JPS59128501A - Radiant ray proof optical fiber - Google Patents

Radiant ray proof optical fiber

Info

Publication number
JPS59128501A
JPS59128501A JP58004606A JP460683A JPS59128501A JP S59128501 A JPS59128501 A JP S59128501A JP 58004606 A JP58004606 A JP 58004606A JP 460683 A JP460683 A JP 460683A JP S59128501 A JPS59128501 A JP S59128501A
Authority
JP
Japan
Prior art keywords
layer
optical fiber
radiation
protective layer
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58004606A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Sadao Chigira
定雄 千吉良
Kazuo Sanada
和夫 真田
Takeru Fukuda
福田 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58004606A priority Critical patent/JPS59128501A/en
Publication of JPS59128501A publication Critical patent/JPS59128501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To reduce transmission loss and lowering of mechanical strength even when used in high concentration of neutron by covering the outer circumferential face of an optical fiber bare conductor with a metallic coating layer, a protecting layer and a metallic member successively. CONSTITUTION:Outer circumferential face of an optical fiber bare conductor 1 is covered with a metallic coating layer 2. Outer circumferential face of the layer 2 is coated with a protecting layer 3 that protects the bare conductor 1 from radiant rays especially neutron. Outside of the layer 3 is coated with a metallic member 4 that protects the layer 3. The layer 2 is a metallic layer having about 5-30mum thickness deposited by vacuum vapor deposition (sputtering, chemical vapor phase deposition, dipping) method. Generally, it protects the conductor 1 from moisture generated by decomposition of covering material made of organic material caused by irradiation of radiant rays. For the layer 3, substances that absorb thermoneutron such as Li, B, Cd, Hf, etc., or substances that decelerate neutron such as H, Be, C, N, O, etc. or their compounds are desirable. The conductor 5 can be inserted into an Al tube, etc. as the metallic member 4.

Description

【発明の詳細な説明】 この発明は耐放射線性に優れ次光ファイバに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber having excellent radiation resistance.

光ファイバは低損失、広帯域、省資源など多くの優f′
LfF、特徴からその用途がしだいに拡大さnており、
原子炉施綬においても広く用いられつつある。このよう
な用途の中でも原子炉内のように強い放射線、特に中性
子密度の高い雰囲気の中で光ファイバが使用される場合
、光ファイバ裸線を形成するガラスが放射線、特に中性
子の攻撃によって短期間に劣化し着色が起きて、伝送損
失が増加しl、また光ファイバが有機物で被覆されてい
る場合には、その有機物が放射線によって分解されて水
分を生じ、この水分が光ファイバ裸線の表面欠陥の生長
を促進し、光ファイバが短期間で破断するなどの問題が
あり7tに の考案は上記事情に鑑みてなさf’L7!jもので。
Optical fiber has many advantages such as low loss, wide bandwidth, and resource saving.
Due to the characteristics of LfF, its uses are gradually expanding,
It is also becoming widely used in nuclear reactor construction. Among these applications, when optical fibers are used in atmospheres with strong radiation, especially high neutron density, such as in nuclear reactors, the glass forming the bare optical fibers can be exposed to radiation, especially neutron attack for a short period of time. In addition, if the optical fiber is coated with organic matter, the organic matter is decomposed by radiation and produces moisture, which is absorbed by the surface of the bare optical fiber. There are problems such as promoting the growth of defects and causing the optical fiber to break in a short period of time, so the idea for 7t was not made in consideration of the above circumstances f'L7! j thing.

原子炉内などのような放射線、特に中性子密度の高い雰
囲気の中で使用し【も伝送損失の増加が少なく、機械的
強度の劣化も少ない長期信頼性に優れ几耐放射線性光フ
ァイバを提供することを目的とするものである。
We provide highly radiation-resistant optical fibers that have excellent long-term reliability and minimal increase in transmission loss and minimal deterioration in mechanical strength even when used in environments with high radiation, especially neutron density, such as inside nuclear reactors. The purpose is to

以下、図面を参照してこの発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

図はこの発明の耐放射線性光ファイバの1例を示すもの
で、図中符号1は石英(S10□)を主体とする光ファ
イバ裸線である。この光ファイバ裸線lの外周面には金
属コート層2が被覆され、この金属コート層2の外周面
には放射線、特に中性子から光ファイバ裸線1を保護す
る保護層3が被覆され、この保護層3の外側には保護層
3を保護する金属部材4が被覆されている。
The figure shows one example of the radiation-resistant optical fiber of the present invention, and reference numeral 1 in the figure is a bare optical fiber mainly made of quartz (S10□). The outer peripheral surface of this bare optical fiber l is coated with a metal coating layer 2, and the outer peripheral surface of this metal coating layer 2 is coated with a protective layer 3 that protects the bare optical fiber 1 from radiation, especially neutrons. The outer side of the protective layer 3 is coated with a metal member 4 that protects the protective layer 3.

金属コート層2は、真空蒸着法、スパッタリング法、化
学気相析出法、ディップ法などによって厚さ5〜30μ
mの緻密な金属層を光ファイバ裸線lの外周面に形成し
てなるものである。この金属コート層2は、一義的には
、#記のように放射に施されるもので、この第1の目的
のためにはSt 、  Sn 、  Al1 、  G
e 、  In、W、Ni、Bi、Be、  Cu、 
 Ag、  Pb  など多種の金属を用いることがで
きるが、この金属コート層2にも放射線から光ファイバ
裸線lを保護する能力を付与することが望ましく、この
点を考慮すれば、中性子の減速材1反射材等に用いらn
るBe、又はγ線を吸収する能力が高いBx、Pb  
などの金属を用いることが適切であり、中でもBl、P
b  け融点が低く、ディップ法によって容易に被覆す
ることができる好適な材料である。
The metal coating layer 2 is formed to a thickness of 5 to 30 μm by vacuum evaporation, sputtering, chemical vapor deposition, dipping, etc.
A dense metal layer of m is formed on the outer peripheral surface of a bare optical fiber l. Primarily, this metal coating layer 2 is applied to radiation as shown in #, and for this first purpose, St, Sn, Al1, G
e, In, W, Ni, Bi, Be, Cu,
Although various metals such as Ag and Pb can be used, it is desirable that this metal coating layer 2 also have the ability to protect the bare optical fiber l from radiation. 1 Used for reflective materials, etc.
Be, which has a high ability to absorb γ-rays, or Bx, Pb, which has a high ability to absorb γ-rays.
It is appropriate to use metals such as Bl, P, among others.
It is a suitable material that has a low melting point and can be easily coated by dipping.

金属コート層2の外周面に設けられた保護層3は、Ll
l B106% Hf 等の熱中性子を吸収する能力に
優性た物質、 H,Be、  C,N、 Oなどの中性
子を減速する能力に優nた物質%またはこnらの物質の
化合物、あるいけこれらの物質や化合物を含む材料によ
って形成さnるが、耐放射線性光ファイバの製造時の加
工性や安全性を考慮すると、有機物、グラファイト (
C)、炭化ホウ素(B4C)、  窒化ホウ素(B、、
Nlなどを用いることが適切である。保護層3を形成す
るのに好適な製造方法としては、プラスチックにC1B
4C。
The protective layer 3 provided on the outer peripheral surface of the metal coat layer 2 is
lB106% Substances with superior ability to absorb thermal neutrons such as Hf, substances with superior ability to slow down neutrons such as H, Be, C, N, O, or compounds of these substances, or Although it is made of materials containing these substances and compounds, when considering workability and safety during the production of radiation-resistant optical fibers, organic substances, graphite (
C), boron carbide (B4C), boron nitride (B,,
It is appropriate to use Nl or the like. A suitable manufacturing method for forming the protective layer 3 is to use C1B on plastic.
4C.

BNなどを混入してこれを押し出し成形によって金属コ
ート層2の表面に被覆する方法や、水ガラス等の結合剤
中にC1有機物、 B4C,BNを分散させこれを金属
コート層2の外周面に塗布する方法などが用いられる。
There is a method of mixing BN etc. and coating the surface of the metal coat layer 2 by extrusion molding, or a method of dispersing C1 organic matter, B4C, and BN in a binder such as water glass and coating it on the outer peripheral surface of the metal coat layer 2. A coating method is used.

保護層3の厚みは、この発明の耐放射線性光ファイバに
要求される耐放射線性能、保護層3を形成する材料、保
護層3を被覆する方法等によって左右さnるが、一般的
には0.5〜1ovL程度とされる。
The thickness of the protective layer 3 depends on the radiation resistance performance required of the radiation-resistant optical fiber of the present invention, the material forming the protective layer 3, the method of coating the protective layer 3, etc., but in general, It is approximately 0.5 to 1 ovL.

との保護層3は金属部材4によって保護、保持さ扛る。The protective layer 3 is protected and held by the metal member 4.

金属部材4は、光ファイバ裸線lと金属コート層2と保
護層3とからなる線材5を包むものであり、この金属部
材4を形成する方法としては、上記線材5をアルミニウ
ムなどの金属管に挿入して、この金属管を金属部材4と
する方法や。
The metal member 4 wraps a wire 5 made of a bare optical fiber l, a metal coat layer 2, and a protective layer 3. The method for forming the metal member 4 is to wrap the wire 5 in a metal tube such as aluminum. A method of inserting the metal tube into the metal member 4 and using the metal tube as the metal member 4.

上記線材5に金属を外被する方法が考えられる。A method of covering the wire 5 with metal may be considered.

このように保護層3によって保護さnた光ファイバ裸線
lは、中性子線等の放射線にさらされてもこの保護層3
によって中性子のエネルギか減少され、あるbm’され
るので光ファイ・ぐ裸線lが受ける劣化や損傷は小さく
なる。また保護層3を形成する材料が中性子等の放射線
によって分解され水分を生じても、光ファイバ裸線1は
金属コート層2によって守られているので、光ファイバ
裸線lの表面欠陥が水分によって生長することはないか
ら、光ファイバの寿命がこのために短かくなることはな
い。
The bare optical fiber l protected by the protective layer 3 can be protected by the protective layer 3 even if exposed to radiation such as neutron beams.
Since the energy of the neutrons is reduced to a certain bm', deterioration and damage to the optical fiber and bare wire l are reduced. Furthermore, even if the material forming the protective layer 3 is decomposed by radiation such as neutrons and produces moisture, the bare optical fiber 1 is protected by the metal coating layer 2, so surface defects of the bare optical fiber 1 will be removed by moisture. Since there is no growth, the lifetime of the optical fiber is not shortened because of this.

以下、実施例を示してこの発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例1〕 コアー径50μm1外径IZfS#+の光ファイバ裸線
1の表面に、Bl からなる金属コート層2をディップ
法によって厚さ15μmに形成した。
[Example 1] A metal coating layer 2 made of Bl 2 was formed to a thickness of 15 μm on the surface of a bare optical fiber 1 having a core diameter of 50 μm and an outer diameter IZfS#+ by a dipping method.

次に結合剤としての水ガラス水溶液に中性子吸収物質の
B4Cが重量比で水ガラス/B4C−2/1懸濁された
溶液を、金属コート層2の表面にハケ塗りによって塗布
にこれを乾燥した後200〜300℃で焼付ける。この
作業を数回くり返して外径が1.5+mとなるまで保護
層3を形成し、こ壮を金属部材4としての外径3y、内
径1,51LIEのMパイプ内に封入した。
Next, a solution in which B4C, a neutron absorbing substance, was suspended in a water glass aqueous solution as a binder at a weight ratio of water glass/B4C-2/1 was applied to the surface of the metal coating layer 2 by brushing, and the solution was dried. Then bake at 200-300℃. This operation was repeated several times to form the protective layer 3 until the outer diameter became 1.5+m, and the protective layer 3 was sealed in an M pipe as a metal member 4 having an outer diameter of 3y and an inner diameter of 1.51LIE.

この耐放射線性光ファイバを原子炉内の計測制御用機器
の配置sVC用いて5年間使用したところ一般の肴機コ
ートファイバが5水中3本断線した夛伝送損失が大きく
なシ使用不能となったのに対して、この耐放射線性光フ
ァイバは全数使用可能な状態であった。
When this radiation-resistant optical fiber was used for 5 years as a VC for measurement and control equipment in a nuclear reactor, three of the standard fiber coated fibers were broken in 5 water, and the transmission loss was so large that it became unusable. On the other hand, all of the radiation-resistant optical fibers were usable.

実施例 画素fi20000、外径2uの石英系材料よりなるイ
メージファイバを光ファイバ裸線1として、こ扛にBt
  からなる金属コート層2をディップ法によって30
μmの厚さで被覆した。この金属コート層2の表面にB
Nが20vrtチ混入さ6次ナイロン6を押出し成形に
よって被覆し、外径を5nとした。これを外径8朋内径
5uのリパイプ内に封入E7た。
Example pixel fi20000, an image fiber made of quartz material with an outer diameter of 2u was used as the bare optical fiber 1, and Bt was used as the bare optical fiber 1.
The metal coating layer 2 consisting of
It was coated with a thickness of μm. B on the surface of this metal coat layer 2
Sixth nylon 6 mixed with 20vrt of N was coated by extrusion molding, and the outer diameter was set to 5n. This was enclosed in a repipe E7 with an outer diameter of 8mm and an inner diameter of 5u.

この耐放射線性光ファイバを原子炉内の看視機先ファイ
バは5水中1本断線し九のみであう比ゆ以上説明し念よ
うに、この発明の耐放射線性光ファイバは、光ファイバ
裸線の外周面に金属コート層、保護Nj1金属部材を順
次被覆し九ものなので、原子炉内などの放射線、特に中
性子の密度が高い雰囲気の中で使用しても、伝送損失の
増加が少なく5機械的強度の低下も少ない長期信頼性に
優n次光ファイバとなる。
This radiation-resistant optical fiber was used in a nuclear reactor with a monitoring equipment.There were only 9 cases of one fiber being broken underwater. Since the outer circumferential surface is coated with a metal coating layer and a protective Nj1 metal member in sequence, there is little increase in transmission loss even when used in an atmosphere with a high density of radiation, especially neutrons, such as inside a nuclear reactor. It becomes a superior n-order optical fiber with long-term reliability and little deterioration in strength.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の耐放射線性光ファイバを示す一部断面視
し九斜視図である。 l・・・・・・光ファイバ裸線、2・・・・・・金属コ
ート層、3・・・・・・保護層、4・・・・・・金属部
材。
The figure is a partially cross-sectional perspective view showing the radiation-resistant optical fiber of the present invention. 1... Bare optical fiber, 2... Metal coat layer, 3... Protective layer, 4... Metal member.

Claims (3)

【特許請求の範囲】[Claims] (1)光ファイバ裸線の外周面にこの光ファイバ裸線を
保護する金属コート層を設け、この金属コート層の外周
面に中性子を吸収もしくけ減速する保護層を設け、この
保護層の外側に上記保護層を保護する金属部材を設けた
ことを特徴とする耐放射線性光ファイバ。
(1) A metal coating layer is provided on the outer peripheral surface of the bare optical fiber to protect the bare optical fiber, a protective layer that absorbs and decelerates neutrons is provided on the outer peripheral surface of this metal coating layer, and the outside of this protective layer is A radiation-resistant optical fiber characterized in that a metal member is provided to protect the above-mentioned protective layer.
(2)金属コート層を形成する金属がビスマス(Bz)
鉛(Pbl であることを特徴とする特許請求の範囲第
1項記載の耐放射線性光ファイバ。
(2) The metal forming the metal coating layer is bismuth (Bz)
The radiation-resistant optical fiber according to claim 1, characterized in that it is lead (Pbl).
(3)保護層を形成する物質がグラファイト (C)、
種以上が混入され几物質であることを特徴とする特許請
求の範囲111項または第2項記載の耐放射線性光ファ
イバ。
(3) The material forming the protective layer is graphite (C),
111. The radiation-resistant optical fiber according to claim 111 or 2, wherein the radiation-resistant optical fiber is a phosphorescent substance mixed with at least one species.
JP58004606A 1983-01-14 1983-01-14 Radiant ray proof optical fiber Pending JPS59128501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58004606A JPS59128501A (en) 1983-01-14 1983-01-14 Radiant ray proof optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58004606A JPS59128501A (en) 1983-01-14 1983-01-14 Radiant ray proof optical fiber

Publications (1)

Publication Number Publication Date
JPS59128501A true JPS59128501A (en) 1984-07-24

Family

ID=11588698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004606A Pending JPS59128501A (en) 1983-01-14 1983-01-14 Radiant ray proof optical fiber

Country Status (1)

Country Link
JP (1) JPS59128501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050116A1 (en) 2010-10-12 2012-04-19 オリンパスメディカルシステムズ株式会社 Endoscope
JP2018169378A (en) * 2017-03-30 2018-11-01 三菱重工業株式会社 Spectroscopic analyzer and spectroscopic analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050116A1 (en) 2010-10-12 2012-04-19 オリンパスメディカルシステムズ株式会社 Endoscope
US8579803B2 (en) 2010-10-12 2013-11-12 Olympus Medical Systems Corp. Endoscope
JP2018169378A (en) * 2017-03-30 2018-11-01 三菱重工業株式会社 Spectroscopic analyzer and spectroscopic analysis method

Similar Documents

Publication Publication Date Title
US5182077A (en) Water cooled nuclear reactor and fuel elements therefor
US4029545A (en) Nuclear fuel elements having a composite cladding
CN106575528A (en) Additive manufacturing technology for fabrication and characterization of nuclear reactor fuel
JP6466956B2 (en) Method and composite for coating ceramic containing cladding of nuclear fuel rod
NO851988L (en) OPTICAL FIBER CABLES.
US4587087A (en) Burnable absorber coated nuclear fuel
US3649452A (en) Nuclear reactor fuel coated particles
US3073717A (en) Coated carbon element for use in nuclear reactors and the process of making the element
US5399185A (en) Process for producing a phosphor layer by reacting a doped substance with silica
JPS59128501A (en) Radiant ray proof optical fiber
US4587088A (en) Coating a nuclear fuel with a burnable poison
DE69220706T2 (en) Screen for storing a radiation image
KR100824511B1 (en) Protective Coating to Reduce Stress Corrosion Cracking of Zircaloy Fuel Sheathing
JPS6029915B2 (en) Composite cladding, fuel elements and manufacturing methods
EP0163401A2 (en) Cables
DE3915403A1 (en) High-temperature superconductor in wire or strip form, based on a superconducting ceramic of the class (La, Ba, Sr)2CuO4 or of the class (Y, RE)Ba2Cu3O6.5+y, with RE = rare earth and 0 < y < 1, and a mechanical support and a normal conductor
JPS6029742B2 (en) Method for producing porous polyvinylidene fluoride membrane
JPS60239703A (en) Optical fiber with hydrogen gas absorption preventing means
EP0146807B1 (en) Annular burnable absorber rod
GB1572989A (en) Method of manufacturing sealed sources of ionizing radiation
DE1010660B (en) Protective sleeve for fissile material elements of nuclear reactors
JP2732469B2 (en) Coated fuel particles
JPH037081B2 (en)
DE3915402A1 (en) Flexible high-temperature superconductor in wire form, based on a superconducting ceramic material of the class (La, Ba, Sr)2CuO4 or of the class (Y, RE)Ba2Cu3O6.5+y, with RE = rare earth and 0 < y < 1, and a mechanical support
KR19990087105A (en) Components designed for light water reactors and methods of manufacturing such components