 8, the control circuit 6 opens the main valve 9 and closes the 5
Activate igniter 1.1. At the same time, the fan motor 5 is driven. Then, the amount of air blown by the fan motor 5 increases toward a predetermined value, and accordingly, the valve opening of the pressure equalizing valve 7 increases in proportion to the air pressure, and the gas combustion in the burner 4 grows toward a predetermined state. . When the hot water temperature of the heat exchanger 1 rises, it is detected by the thermistor 2, and the control circuit 6
The operation is performed according to the control system shown in the figure.

すなわち制御回路6はその湯温検出信号aと目標温度層
υbとの偏差Cを求め、この偏差Cに対してPID演算
を行い所定の制御Jildを作成する。
That is, the control circuit 6 finds a deviation C between the hot water temperature detection signal a and the target temperature layer υb, performs a PID calculation on this deviation C, and creates a predetermined control Jild.

サラにこの制御idに基づいてファンモータ50回転子
を駆動する回転磁界の位相角を演算決定し。
Based on this control ID, the phase angle of the rotating magnetic field that drives the rotor of the fan motor 50 is calculated and determined.

信号eを出力する。この出力信号eがトリガ信号として
ファンモータ5の駆動電流をオン・オフするスイッチン
グ素子に加えられる。スイッチング素子はこのトリガ信
号Cによυ定まる導通角でファンモータ5の駆動電流の
位十目を制御し、ファンモータ5はその位+目の回転磁
界のもとに所定の回転数となる。その結果、この回転数
に応じた所定の空気圧fが均圧弁7に伝達され、均圧弁
7の開度は所定の開度となり、バーナ4に供給されるガ
ス量は適宜なものとなる。このようにして出湯温度は設
定温度となるように制御される。そして以上の動作が繰
シ返されて出湯温度が設定温度に保持され、バーナ4は
所定のガス量で燃焼を継続する。寸だ設定温度あるいは
出湯量の変更があると。
Outputs signal e. This output signal e is applied as a trigger signal to a switching element that turns on and off the drive current of the fan motor 5. The switching element controls the drive current of the fan motor 5 at a conduction angle determined by the trigger signal C, and the fan motor 5 rotates at a predetermined rotational speed under a rotating magnetic field of the order of magnitude +. As a result, a predetermined air pressure f corresponding to this rotational speed is transmitted to the pressure equalizing valve 7, the opening degree of the pressure equalizing valve 7 becomes a predetermined opening degree, and the amount of gas supplied to the burner 4 becomes appropriate. In this way, the hot water temperature is controlled to the set temperature. The above operation is then repeated to maintain the tapped water temperature at the set temperature, and the burner 4 continues combustion with a predetermined amount of gas. If there is a change in the set temperature or amount of hot water.

出湯温度の変化がフィードバックされ、上記制御動作に
より出湯温度が修正される。
Changes in the hot water temperature are fed back, and the hot water temperature is corrected by the control operation described above.

さて上記の燃焼制御装置において、ファンモータ5の制
御可能範囲内に動作点がある場合には。
Now, in the above combustion control device, if the operating point is within the controllable range of the fan motor 5.

電源電圧が変動してファンモータ5の回転数が変化して
、出湯温度が一時的に変化してもその変化分がフィード
バックされ、」二記制御動作により出湯温度が目標温度
に安定する。
Even if the power supply voltage fluctuates and the rotation speed of the fan motor 5 changes, and the hot water temperature changes temporarily, the change is fed back, and the hot water temperature is stabilized at the target temperature by the control operation described in section 2.

しかしながら、第6図に示すように燃焼能力が最大重た
け最小である状態で燃焼しているとそれ以北の制御が不
可能なだめ電源電圧の変動がそのまま出湯温度を変化さ
せてし甘うことになる。すなわち第3図込〕に示すよう
に、ファンモータ5の駆動電流の位4:ロ角が最大燃焼
能力に対応するθInaxである場合、定格電圧時(a
)の時は信号面積Aで制御が可能であるが、電源電圧が
定格よシも低下すると同図(b)に示すように燃焼に寄
布する信−狭面積B(は、」二記定格時の信号面積Aよ
りも小さくな〔凍賢 り燃焼能力が低下し、第6図   すように電源電圧の
低下によりファンモータ回転数、出湯温度が低下し制御
が不可能となる。捷だ第6図印〕に示すように、ファン
モータ5の駆動電流の位相角が最小11′II Ul 
iiu力に対応する0「旧11である場今、定格屯丁時
(a)の場合は信号面積Cで制量が可能であるが、電源
電圧が同図(b)のように定格電圧よりも」二昇すると
、燃焼に寄与する信号面積りは定鶴時の信号面積Cより
も大きくなり燃焼能力が増大し。
However, as shown in Figure 6, if the combustion capacity is at its maximum and minimum, it is impossible to control further, and fluctuations in the power supply voltage will continue to change the hot water temperature. become. In other words, as shown in Figure 3, when the drive current angle of the fan motor 5 is θInax, which corresponds to the maximum combustion capacity, at the rated voltage (a
), it is possible to control with the signal area A, but when the power supply voltage drops below the rated value, as shown in the same figure (b), the narrow area B (signal area B), which affects combustion, becomes smaller than the rated value. When the signal area A is smaller than the signal area A at the time of freezing, the combustion capacity decreases, and as shown in Figure 6, the fan motor rotation speed and hot water temperature decrease due to the decrease in power supply voltage, making control impossible. As shown in Figure 6], the phase angle of the drive current of the fan motor 5 is at a minimum of 11'II Ul.
In the case of (a) at rated power, it is possible to control the signal area C, but if the power supply voltage is lower than the rated voltage as shown in (b) of the same figure, When the engine rises, the signal area C that contributes to combustion becomes larger than the signal area C at the fixed crane, and the combustion capacity increases.

第6図仲]の(l〕)に示すように電源電圧の上昇によ
りファンモータ回転数、出湯温度が上ゲし制御不可能と
なる。
As shown in (l) of Fig. 6, the fan motor rotation speed and the hot water temperature increase due to the increase in power supply voltage, making it impossible to control.

まだ制御範囲内であっても、」二記燃焼制御装置はサー
ミスタ2が出湯温度の変化を検出してからファンモータ
回転数、ガス供給量の修正動作を行うため出湯温度の変
化はまぬがれず、それゆえに応答性も悪いという欠点が
ある。
Even if it is still within the control range, the combustion control device (2) corrects the fan motor rotation speed and gas supply amount after the thermistor 2 detects a change in the outlet temperature, so changes in the outlet temperature are inevitable. Therefore, it has the disadvantage of poor responsiveness.

上記した出湯温度の変化は、湯沸器の使用者にとって好
ましいものでなく、除去されることが望ましい。
The above-mentioned change in outlet temperature is not desirable for users of water heaters, and it is desirable to eliminate it.

e→発明の目的 それ故にこの発明の目的は、電源電圧の変トが生じても
出湯温度に変化の生じることのない、また応答許性の良
い燃焼制御装置を提供するにある。
e→Object of the Invention Therefore, an object of the present invention is to provide a combustion control device that does not cause a change in outlet temperature even if a change in power supply voltage occurs, and has good response tolerance.

に)発明の構成および効果 上記目的を達成するためにこの発明の燃焼制御装置は、
温度検出器よりの温度検出信号と温度設定器よりの温度
設定信号によりファンモータの目標とする回転数を演算
出力する第1の制御回路と。
B) Structure and Effects of the Invention In order to achieve the above object, the combustion control device of the present invention has the following features:
a first control circuit that calculates and outputs a target rotational speed of the fan motor based on a temperature detection signal from a temperature detector and a temperature setting signal from a temperature setting device;

ファンモータの回転数を検出する回転数検出器と。A rotation speed detector that detects the rotation speed of the fan motor.

この回転数検出器よりの検出回転数信号と前記第1の制
御回路の出力@号とにより位相制御回路の位相制御信号
を演算出力する第2の制御回路を備え、この第2の制御
回路よシの位相制御信号によりファンモータの回転数及
びバーナへのガス供給料を制御するようにしている。
A second control circuit is provided which calculates and outputs a phase control signal of the phase control circuit based on the detected rotation speed signal from the rotation speed detector and the output @ of the first control circuit. The rotational speed of the fan motor and the gas supply to the burner are controlled by the phase control signal of the fan motor.

この発明の燃焼制御装置によれば電源電圧の変動ICよ
見 ファンモータの回転数り出湯温度が変化することが
あっても、第2の制御回路による回転数のフィードバッ
ク制御にょシ、出湯温度の変化を抑えることができる。
According to the combustion control device of the present invention, even if the power supply voltage varies depending on the IC, the rotation speed of the fan motor and the hot water temperature may change, the second control circuit performs feedback control of the rotation speed and the hot water temperature. change can be suppressed.

その上制御範囲内の動作においても第2の制御回路によ
るファンモータ(7) 回転数のフィードバック制御を
行なうので出湯温度のフィードバック制御のみの場合に
比して応Yi I生の艮い制省11を行なうことができ
る。
Furthermore, since feedback control of the rotation speed of the fan motor (7) is performed by the second control circuit even when the operation is within the control range, the control of the fan motor (7) is more efficient than in the case of only feedback control of the hot water temperature. can be done.

01→実施例の説明 以下、実施例によシこの発明をさらに詳細に説明する。01 → Description of examples Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお以下に説明する実施例燃焼制御装置が適用される湯
υ1;器は基本構成において第1図に示したものと同様
のものである。
The basic structure of the water heater υ1 to which the combustion control device of the embodiment described below is applied is the same as that shown in FIG. 1.

第4図はこの発明の1実施例を示す制御系統のブロック
図である。
FIG. 4 is a block diagram of a control system showing one embodiment of the present invention.

第4図において20は設定温度回路、21は湯温検出回
路であって、それぞれ温度設定器ろとサーミスタ2に対
応する。2はPID演算回路22aと回転数演算回路2
2bからなる第1制御回路であり、この第1制御回路は
設定温度信号すと検出された湯温信号aに応じたファン
モータの回転数信号を作成するための回路である。23
はファンモータ5の回転数を検出する検出器を有する回
転数検出回路、24はPI演算回1洛24nと位相演算
24bからなる第2の制御回路であり、この第2の制御
回路24は第1の制御回路で演算された回転数信号Cと
回転数検出回路26で検出されたファンモータ5のrf
lJ 、転数1言号rに基づいてファンモータベの位相
制御信号を演算するだめの回路である。なお25は最大
最小制限回路であって燃焼能力が小さくなりすぎて燃焼
が不安定になったり過大な能力で燃焼して湯nil器が
加熱したシすることのないように、最大燃焼能力と最小
燃焼能力を一定の範囲に制限するための回路である。2
6はファンモータIIK動Fl路、  27はファンモ
ータ5よりの空気圧によりバーナ4へのガス供給量を制
御するガス供給制御部である。この制御系は図よシ明か
なように第2図に示したものと同様の湯温検出によるラ
イ−ドパツクループの他に2回転数検出によるフィード
バックループを備えている。なおこの制御系の具体的な
回路図は第6図に示している。
In FIG. 4, 20 is a set temperature circuit, and 21 is a hot water temperature detection circuit, which correspond to the temperature setting device and thermistor 2, respectively. 2 is a PID calculation circuit 22a and a rotation speed calculation circuit 2
2b, and this first control circuit is a circuit for creating a rotation speed signal of the fan motor according to the set temperature signal and the detected hot water temperature signal a. 23
24 is a rotation speed detection circuit having a detector for detecting the rotation speed of the fan motor 5; 24 is a second control circuit consisting of a PI calculation circuit 24n and a phase calculation circuit 24b; The rotation speed signal C calculated by the control circuit 1 and the rf of the fan motor 5 detected by the rotation speed detection circuit 26
lJ is a circuit for calculating the phase control signal of the fan motor based on the number of revolutions r. Note that 25 is a maximum/minimum limit circuit that controls the maximum combustion capacity and the minimum limit so that the combustion capacity does not become too small and the combustion becomes unstable, or the hot water heater does not heat up due to combustion with excessive capacity. This is a circuit to limit combustion capacity to a certain range. 2
6 is a fan motor IIK movement Fl path; 27 is a gas supply control unit that controls the amount of gas supplied to the burner 4 using air pressure from the fan motor 5; As is clear from the figure, this control system is equipped with a ride pack loop based on water temperature detection similar to that shown in FIG. 2, as well as a feedback loop based on two revolution speed detections. A specific circuit diagram of this control system is shown in FIG.

続いて第1図、第4図に従い実施例燃焼制御装置の動作
を説明する。
Next, the operation of the embodiment combustion control device will be explained with reference to FIGS. 1 and 4.

まず、サーミスタ2で熱i換器1の出湯温度が検出され
ると湯温検出回路21よシのこの湯温検出信号aと設定
温度回路2oよシの目標温度信号bとのl!i?+に、
Cを求めこの(扁差Cに対しPID演算回路22a″′
cPID演算を行ない、所定の制(財)量dを作成し次
にこの制御量dに基づき2回転数演算FIWb22bで
ファンモータ5の回転子の回転数を演算決定し8回転数
信号Cを出力する。続いて回転数信号eと回転数検出回
路23よりの回転数検出信号fとの偏差gを求め、この
偏差gに対してPI演算回路24+aでPI演算を行な
い所定の制御量IIを作成し5次にこの制御量りに基づ
き位十目演算回路24bでファンモータ5の回転子を駆
動する回転磁界の位相角を演算決定し位相信号iを出力
する。さらに位相信号1は最大最小制限回路2Sで最大
値、最小値の制限を受け、信号Jとして出力される。こ
の信号Jはトリガ信号としてファンモータ5−の駆動電
流をオン・オフするスイッチング素子に加えられる。ス
イッチング素子はこのトリガ信号]により定まる導通角
でファンモータ5の駆動電流の位相を制御し、この制御
に応じて回転数検出回路26で得られるファンモータ5
の回転数検出信号fと回転数信号eとが再び比モータ5
は所定回転数となる。
First, when the thermistor 2 detects the hot water temperature of the heat exchanger 1, the hot water temperature detection signal a from the hot water temperature detection circuit 21 and the target temperature signal b from the set temperature circuit 2o are l! i? To +,
C is calculated and the PID calculation circuit 22a'''
cPID calculation is performed to create a predetermined control amount d, and then, based on this control amount d, the 2 rotation speed calculation FIWb 22b calculates and determines the rotation speed of the rotor of the fan motor 5, and outputs 8 rotation speed signal C. do. Next, the deviation g between the rotational speed signal e and the rotational speed detection signal f from the rotational speed detection circuit 23 is determined, and the PI calculation circuit 24+a performs a PI calculation on this deviation g to create a predetermined control amount II. Next, based on this control scale, the digit calculation circuit 24b calculates and determines the phase angle of the rotating magnetic field that drives the rotor of the fan motor 5, and outputs a phase signal i. Furthermore, the phase signal 1 is subjected to maximum and minimum value limitations in a maximum/minimum limitation circuit 2S, and is output as a signal J. This signal J is applied as a trigger signal to a switching element that turns on and off the drive current of the fan motor 5-. The switching element controls the phase of the drive current of the fan motor 5 according to the conduction angle determined by this trigger signal, and the rotation speed of the fan motor 5 obtained by the rotation speed detection circuit 26 is adjusted according to this control.
The rotation speed detection signal f and the rotation speed signal e are again output to the ratio motor 5.
becomes a predetermined number of rotations.

その結果、この回転数に応じた所定の空気圧kがガス供
給量制御部27の均圧弁7に伝達され。
As a result, a predetermined air pressure k corresponding to this rotational speed is transmitted to the pressure equalizing valve 7 of the gas supply amount control section 27.

均圧弁7の開度は所定の開度となり、バーナ4に供給さ
れるガス量は適宜なものとなる。このようにして出湯温
度は設定温度となるように制御される。そして以上の動
作が繰シ返されて出湯温度が設定温度に保持され、バー
ナ4は所定のガス量で燃焼を継続する。
The opening degree of the pressure equalizing valve 7 becomes a predetermined opening degree, and the amount of gas supplied to the burner 4 becomes appropriate. In this way, the hot water temperature is controlled to the set temperature. The above operation is then repeated to maintain the tapped water temperature at the set temperature, and the burner 4 continues combustion with a predetermined amount of gas.

次に、上記実施例燃焼制御装置において、第5図を参照
し定格電源電圧で最大能力で燃焼していて電源電圧が低
下したとき、および定格電源電圧で最小能力で燃焼して
いて電源電圧が上昇したときの動作について説明する。
Next, with reference to FIG. 5, in the combustion control device of the above embodiment, when combustion is occurring at the maximum capacity at the rated power supply voltage and the power supply voltage drops, and when combustion is occurring at the minimum capacity at the rated power supply voltage and the power supply voltage decreases. The operation when it rises will be explained.

第5図な〕は定格電源電圧で最大能力で燃焼していて電
源電子が低下した場合の信号波形を示しておシ同図(a
)は定格電源電圧時の、同図(b)は電源電圧低下時の
信号波形である。最大能力であるので回転数演算回路2
2bよシの回転数信号は変化せず+ 酸m+j ”h:
圧1バー下(”−よりファンモー750回転数が1氏下
し回転数(ぎ号eと回転数検出(信号fとの間に面差g
が生じる。この新しい偏差gに基づき第2Mll114
1回路240位相演算回路24−bよ、り新しい位相直
号i1出力し、第5図〔A)の(a)(1))に示すよ
う導通川音θmaxからθ’maX’へと大きくシ、信
号面(員Aと信号面積Bを等しくして′直源電圧低下に
起因する回転数低下ft浦正する。その結果、第5図(
C)の[a’lに示すように燃焼能力最大時に電源電圧
が定格時よυも低下してもファンモータ50回転数及び
出湯温度は若干低下するだけですぐに安定した状)喉に
もどる。
Figure 5] shows the signal waveform when the power supply electrons are reduced due to combustion at maximum capacity at the rated power supply voltage.
) is the signal waveform at the rated power supply voltage, and (b) in the figure is the signal waveform at the time of the power supply voltage drop. Since it has the maximum capacity, rotation speed calculation circuit 2
The rotational speed signal of 2b and 2 does not change + acid m + j ”h:
The fan motor 750 rotation speed is 1 degree lower than the pressure 1 bar ("-").
occurs. Based on this new deviation g, the second Mll114
1 circuit 240 phase calculation circuit 24-b outputs a new phase signal i1, and as shown in FIG. By making the signal area (A) and signal area B equal, we can calculate the rotational speed drop due to the direct voltage drop (ft). As a result, as shown in Fig. 5 (
C) [As shown in a'l, even if the power supply voltage drops by υ from the rated state when the combustion capacity is at its maximum, the fan motor's 50 rpm and the hot water temperature only drop slightly and become stable immediately] Return to the throat .

第5図(B3は定格電源′電圧で最小能力で燃焼してい
て屯源区圧が上昇した場合のは号波形金示しており、こ
の場合は上記第5図(Nの場合とは逆に。
Figure 5 (B3 shows the number waveform when combustion is performed at the minimum capacity at the rated power supply's voltage and the pressure in the tunyuan area increases; in this case, Figure 5 above (contrary to the case of N) .

導通川音θminからθ’minへと小さくし信号面積
りを等しくして電源電圧の上昇に起因する回転数の上列
を面圧する。その結果、やはり第5図℃〕の(b)に示
すように燃焼能力最小3時に゛酸源成圧が定格時よシも
上昇しても、ファンモータ50回転数及び出湯温度は若
干上昇するだけですぐに安定した状態にもどる。
The conduction sound is reduced from θmin to θ'min, and the signal area is made equal to reduce the surface pressure on the upper row of rotational speeds caused by the increase in power supply voltage. As a result, as shown in (b) of Figure 5, even when the combustion capacity is at the minimum of 3, the fan motor 50 rpm and the hot water temperature rise slightly even if the acid source pressure increases even more than at the rated value. It quickly returns to a stable state.

なお上記実施例燃焼制御装置において、電源電圧定格時
に最大燃焼能力と最小燃焼能力の間で燃焼している状態
で電源電圧が変動した場合、やはりファンモータ5の回
転数が変化するが、この場合便化した回転数が回転数検
出回路23の回転数検出器で検出され、現回転数信号f
がフィードバックされ第1制御回路22よりの回転数信
号eとの偏差gが求められ、第2の制御回路24で新た
な位相@号が演算され、この位相信号によりファンモー
タ5の回転数が制御され電源゛電圧の変動が湯温に影響
する前にファンモータ5を所定の回転数とするので、湯
温検出回路21による単独のフィードバックよシも、安
定かつ応答の良い制御をなすことができる。
In the combustion control device of the above embodiment, if the power supply voltage fluctuates while combustion is occurring between the maximum combustion capacity and the minimum combustion capacity when the power supply voltage is rated, the rotation speed of the fan motor 5 will also change. The converted rotation speed is detected by the rotation speed detector of the rotation speed detection circuit 23, and the current rotation speed signal f
is fed back and the deviation g from the rotation speed signal e from the first control circuit 22 is calculated, a new phase @ is calculated in the second control circuit 24, and the rotation speed of the fan motor 5 is controlled by this phase signal. Since the fan motor 5 is set to a predetermined rotation speed before fluctuations in the power supply voltage affect the hot water temperature, stable and responsive control can be achieved even with independent feedback from the hot water temperature detection circuit 21. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は湯沸器の基本構成を示す図、第2図は同湯沸器
における従来の制御回路の動作系統を示すブロック図、
第3図は従来の燃焼制御装置の電0混圧変1rJJによ
る影ン井全説明するための図であって、同図的〕は最大
能力の燃焼で定格電源電圧よシi ii 電圧が低下し
た場合、同図CB)は最小能力の燃焼で定格電源電圧よ
シミ源電圧が上昇した場合の影響を示す波形図、同図(
C)は前記第6図な]、第3図〔B〕における電源電圧
の変動によるファンモータの回転数及び出湯温度の変化
を示すタイムチャート、第4図はこの発明の一実施例を
示す燃焼制御装訪の制御回路の動作系統を示すブロック
図、第5図は同燃焼制脚装置における′に源′醒圧変動
による出湯温度の変動の除去動作を説明するための図で
あって、同図(5)は最大能力の燃焼で定格電源電圧よ
)電源電圧が低下した場き、同図CB〕は最小能力の燃
7暁で定格゛電源゛ぽ圧よシ′成源′ボ圧が上昇した場
合の導通角の変rヒ全示す波形図、同図聰〕は前記第5
図仄、第5図町における゛亀源酸圧の変動によるファン
モータの回転数及び出湯温度の変化を示すタイムチャー
ト、第6図は第4図に示す実施例ブロック′図の具体的
な回路を示す接続図である。 1:熱交換器、 2:サーミスタ、 3二濡度設定器、
 4:パーナ、 5:ファンモータ。 7:均圧弁、  20:設定温度回路。 21:湯温検出回路、 22:第1制御回路。 22a:PID演算回路、  22b:回転数演算回路
、 23:回転数検出回路。 24:第2制御回路、  24a:、PI演算回路。 24b=位相演算回路、 25:最大最小制限回路。
Fig. 1 is a diagram showing the basic configuration of a water heater, and Fig. 2 is a block diagram showing the operation system of a conventional control circuit in the water heater.
Figure 3 is a diagram for explaining the effect of the electric zero mixed pressure change 1rJJ in the conventional combustion control device. CB) in the same figure is a waveform diagram showing the effect when the stain source voltage rises above the rated power supply voltage with minimum capacity combustion.
C) is the time chart shown in FIG. 6 above], FIG. 3 is a time chart showing changes in fan motor rotation speed and hot water temperature due to fluctuations in power supply voltage, and FIG. 4 is a combustion diagram showing an embodiment of the present invention. FIG. 5 is a block diagram showing the operation system of the control circuit of the control device. Figure (5) shows that when combustion is at maximum capacity and the power supply voltage drops below the rated power supply voltage, Figure (CB) shows that when combustion is at minimum capacity, the rated power supply voltage and source voltage decrease. The waveform diagram showing all the changes in the conduction angle when the conduction angle rises is shown in the fifth figure.
Figure 5 is a time chart showing changes in fan motor rotation speed and hot water temperature due to fluctuations in source acid pressure in the town, Figure 6 is a concrete circuit of the embodiment block diagram shown in Figure 4. FIG. 1: heat exchanger, 2: thermistor, 3: wetness setting device,
4: Pana, 5: Fan motor. 7: Pressure equalization valve, 20: Set temperature circuit. 21: Hot water temperature detection circuit, 22: First control circuit. 22a: PID calculation circuit, 22b: rotation speed calculation circuit, 23: rotation speed detection circuit. 24: Second control circuit, 24a: PI calculation circuit. 24b=phase calculation circuit, 25: maximum/minimum limit circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)バーナの燃焼によって出湯温度の変化する熱交換
器の出湯温度を検出する温度検出器と、目標の出湯温度
を設定する温度設定器と、前記バーナに燃焼空気を供給
するファンモータと、前記温度検出器の検出信号に応じ
て前記ファンモータの回転数を制御する位相制御回路と
、前記ファンモータの送風空気圧に応じて弁開度が変化
し、前記バーナへの燃料供給料を調整する均圧弁とを備
え、前記熱交換器の出湯温度を目標温度に保持するよう
に制御する燃焼創傷1装置において。 前記温度検出器よりの温度検出信号と前記温度設定器よ
りの温度設定信号によシ前記ファンモータの目標とする
回転数を演算出力する第1の制御回路と、前記ファンモ
ータの回転数を検出する回転数検出器と、この回転数検
出器よりの検出回転数信号と前記第1の制御回路の出力
信号とにより前記位相制御回路の位相制御@号を演算出
力する第2の制御回路を備えてなることを特徴とする燃
焼制御装置。
(1) A temperature detector that detects the hot water temperature of a heat exchanger whose hot water temperature changes due to combustion in the burner, a temperature setting device that sets a target hot water temperature, and a fan motor that supplies combustion air to the burner; A phase control circuit that controls the rotation speed of the fan motor in accordance with a detection signal from the temperature detector, and a valve opening degree that changes in accordance with the air pressure of the fan motor to adjust the amount of fuel supplied to the burner. In the combustion wound device 1, the apparatus includes a pressure equalization valve and controls the hot water temperature of the heat exchanger to be maintained at a target temperature. a first control circuit that calculates and outputs a target rotational speed of the fan motor based on a temperature detection signal from the temperature detector and a temperature setting signal from the temperature setting device; and a first control circuit that detects the rotational speed of the fan motor. and a second control circuit that calculates and outputs the phase control signal of the phase control circuit based on the detected rotation speed signal from the rotation speed detector and the output signal of the first control circuit. A combustion control device characterized by:
(2)  前記第2の制御回路は、その位相制御信号出
力が、使用電源電圧範囲の下限においても前記バーナが
最大燃焼となるような位相を最大信号出力とするもので
あり、使用電源電圧範囲の上限においても前記バーナが
最小燃焼となるような位(ζ目を最大信号出力とする最
大最小制限回路を経て出力されるものであることを特徴
とする特許請求の範囲第1項記載の燃焼制御装置。
(2) The second control circuit has a phase control signal whose maximum signal output is such that the burner achieves maximum combustion even at the lower limit of the power supply voltage range used, and The combustion according to claim 1, characterized in that the burner is outputted through a maximum/minimum limiting circuit whose maximum signal output is such that the burner achieves minimum combustion even at the upper limit of . Control device.
JP58006124A 1983-01-14 1983-01-14 Control device for combustion Pending JPS59129324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58006124A JPS59129324A (en) 1983-01-14 1983-01-14 Control device for combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58006124A JPS59129324A (en) 1983-01-14 1983-01-14 Control device for combustion

Publications (1)

Publication Number Publication Date
JPS59129324A true JPS59129324A (en) 1984-07-25

Family

ID=11629758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006124A Pending JPS59129324A (en) 1983-01-14 1983-01-14 Control device for combustion

Country Status (1)

Country Link
JP (1) JPS59129324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0340611A2 (en) * 1988-05-03 1989-11-08 Joh. Vaillant GmbH u. Co. Device for combustion air supply controlling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0340611A2 (en) * 1988-05-03 1989-11-08 Joh. Vaillant GmbH u. Co. Device for combustion air supply controlling

Similar Documents

Publication Publication Date Title
US4913128A (en) Burner apparatus
JPS6064122A (en) Burning control device
JPS62280516A (en) Combution device
JPS59129324A (en) Control device for combustion
JP6341000B2 (en) Water heater
JPH11236824A (en) Fuel gas heating control system for gas turbine
JPS60122818A (en) Device for controlling combustion of gas
JPS58106322A (en) Combustion controller
KR930006170B1 (en) Control device for combustion apparatus
JP2669662B2 (en) Water heater control device
JPH08178265A (en) Combustor
JP2594364B2 (en) Water heater
JP2683125B2 (en) Combustion equipment
KR910002739B1 (en) Combustion device
JPS58106323A (en) Combustion controller
JPH0252917A (en) Gas exhausting device for hot water supply apparatus
JPH07107444B2 (en) Combustion device
JPS6066015A (en) Combustion control system
JPH0481087B2 (en)
JPH0297820A (en) Control device for forced draft type combustion device
JPS62261821A (en) Burner
JPS649525B2 (en)
JPS5899619A (en) Combustion control device for water heater
JPS61101745A (en) Tap-controlled gas water heater
JPS6071820A (en) Temperature controller of gas water heater