JPS59128715A - Dc breaker - Google Patents

Dc breaker

Info

Publication number
JPS59128715A
JPS59128715A JP348383A JP348383A JPS59128715A JP S59128715 A JPS59128715 A JP S59128715A JP 348383 A JP348383 A JP 348383A JP 348383 A JP348383 A JP 348383A JP S59128715 A JPS59128715 A JP S59128715A
Authority
JP
Japan
Prior art keywords
commutation
capacitor
commutating
reactor
breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP348383A
Other languages
Japanese (ja)
Inventor
光二 鈴木
徳山 俊二
芳夫 吉岡
有松 啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP348383A priority Critical patent/JPS59128715A/en
Publication of JPS59128715A publication Critical patent/JPS59128715A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は直流しゃ断器に係り、特に転流スイッチ、転流
コンデンサ、転流リアクトル、充電抵抗。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a DC breaker, and particularly to a commutating switch, a commutating capacitor, a commutating reactor, and a charging resistor.

投入スイッチおよび非直線抵抗等を有する直流しや断器
に関するものである。
It relates to direct current and disconnectors with closing switches and non-linear resistances.

〔従来技術〕[Prior art]

第1図には送電系統に直流しゃ断器を適用した例が示さ
れておシ、送電系統は変換器1例えば順変換器、直流リ
アクトルL、、@路器2.送電線路3および変換器例え
ば逆変換器(図示せず)等から構成されており、直流し
ゃ断器4は直流リアクトルL、と断路器2との間で送電
線路3の両端に設けられている。
FIG. 1 shows an example in which a DC breaker is applied to a power transmission system. It is composed of a power transmission line 3 and a converter such as an inverse converter (not shown), and a DC breaker 4 is provided at both ends of the power transmission line 3 between a DC reactor L and a disconnector 2.

ところで特別な充電装置を用いないで転流コンデンサC
を例えば送電系統の送電線路3から充電し、この予め充
電した転流コンデンサCをしゃ断の補助に用いる所謂逆
電流挿入方式の直流しゃ断器4は、同図に示されている
ように転流スイッチ5、この転流スイッチ5に投入スイ
ッチ6を介して並列接続された転流コンデンサCおよび
転流リアクトルLの直列接続体、この直列接続体と大地
との間に設けられた充電抵抗r1転流スイッチ5に並列
接続され、しゃ断時に直流リアクトルL。
By the way, commutation capacitor C can be used without using a special charging device.
For example, a so-called reverse current insertion type DC breaker 4, which is charged from a power transmission line 3 of a power transmission system and uses this pre-charged commutation capacitor C to assist in disconnection, uses a commutation switch as shown in the figure. 5. A series connection body of a commutation capacitor C and a commutation reactor L connected in parallel to this commutation switch 5 via a closing switch 6, and a charging resistor r1 provided between this series connection body and the ground. Connected in parallel to switch 5, DC reactor L when cut off.

の蓄積エネルギーを吸収処理する非直線抵抗R等から構
成されている。
It is composed of a non-linear resistor R etc. that absorbs and processes the accumulated energy.

このように構成された直流しゃ断器4において、定常運
転状態では転流スイッチ5は投入状態、投入スイッチ6
は開放状態にメジ、従って転流コンデンサCは送電線路
3の定格電圧と等しい電圧に充電された状態にある。こ
のような状態で線路電流(負荷電流)のしゃ断時には、
転流スイッチ5を開放して投入スイッチ6を投入すると
、転流スイッチ5に流れる線路電流菫である直流電流に
転流リアクトルLと転流コンデンサCとの振動電流が重
畳して直流に電流零点が作られ、転流スイッチ5は電流
をし千断じて非直線抵抗几に転流する。
In the DC breaker 4 configured as described above, in the steady operation state, the commutation switch 5 is in the closed state, and the closing switch 6 is in the closed state.
is in an open state, so the commutating capacitor C is charged to a voltage equal to the rated voltage of the power transmission line 3. In such a situation, when the line current (load current) is cut off,
When the commutation switch 5 is opened and the closing switch 6 is turned on, the oscillating current of the commutation reactor L and the commutation capacitor C is superimposed on the DC current, which is the line current flowing through the commutation switch 5, and the DC current reaches the zero point. is created, and the commutation switch 5 shreds the current and commutates it to the non-linear resistor.

この転流された電流は非直線抵抗几で限流しゃ断されて
最終的にしゃ断を完了する。
This commutated current is current-limited and cut off by a non-linear resistor, and finally the cut-off is completed.

ところでこのようなしゃ新方式は上述のように送電系統
の電圧すなわち線路電圧を利用するので充電装置を省略
できるが、線路電圧の影響を受け、特に直流しゃ断器4
が必要とされる多端子直流送電系統への送電時には、電
力融通のため線路電圧の極性を反転する全体潮流反転制
御(以下、潮流反転制御と称する)が行なわれるが、こ
の場合に線路電圧が反転するので問題となる。
By the way, as mentioned above, this type of new system uses the voltage of the power transmission system, that is, the line voltage, so the charging device can be omitted, but it is affected by the line voltage, especially the DC breaker 4.
When transmitting power to a multi-terminal DC transmission system that requires a This is a problem because it is reversed.

すなわち縦軸に夫々線路電流と線路電圧とをとり、横軸
に時間をとって潮流反転制御時のtd路電流および線路
電圧と時間との関係が示されている第2図のように、線
路電流!はその電流値■が時間の経過につれて変らず一
定であるが、線路電圧Vは時間tが反転時間のtlから
12−!での約200から5QQmsまでの間に+Vか
ら−Vへとその極性が+から−へと反転する。この場合
に直流し一?断器の充電抵抗を小さくして転流コンデン
サの充電電圧すなわち端子電圧v2が線路電圧Vの変化
に追従するようにすると、転流コンデンサの充電電圧が
低くなって潮流反転制御中はしゃ断できなくなる。また
これとは逆に充電抵抗を大きくして充電電圧の低ドを押
えると、潮流反転制御後には転流コンデンサの極性を断
路器などで反転させなければならず、直流し−P断器の
動作時間が遅く、かつ操作機構が複雑になる欠点があっ
た。
In other words, as shown in Figure 2, where the vertical axis represents the line current and line voltage, and the horizontal axis represents time, the relationship between the td line current and line voltage during power flow reversal control and time is shown. Current! The current value ■ remains constant over time, but the line voltage V is 12-! The polarity is reversed from +V to -V from about 200 to 5QQms. DC current one in this case? If the charging resistance of the disconnector is made smaller so that the charging voltage of the commutating capacitor, that is, the terminal voltage v2, follows the change in the line voltage V, the charging voltage of the commutating capacitor becomes lower and it becomes impossible to shut off during power flow reversal control. . Conversely, if the charging resistance is increased to suppress the low charging voltage, the polarity of the commutation capacitor must be reversed with a disconnector after power flow reversal control, and the DC-P disconnector must be reversed. The drawbacks are that the operation time is slow and the operation mechanism is complicated.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みなされたものであシ、線路電圧
の極性が反転する潮流反転制御時でも支障のないじゃ@
を可能とした直流しゃ断器を提供することを目的とする
ものである。
The present invention was made in view of the above points, and there is no problem even during power flow reversal control where the polarity of the line voltage is reversed.
The purpose of this invention is to provide a DC breaker that enables the following.

〔発明の概要〕[Summary of the invention]

すなわち本発明は、転流コンデンサおよび転流リアクト
ルの直列接続体に並列に、逆並列接続したサイリスタを
接続したことを特徴とするものである。
That is, the present invention is characterized in that a thyristor connected in antiparallel is connected in parallel to a series connection body of a commutating capacitor and a commutating reactor.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明する。第
3図には本発明の一実施例が示されている。なお従来と
同じ部品には同じ符号を付したので説明は省略する。本
実施例では転流コンデンサCおよび転流リアクトルLの
直列接続体に並列に、逆並列接続したサイリスタ7.8
を接続した。このようにすることによシ転流コンデンサ
Cの極性を電気的に短時間で切換えることができるよう
になって、線路電圧の極性が反転する潮流反転制御時で
も支障のないしゃ断を可能とした直流しゃ断器4aを得
ることができる。
The present invention will be explained below based on the illustrated embodiments. FIG. 3 shows an embodiment of the invention. Note that parts that are the same as those in the conventional model are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, a thyristor 7.8 is connected in parallel and anti-parallel to a series connection body of a commutating capacitor C and a commutating reactor L.
connected. By doing this, it became possible to electrically switch the polarity of the commutating capacitor C in a short time, making it possible to disconnect without any problems even during power flow reversal control when the line voltage polarity is reversed. A DC breaker 4a can be obtained.

すなわち転流コンデンサCと転流リアクトルLとの直列
接続体に並列に、転流コンデンサCの端子電圧V、が大
地に対して正(+)の場合にオンするサイリスタ7と、
負(−)の場合にオンするサイリスタ8との逆並列接続
体を接続した。このようにすることによ゛導線路電圧V
が大地に対して正極性の場合には、その線路電圧Vが反
転する時刻にサイリスタ7のゲートをオンした場合のサ
イリスタ7を流れる電流波形および転流コンデンサCの
端子電圧V、の時間による変化特性が示されている第4
図のように、サイリスタ7(第3図参照)中には線路電
圧が反転する時刻t、から半波電流i、が流れ、転流コ
ンデンサCの端子電圧V。は+V、から−■、へと瞬時
にその極性が反転する。そしてこの端子電圧V、は充電
抵抗の値を大きく選定しておけば潮流反転制御時の反転
制御時間内での低下が押えられるので、縦軸に転流コン
デンサの端子電圧V、および線路電圧をとり、横軸に時
間をとって転流コンデンサの端子電圧V、および線路電
圧の時間による変化特性が示されている第5図のように
、線路電圧Vが反転する時刻t、で転流コンデンサの端
子電圧V。は図中に点線で示されているようにその大き
さが低下することなく瞬時に極性が反転し、反転後は負
極の線路電圧−Vで転流コンデンサが充電されるように
なる。この場合に転流コンデンサの極性反転に要する時
間は転流コンデンサと転流リアクトルとの値で決まるが
、一般にはl m 3以下で達成できるので潮流反転制
御時でも同等支障なくしゃ断することができる。なお本
実施例では線路電圧Vが正から負に反転する場合につい
て説明したが、負から正に反転する場合も同様で、この
場合にはサイリスタ8(第3図参照)のゲートをオンす
ることで転流コンデンサの端子電圧V。を負から正に反
転することができ、同様な作用効果を奏することができ
る。
In other words, a thyristor 7 is connected in parallel to the series connection of the commutating capacitor C and the commutating reactor L, and is turned on when the terminal voltage V of the commutating capacitor C is positive (+) with respect to the ground.
An anti-parallel connection body was connected to the thyristor 8 which turns on when the voltage is negative (-). By doing this, the conductor line voltage V
has positive polarity with respect to the ground, the change over time of the current waveform flowing through the thyristor 7 and the terminal voltage V of the commutating capacitor C when the gate of the thyristor 7 is turned on at the time when the line voltage V is reversed. The fourth characteristic is shown.
As shown in the figure, a half-wave current i flows through the thyristor 7 (see FIG. 3) from time t when the line voltage is reversed, and the terminal voltage V of the commutating capacitor C. The polarity is instantaneously reversed from +V to -■. This terminal voltage V can be prevented from decreasing within the reversal control time during power flow reversal control by selecting a large value for the charging resistor, so the vertical axis shows the terminal voltage V of the commutation capacitor and the line voltage. As shown in Figure 5, where the horizontal axis shows the terminal voltage V of the commutating capacitor and the change characteristics of the line voltage over time, the commutating capacitor changes at time t when the line voltage V reverses. terminal voltage V. As shown by the dotted line in the figure, the polarity is instantaneously reversed without its magnitude decreasing, and after the reversal, the commutating capacitor is charged with the negative line voltage -V. In this case, the time required to reverse the polarity of the commutating capacitor is determined by the values of the commutating capacitor and commutating reactor, but it can generally be achieved in l m 3 or less, so it can be cut off without any problem even during power flow reversal control. . In this embodiment, the case where the line voltage V is reversed from positive to negative has been explained, but the same applies to the case where the line voltage V is reversed from negative to positive. In this case, the gate of thyristor 8 (see Fig. 3) should be turned on. The terminal voltage of the commutating capacitor is V. can be reversed from negative to positive, and similar effects can be achieved.

第6図には本発明の他の実施例が示されている。Another embodiment of the invention is shown in FIG.

本実施例では転流スイッチ5の開閉など高速充電も考慮
して充電抵抗に抵抗瞭の小さな充電抵抗r!を使用し、
そして潮流反転制御時の転流コンデンサCの充電電圧の
低下を防ぐため転流コンデンサCの接地側に断路器9を
設けた。このようにすることにより潮流反転制御前に断
路器9を開放し、潮流反転制御中にサイリスタ7または
8を動作させて転流コンデンサCの極性を反転させ、極
性反転後に断路器9を投入して転流コンデンサCを線路
電圧で充電すれば、潮流反転制御時には転流コンデンサ
Cが送電線路から切離されるので、転流コンデンサCの
充電電圧の低下を防止することができ、かつ高速充電が
可能となる。
In this embodiment, considering high-speed charging such as opening and closing of the commutation switch 5, a charging resistor r with a small resistance resistance is used as the charging resistor. using
A disconnector 9 is provided on the ground side of the commutating capacitor C to prevent a drop in the charging voltage of the commutating capacitor C during power flow reversal control. By doing this, the disconnector 9 is opened before the power flow reversal control, the thyristor 7 or 8 is operated during the power flow reversal control to reverse the polarity of the commutation capacitor C, and the disconnector 9 is closed after the polarity is reversed. If the commutating capacitor C is charged with the line voltage, the commutating capacitor C is disconnected from the power transmission line during power flow reversal control, so it is possible to prevent the charging voltage of the commutating capacitor C from decreasing, and high-speed charging is possible. It becomes possible.

第7図には本発明の更に他の実施例が示されている。本
実施例では充電抵抗を抵抗直の大きな充電抵抗r!と抵
抗値の小さな充電抵抗r1とにわけ、抵抗値の大きな充
電抵抗「2の両端に断路器9を設けた。このようにする
ことにより常時は断路器9を開放しておき、転流スイッ
チ5の開閉など高速充電が必要な場合には新路器9を投
入すれば、低抵抗値の充電抵抗rlで高速充電ができる
FIG. 7 shows yet another embodiment of the invention. In this embodiment, the charging resistor is a large charging resistor r! and a charging resistor r1 with a small resistance value, and a disconnector 9 is provided at both ends of the charging resistor 2 with a large resistance value.By doing this, the disconnector 9 is always open and the commutation switch If high-speed charging is required, such as when opening/closing the charging resistor 5, the new circuit device 9 can be used to perform high-speed charging with a charging resistor rl having a low resistance value.

なお通常の潮流反転制御時には断路器9は開放状態のま
まで行なう。
Note that during normal power flow reversal control, the disconnector 9 is kept open.

第8図には本発明の更に他の実施例が示されている。本
実施例では転流コンデンサCの切換用放電回路のりアク
ドルとして転流しゃ断用の転流リアクトルLを使用せず
、転流コンデンサCの極性反転時間が制御できるリアク
トルLsを別個に設けた。これは転流リアクトルLの値
は通常転流スイッチ5の性能との関係で決められるため
、転流コンデンサCの極性反転時間が任意に選定できな
いという欠点を補うもので、これによシ任意の極性反転
時間を選定することができる。
FIG. 8 shows yet another embodiment of the invention. In this embodiment, the commutation reactor L for commutation cut-off is not used as a discharge circuit accelerator for switching the commutation capacitor C, and a reactor Ls that can control the polarity reversal time of the commutation capacitor C is provided separately. This is to compensate for the drawback that the polarity reversal time of the commutating capacitor C cannot be arbitrarily selected because the value of the commutating reactor L is normally determined in relation to the performance of the commutating switch 5. The polarity reversal time can be selected.

第9図には本発明の更に他の実施例が示されている。本
実施例では転流コンデンサCの切換用放電回路に転流し
ゃ断用の転流リアクトルLと転流コンデンサ切換用のり
アクドルLgとを直列に設けた。このようにすることに
よシ転流リアクトルLを利用して転流コンデンサCの切
換用放電回路の振動周波数を低くすることができるので
、潮流反転制御時にサイリスタ7.8を流れる電流を減
少することができ、転流コンデンサ切換用のリア(9) クトルLtrの値も小さくすることができる。
FIG. 9 shows yet another embodiment of the invention. In this embodiment, a commutation reactor L for commutation cutoff and a glue handle Lg for switching the commutating capacitor are provided in series in the switching discharge circuit of the commutating capacitor C. By doing this, the oscillation frequency of the switching discharge circuit of the commutation capacitor C can be lowered by using the commutation reactor L, so the current flowing through the thyristor 7.8 during power flow reversal control can be reduced. The value of the rear (9) vector Ltr for switching the commutation capacitor can also be reduced.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は、転流コンデンサの極性を短時間
に切換えるようにしたので、短時間に切換えられるよう
になって、線路電圧の極性が反転する潮流反転制御時で
も支障なくしゃ断ができるようになり、線路電圧の極性
が反転する潮流反転制御時でも支障のないし一?Ffr
を可能とした直流しゃ断器を得ることができる。
As described above, in the present invention, the polarity of the commutating capacitor can be switched in a short time, so that the polarity can be switched in a short time, and even during power flow reversal control when the polarity of the line voltage is reversed, it can be cut off without any problem. Therefore, there is no problem even during power flow reversal control where the polarity of the line voltage is reversed. Ffr
It is possible to obtain a DC breaker that enables this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直流しゃ断器の回路構成図、第2図は直
流しゃ断器が使用される送電線路の潮流反転制御時にお
ける線路電流および線路電圧の時間による変化特性図、
第3図は本発明の直流しゃ断器の一実施例の回路構成図
、第4図は同じく一実施例の潮流反転制御時のサイリス
タを流れる電流波形および転流コンデンサの端子電圧の
時間による変化特性図、第5図は同じく一実施例の潮流
反転制御時の転流コンデンサの端子電圧および線路電圧
の時間による変化特性図、第6図は本発明(10) の直流しゃ断器の他の実施例の回路構成図、第7図は本
発明の直流しゃ断器の更に他の実施例の回路構成図、第
8図は本発明の直流しゃ断器の更に他の実施例の回路構
成図、第9図は本発明の直流しゃ断器の更に他の実施例
の回路構成図である。 3・・・送電線路、4a・・・直流しヤ断器、5・・・
転流スイッチ、6・・・投入スイッチ、7,8・・・サ
イリスタ、9・・・断路器、C・・・転流コンデンサ、
L・・・転流リアクトル、L6・・・直流リアクトル、
LI+・・・リアクト(11)
Fig. 1 is a circuit configuration diagram of a conventional DC breaker, and Fig. 2 is a diagram of changes in line current and line voltage over time during power flow reversal control of a power transmission line in which a DC breaker is used.
Fig. 3 is a circuit configuration diagram of an embodiment of the DC breaker of the present invention, and Fig. 4 is a current waveform flowing through a thyristor during power flow reversal control and time variation characteristics of the terminal voltage of a commutating capacitor during power flow reversal control of the same embodiment. Figure 5 is a time-varying characteristic diagram of the commutating capacitor terminal voltage and line voltage during power flow reversal control according to one embodiment, and Figure 6 is another embodiment of the DC breaker according to the present invention (10). FIG. 7 is a circuit diagram of still another embodiment of the DC breaker of the present invention, FIG. 8 is a circuit diagram of still another embodiment of the DC breaker of the present invention, and FIG. 9 is a circuit diagram of still another embodiment of the DC breaker of the present invention. FIG. 2 is a circuit configuration diagram of still another embodiment of the DC breaker of the present invention. 3...Power transmission line, 4a...DC disconnector, 5...
Commutation switch, 6... Closing switch, 7, 8... Thyristor, 9... Disconnector, C... Commutation capacitor,
L... Commutation reactor, L6... DC reactor,
LI+...React (11)

Claims (1)

【特許請求の範囲】[Claims] 1、直流リアクトルを有する送電系統の送電線路に接続
され、前記送電線路のしゃ断時に前記送電線路を開放す
る転流スイッチと、この転流スイッチに投入スイッチを
介して並列接続された転流コンデンサおよび転流リアク
トルの直列接続体と、この直列接続体と大地との間に設
けられた充電抵抗と、前記転流スイッチに並列接続され
、かつ前記直流リアクトルの蓄積エネルギーを吸収処理
する非直線抵抗とを有する直流しゃ断器において、前記
転流コンデンサおよび転流リアクトルの直列接続体に並
列に、逆並列接続したサイリスタを接続したことを特徴
とする直流しゃ断器。
1. A commutation switch connected to a power transmission line of a power transmission system having a DC reactor and opening the power transmission line when the power transmission line is cut off, a commutation capacitor connected in parallel to the commutation switch via a closing switch, and A series connection body of commutation reactors, a charging resistor provided between the series connection body and the ground, and a non-linear resistor connected in parallel to the commutation switch and absorbing and processing the energy accumulated in the DC reactor. 1. A DC breaker comprising: a thyristor connected in antiparallel in parallel to the series connection body of the commutating capacitor and commutating reactor.
JP348383A 1983-01-14 1983-01-14 Dc breaker Pending JPS59128715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP348383A JPS59128715A (en) 1983-01-14 1983-01-14 Dc breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP348383A JPS59128715A (en) 1983-01-14 1983-01-14 Dc breaker

Publications (1)

Publication Number Publication Date
JPS59128715A true JPS59128715A (en) 1984-07-24

Family

ID=11558579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP348383A Pending JPS59128715A (en) 1983-01-14 1983-01-14 Dc breaker

Country Status (1)

Country Link
JP (1) JPS59128715A (en)

Similar Documents

Publication Publication Date Title
CA2166225C (en) Circuit breaker and circuit breaking apparatus
JPH0799959B2 (en) Inverter with winding switching function
JPH0456489B2 (en)
JPS59128715A (en) Dc breaker
JPH0471285B2 (en)
JPH0124822Y2 (en)
JPS625539B2 (en)
US6201716B1 (en) Controller of power supplying apparatus with short circuit preventing means
JPS6178020A (en) Power switch
JPS5971220A (en) Dc breaker
JPH02116220A (en) Non-contact switch
SU712969A1 (en) Symistor three-phase circuit switching device
JPS60237716A (en) Switch device
JP2572528Y2 (en) Input device
JP3557144B2 (en) AC voltage controller
JPS5954132A (en) Dc breaker
JPH04289623A (en) Thyristor switch
JPH0789713B2 (en) Inverter start circuit
JPS6113517A (en) Vacuum breaker
JPS60237717A (en) Switch device
JPH05343968A (en) Electronic switch
JPS60167222A (en) Dc breaker
JPS5857229A (en) High voltage dc breaker for dc transmission system
JP2000050432A (en) Instrument transformer
JPS59222036A (en) Reactive power compensator