JPS59127712A - Method for preparing composition of sliding material - Google Patents

Method for preparing composition of sliding material

Info

Publication number
JPS59127712A
JPS59127712A JP44783A JP44783A JPS59127712A JP S59127712 A JPS59127712 A JP S59127712A JP 44783 A JP44783 A JP 44783A JP 44783 A JP44783 A JP 44783A JP S59127712 A JPS59127712 A JP S59127712A
Authority
JP
Japan
Prior art keywords
fibers
heat
kneader
resistant resin
average length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP44783A
Other languages
Japanese (ja)
Inventor
Takanari Yasumoto
安本 隆也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP44783A priority Critical patent/JPS59127712A/en
Publication of JPS59127712A publication Critical patent/JPS59127712A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To obtain a composition for sliding material that can be injection, compression or transfer molded, by mixing uniformly a heat-resistant resin and organic fibers having a melting point higher than that of said resin under pressure and heating by using a pressurized type kneader. CONSTITUTION:When at least a heat-resistant resin and organic fibers having an average length of 1-10mm. and a melting point higher than that of said heat- resistant resin are mixed, a pressurized type kneader is used to mix them uniformly under pressure and heating. If the average length of the fibers is 1mm. or less, less reinforcing effect is observed, which if the average length of the fiberss 10mm. or more, they would, during the kneading cling fast to the blades of the kneader or become continuously entwined so that they interfere with the kneading operation or become difficult to take out the kneaded material. The high meling point organic fibers that can be used are aromatic polyamide fibers that can be obtained synthetically by the condensation of an aromatic diamine with an aromatic dicarboxylic acid or its derivative, and in particular polyparaphenylene terephthalamide fibers are preferred in view of heat resistance and reinforcing effect.

Description

【発明の詳細な説明】 本発明は、摺動材組成物を均一に混合せしめる方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for uniformly mixing a sliding material composition.

最近の先端産業分野において既存拐判では十分対応でき
ず、新しい高性能の機能材料が求められつつある。而−
1熱性に優れだポリマは産業の高度な要求に応える材料
の一つとして、近年、電子機器。
In recent, cutting-edge industrial fields, existing diaphragms are no longer sufficient, and new, high-performance functional materials are being sought. So-
1. Polymers with excellent thermal properties have been used in electronic devices in recent years as one of the materials that meet the advanced demands of industry.

複写機、電子レンジ、自動車、産業機器、航空機。Copy machines, microwave ovens, automobiles, industrial equipment, aircraft.

原子力機器などの分野に注目され、採用されている。4
熱性ポリマは高温度、高速摺動なと、厳しい使用東件下
での用途に向けられるものが多く。
It is attracting attention and being adopted in fields such as nuclear equipment. 4
Thermal polymers are often used for applications that require severe usage conditions, such as high temperature and high speed sliding.

最近では金属やセラミックの領域と考えられていた用途
においても使用されるようになってきた。
Recently, it has come to be used in applications that were once thought to be in the realm of metals and ceramics.

これら用途に使用されるポリマば、一般に各種充填材、
補強利と組み合わせ、要求性能にマツチする機能複合材
として利用される。各種充填利は通常粉末状のものを使
用するので樹脂との均一混合が容易であるが、補強利に
繊にイ(−を使用する場合の均一混合は極めて困離であ
った。すなわち、樹脂粉末と繊維をそのまま混合しよう
としても、繊組同志が絡まり、糸まり状に集まり、全体
を均一に混合することはできない。
Polymers used for these applications generally include various fillers,
Combined with reinforcing materials, it is used as a functional composite material that meets required performance. Since various fillers are usually in powder form, it is easy to mix them uniformly with the resin, but it is extremely difficult to mix them uniformly when using fibers as reinforcing fillers. Even if you try to mix the powder and fibers as they are, the fibers will become entangled with each other and collect in the form of threads, making it impossible to mix the entire mixture uniformly.

クロスにあらかじめ樹脂を含浸して、この含浸クロスを
積層成形するとか、あるいは樹脂含浸ストランドをフィ
ラメントワインディング法により成形する手段は、他の
成形法2例えば、射出、圧縮、トランスファーなどに応
用できず また、スクリューインジエクンヨンタイプ用
の樹脂含浸チョツプドファイバーも同様である。さらに
、射出。
Methods such as pre-impregnating cloth with resin and laminating the impregnated cloth, or molding resin-impregnated strands by filament winding cannot be applied to other molding methods such as injection, compression, and transfer. The same is true for resin-impregnated chopped fibers for screw-in die pump type. Furthermore, injection.

圧縮、トランスファー成形法用に用いられる粉末状繊維
を混合した原料は、均一な分散が不可能であるという欠
点を有していた。
Raw materials mixed with powdered fibers used for compression and transfer molding methods have the disadvantage that uniform dispersion is impossible.

本発明で(・」面1熱性ポリマと高融点の有機物短繊維
′、さらには他の充填材を配合して、積層法などでは成
形できない、複雑な形状物を射出、圧縮。
In the present invention, by blending a thermal polymer, a high-melting-point organic short fiber, and other fillers, we can inject and compress products with complex shapes that cannot be molded by lamination methods.

トランスファー法により成形することを目的とするもの
であり、そのだめに繊維や充填利が均一に分散した品質
の良好な成形原料を提供ぜんとするものである。本発明
のかかる目的は以下の構成によって達成される。
It is intended to be molded by a transfer method, and the purpose is to provide a molding raw material of good quality in which fibers and fillers are uniformly dispersed. This object of the present invention is achieved by the following configuration.

少なくとも酬熱性樹脂と平均繊維長1〜10mmで前記
1制熱性樹脂より高い融点を有する有機物繊に、jLを
混合するに際し、加圧式ニーダを使用し、加圧・加熱下
に均一混合せしめることを特徴とする摺動拐組成物の調
合方法。
When mixing jL with at least a heat exchanger resin and an organic fiber having an average fiber length of 1 to 10 mm and a melting point higher than the above-mentioned heat suppressing resin, use a pressure kneader and uniformly mix under pressure and heat. A method for preparing a characterized sliding composition.

加圧式ニーダは、攪拌翼を内装するニーダ混合槽を、空
圧もしくは油圧によりプランジャーで押え込む機構を有
する装置であり、ニーダ内に原料を投入した状態では、
攪拌翼上部の原料がプランジャーにより押え込まれて攪
拌翼にかみ込み易くなっている。プランジャーにより混
合槽へ加える圧力は02〜3 kg/cm2程度がよく
、原料の刊j類。
A pressure kneader is a device that has a mechanism in which a kneader mixing tank containing stirring blades is held down by a plunger using pneumatic or hydraulic pressure, and when raw materials are put into the kneader,
The raw material above the stirring blade is pressed down by the plunger and easily gets caught in the stirring blade. The pressure applied to the mixing tank by the plunger is preferably about 02 to 3 kg/cm2, and the pressure applied to the mixing tank is preferably about 0.2 to 3 kg/cm2.

配合比によって適当に変えるのが好丑しい。攪拌翼の回
転は10〜6 Orpmの比較的低速で、10〜60分
間程度混練する条件が適している。ポリマを溶融するた
めに、ニーダを加熱するが、混練中に摩擦熱を発生し、
内部温度は加熱温度以上に昇温するので、ニーダの加熱
はポリマの溶融?;’7’L度以下でもよい。
It is preferable to change it appropriately depending on the blending ratio. Suitable conditions are that the stirring blade is rotated at a relatively low speed of 10 to 6 Orpm and kneaded for about 10 to 60 minutes. The kneader is heated to melt the polymer, but frictional heat is generated during kneading.
Since the internal temperature rises above the heating temperature, does heating the kneader melt the polymer? ;'7'L degree or less may be sufficient.

次に本発明の調合の補助手段として、加圧式ニーダによ
り原料を混練する前に、ポリマ粉末とi7’:+融点の
有機物短繊維を9回転混合機や、■ブレンダかとにより
予備混合しておくのが好ましい。勿論この混合段階では
均質な混合は望むべくもないが、予備混合としての効果
は認められ、予(!ffi混合した原料は加圧式ニーダ
による混練がスムーズに行え、混合状態も一層均一とな
る。寸だ、加圧式ニーダによる混練後、混合原料は大き
な塊としてニーダから取り出され、この1−1では成形
に使用でき女い。したがって、冷却後の混合原料の塊り
を、粉砕機にかけて粗砕し数ミリ程度の大きさの成形し
やすい粒状にする。本発明の調合法の利点は、高融点の
有機物短繊維が均質に配合された4熱ポリマ組成物を得
ること、調合法が簡単で、複雑な工程を必要とせず、経
費がかからないことの他に、粗砕後の粒状物のかさばり
が小さく、成形機への原料供給が行ない易く、成形原石
として適した原料を得る点にある。
Next, as an auxiliary means for the preparation of the present invention, before kneading the raw materials with a pressure kneader, polymer powder and organic short fibers with an i7': + melting point are premixed using a 9-revolution mixer or a blender. is preferable. Of course, homogeneous mixing cannot be expected at this mixing stage, but the effect of premixing is recognized, and the premixed raw materials can be kneaded smoothly with a pressure kneader, and the mixed state becomes more uniform. After kneading with a pressure kneader, the mixed raw material is taken out from the kneader as a large lump, and it cannot be used for molding in 1-1.Therefore, the lump of the mixed raw material after cooling is crushed by a crusher. The advantages of the blending method of the present invention are that a four-heat polymer composition in which organic short fibers with a high melting point are homogeneously blended is obtained, and the blending method is simple. In addition to not requiring a complicated process and reducing costs, the bulk of the granular material after crushing is small, making it easy to feed the raw material to a molding machine, and obtaining a raw material suitable as a raw stone for molding.

本発明に使用する繊維の平均長は1〜10mmに限定し
ているが、その即由は平均長1 mm以下では補強効果
があまり認められず、逆に繊維長の長い10mm以上で
は混練中に、ニーダの攪拌翼に繊維がからみ付き、繊維
が連続的につながるため、混練を妨げたり、混練原料を
取り出すのが困難となる。本発明に使用する高融点の有
機物繊維とは。
The average length of the fibers used in the present invention is limited to 1 to 10 mm, but the reason for this is that when the average length is less than 1 mm, the reinforcing effect is not very noticeable. The fibers get entangled with the stirring blades of the kneader and are continuously connected, which hinders kneading and makes it difficult to take out the kneaded raw material. What is the high melting point organic fiber used in the present invention?

芳香族ジアミンと芳香族ジカルボン酸(またはその誘導
体)との縮合により合成される芳香族ポリアミド繊維で
あり、とくにポリパラフェニレンテレフタルアミド繊維
(例えばデュポン社製K e V ]、a r■)が耐
熱性と補強効果の面で好捷しい。
Aromatic polyamide fibers synthesized by condensation of aromatic diamines and aromatic dicarboxylic acids (or their derivatives), and polyparaphenylene terephthalamide fibers (e.g., DuPont's K e V ], a r■) are particularly heat-resistant. It is good in terms of strength and reinforcing effect.

また天然の水利パルプ、木綿、レーヨンの如きセルロー
ス繊維も含丑れる。
Also included are cellulose fibers such as natural water pulp, cotton, and rayon.

耐熱性ポリマとは、フェノール樹脂、エボギシ樹脂、不
飽和ポリエステル、ポリイミドなどの硬化タイプの樹脂
や、ポリエーテルスルフォン、ポリスルフォン、ポリフ
ェニレンザルファイド、ポリエーテルエーテルケトン、
芳香族ポリエステル。
Heat-resistant polymers include hardening type resins such as phenolic resin, epoxy resin, unsaturated polyester, and polyimide, as well as polyether sulfone, polysulfone, polyphenylene sulfide, polyether ether ketone,
Aromatic polyester.

ポリイミドなどの熱可塑化タイプの樹脂である。It is a thermoplastic type resin such as polyimide.

以下に本発明を実施例に基つき説明する。The present invention will be explained below based on examples.

実施例1〜4および比較例1 芳香族ポリアミド繊維として実施例1,3.4ではDu
 Pont社製Kevlar■29パルプ(平均繊維長
2 mm )を、実施例2では6皿長のチョツプドファ
イバーをそれぞれ使用した。址だ熱硬化ポリイミドとし
て実施例1.ろ、4および比較例1ではRhone P
oulenc社製Kerimid■1000の粉末を。
Examples 1 to 4 and Comparative Example 1 In Examples 1 and 3.4, Du
Kevlar 29 pulp (average fiber length: 2 mm) manufactured by Pont was used, and in Example 2, chopped fiber with a length of 6 plates was used. Example 1 as a thermosetting polyimide. 4 and Comparative Example 1, Rhone P
Kerimid■1000 powder manufactured by Oulenc.

実施例2では無水トリメリット酸と4,4′−ジアミノ
ジフェニルメタンおよび無水ナジック酸を原料に使用し
て合成したポリイミド粉末をそれぞれ使用した。各原料
の調合方法は下記のとおりである。
In Example 2, polyimide powders synthesized using trimellitic anhydride, 4,4'-diaminodiphenylmethane, and nadic anhydride as raw materials were used. The method for preparing each raw material is as follows.

実施例1,2ではポリイミド粉末の80重Hii %と
In Examples 1 and 2, the polyimide powder was 80% by weight.

パルプもしくは6皿長チョツプドファイバーの2Q 市
、i7i%をドライの丑ま■ブレンダに入れ、数分間V
ブレンダを回転せしめて予備混合する。実施例ろではポ
リイミド60重量係、パルプ20重量係、グラファイト
20重量係とし、実施例4ではポリイミド60重量係、
パルフ’20iX噴係、PTFE20重量係の配合比で
、それぞれVブレンダにより数分間予備混合した。次に
この予備混合した原料を、実施例1,3.4では8−0
℃に、実施例2では180℃にあらかじめ加熱された加
圧式ニーグニ投入し、プランジャーで1〜’1.5 J
/c+n2の加圧下に攪拌翼を回転せしめる。回転数は
30rpmとした。回転を始めると摩擦熱にJ:り二−
グの内部温度が上昇し、ポリイミドは溶融状態となって
混練される。この場合、内部温度が上がり過ぎるとポリ
マの硬化が進行するので、ニーダの内部温度がポリマの
溶融温度以上になり、かつこの範囲の温度を大幅に上昇
しないようにコントロールする必要がある。加圧式ニー
ダによる混練は約20分間行い、混練原料を二−グから
取り出す。
Put 2Q of pulp or 6-plate chopped fiber into a dry blender and blend for a few minutes.
Rotate the blender to premix. In Example 4, polyimide is 60 weight, pulp is 20 weight, and graphite is 20 weight. In Example 4, polyimide is 60 weight,
Preliminary mixing was carried out for several minutes using a V-blender at a blending ratio of Parf'20iX jet and PTFE20 by weight. Next, in Example 1, 3.4, this premixed raw material was mixed with 8-0
℃, in Example 2, pressurized Nigni heated in advance to 180℃ was added, and a plunger was used to inject 1 to 1.5 J.
The stirring blade is rotated under pressure of /c+n2. The rotation speed was 30 rpm. When it starts rotating, frictional heat causes
The internal temperature of the polyimide becomes molten and kneaded. In this case, if the internal temperature rises too much, curing of the polymer will proceed, so it is necessary to control the internal temperature of the kneader so that it is equal to or higher than the melting temperature of the polymer, and the temperature within this range does not rise significantly. Kneading is carried out using a pressure kneader for about 20 minutes, and the kneaded raw materials are taken out from the kneader.

冷却後、a全原料の塊状物を粉砕機にかけ10 nun
程度の大きさになる丑で粗砕した。この場合あ丑り細か
く砕くと粉砕中に繊維が著しく切断されるし、丑だ粉砕
原料のかさはり係数が大きくなり。
After cooling, put the lumps of all raw materials in a crusher to 10 nun
I crushed it coarsely with a ox to a certain size. In this case, if the material is crushed too finely, the fibers will be severely cut during the crushing process, and the bulk factor of the crushed raw material will increase.

成形原料としては扱いにくくなるので、  10m4’
10m4' as it becomes difficult to handle as a molding raw material.
.

度の粗砕が適している。なお、比較例1でd:Kev1
ar■短繊維や 充填材を加えず、調合を省略してポリ
イミド粉末をそのit成形に使用した。このようにして
調合した各原料を使用して圧縮成形を行った。実施例1
,3.4および比較例1では温度260℃、圧力3 D
 D kg/an2の条件下15分間金型内刃加熱して
成形し、硬化物を取り出した。
coarse crushing is suitable. In addition, in Comparative Example 1, d: Kev1
ar■ Polyimide powder was used for the IT molding without adding short fibers or fillers and omitting the blending. Compression molding was performed using each of the raw materials prepared in this manner. Example 1
, 3.4 and Comparative Example 1, the temperature was 260°C and the pressure was 3D.
The mold was molded by heating the inner blade of the mold for 15 minutes under the condition of D kg/an2, and the cured product was taken out.

この硬化物は、さらに200℃で2日間ボストギュア処
理してから物性を調べた。
This cured product was further treated with Bost Guar treatment at 200° C. for 2 days, and then its physical properties were examined.

寸だ実施例2の成形条件は温度290℃、圧力j 00
 kg/an・2の榮件下に40分間金型内で成形し。
The molding conditions of Example 2 were a temperature of 290°C and a pressure of J00
Molded in a mold for 40 minutes under the condition of kg/an・2.

一旦、金型力・ら硬化物を取り出してから260Cで2
日間ボストキュア処理した。
Once the cured product is removed from the mold, heat it at 260C for 2 hours.
Bost cured for 1 day.

第1図および第2図は実施例1,2の成形物の断面を、
走査型電子顕微鏡にJ:す200倍に拡大17て調べだ
ものであり、ポリイミドのマトリックスにに、evla
r■パルプやチョツプド短繊維が均一に分散している様
子を示すものである。
Figures 1 and 2 show the cross sections of the molded products of Examples 1 and 2.
The results were examined using a scanning electron microscope and magnified 200 times.
This shows that the r■ pulp and chopped short fibers are uniformly dispersed.

またイ」表には各実施例の成形物の曲げ強さ9弾性率、
摩擦・摩耗性8機械加工性および調合原料のかさばり係
数を示す。一般に樹脂粉末と繊維とを混合するとかさば
り係数が著しく大きくなり。
In addition, the flexural strength 9 elastic modulus of the molded product of each example,
Friction/Abrasion 8 Indicates machinability and bulk factor of blended raw materials. Generally, when resin powder and fiber are mixed, the bulk factor increases significantly.

成形に際し金型への充填が困難になるが2本発明の方法
により調合した原料は樹脂粉末単独のかさばり係数とあ
捷り差がなく、成形原料として取り扱い易いことが明ら
かである。丑だ本発明の方法により調合した原料の成形
物は機械的強度に優れ。
Although it is difficult to fill the mold into a mold during molding, it is clear that the raw material prepared by the method of the present invention has no difference in bulk coefficient and kneading compared to the resin powder alone, and is easy to handle as a molding raw material. Molded products made from raw materials prepared by the method of the present invention have excellent mechanical strength.

とくにK e V la r■短繊維とグラファイトも
しくばPTFEと併用したものでは摺動性2機械加工性
に優れたものであることが明らかである。
In particular, it is clear that the combination of K e V lar ■ short fibers and graphite or PTFE has excellent sliding properties (2) and machinability.

比較例2〜4 ポリイミド粉末とK e v ]、a、r■短繊維の混
合方法に関し、比較例2でば■ブレンダを、比較例6で
はリボンブレンダを、比較例4ではスーパーミキサーを
それぞれ使用してドライベースで両原料を。
Comparative Examples 2 to 4 Regarding the mixing method of polyimide powder and K e v ], a, r■ short fibers, Comparative Example 2 used a ■ blender, Comparative Example 6 used a ribbon blender, and Comparative Example 4 used a super mixer. and both ingredients on a dry basis.

配合比率や混合条件を変えて混合テストを実施し/ζ。Conduct a mixing test by changing the blending ratio and mixing conditions/ζ.

比較例2,3では繊&[lが糸まり状にかたまり。In Comparative Examples 2 and 3, the fibers &[l were agglomerated into a ball of thread.

均一な混合ができず、均質な成形物が得られない。Uniform mixing is not possible and a homogeneous molded product cannot be obtained.

さらに混合物は著しくかさばり〜、成形しにくい欠点が
ある。比較例4では容器内に挿入された原151は、全
体が混合されることがなく1回転翼の周囲だけが局部的
に混合されるにすぎない。
Furthermore, the mixture has the disadvantage of being extremely bulky and difficult to mold. In Comparative Example 4, the raw material 151 inserted into the container is not mixed entirely, but only locally around one rotor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明にかかる方法により混合さ
れた成形物の断面の顕微鏡写真である。 第1図は実施例1に、第2図は実施例2によるものであ
る。 特許出願人  東 し 株 式 会 社第1図 第2図
FIGS. 1 and 2 are micrographs of cross-sections of molded products mixed by the method according to the invention. FIG. 1 is based on the first embodiment, and FIG. 2 is based on the second embodiment. Patent applicant Toshi Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)  少なくとも耐熱性樹脂と平均繊維長1〜10
mmで前記耐熱性樹脂より高い融点を有する有機物繊維
を混合するに際し、加圧式ニーダを使用し。 加圧・加熱下に均一混合せしめることを特徴とする摺動
材組成物の調合方法。
(1) At least a heat-resistant resin and an average fiber length of 1 to 10
A pressure kneader is used when mixing organic fibers having a melting point higher than that of the heat-resistant resin in mm. A method for preparing a sliding material composition characterized by uniformly mixing the composition under pressure and heat.
JP44783A 1983-01-07 1983-01-07 Method for preparing composition of sliding material Pending JPS59127712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP44783A JPS59127712A (en) 1983-01-07 1983-01-07 Method for preparing composition of sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP44783A JPS59127712A (en) 1983-01-07 1983-01-07 Method for preparing composition of sliding material

Publications (1)

Publication Number Publication Date
JPS59127712A true JPS59127712A (en) 1984-07-23

Family

ID=11474045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP44783A Pending JPS59127712A (en) 1983-01-07 1983-01-07 Method for preparing composition of sliding material

Country Status (1)

Country Link
JP (1) JPS59127712A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065761A1 (en) * 2007-11-30 2009-06-03 Ricoh Company, Ltd. Conductive member, process cartridge using the conductive member, and image forming device using the process cartridge
CN105315663A (en) * 2014-07-10 2016-02-10 黑龙江鑫达企业集团有限公司 Preparation method of polyimide composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133360A (en) * 1976-04-30 1977-11-08 Matsushita Electric Works Ltd Process for producing polyester resin molding material
JPS5590340A (en) * 1978-12-28 1980-07-08 Yokohamashi Device for kneading and shaping resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133360A (en) * 1976-04-30 1977-11-08 Matsushita Electric Works Ltd Process for producing polyester resin molding material
JPS5590340A (en) * 1978-12-28 1980-07-08 Yokohamashi Device for kneading and shaping resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065761A1 (en) * 2007-11-30 2009-06-03 Ricoh Company, Ltd. Conductive member, process cartridge using the conductive member, and image forming device using the process cartridge
CN105315663A (en) * 2014-07-10 2016-02-10 黑龙江鑫达企业集团有限公司 Preparation method of polyimide composite material

Similar Documents

Publication Publication Date Title
CN108517102B (en) Light heat-proof composite material and preparation method thereof
US5744235A (en) Process for preparing composite structures
CN104559066A (en) Mid-temperature curing epoxy resin composition for melting prepared prepreg and preparation method of composition
CN104558526A (en) Method for preparing medium temperature fast curing epoxy resin composition for melting prepared prepreg
CN101096443A (en) Method for preparing epoxy sheet mould plastic
CN106884330B (en) A kind of emulsion type carbon fiber sizing agent and its preparation method and application
CN109880288B (en) Polyether-ether-ketone self-lubricating composite material and preparation method and application thereof
CN109111682A (en) A kind of preparation process of polyether-ether-ketone base modified nano composite material
JPS59127712A (en) Method for preparing composition of sliding material
CN107459820B (en) Preparation method of micro-nano particle synergistic interlayer toughening bismaleimide/carbon fiber composite material
AU2003212250B2 (en) Method for producing and treating epoxide resin moulding materials
JP2007231234A (en) Method for producing epoxy resin composition
JPH11336878A (en) Phenol resin gear and manufacture thereof
JPS63202411A (en) Resin mold
CN112280301A (en) Low-dielectric-constant polyphenylene sulfide composite material and preparation process thereof
JP7461447B1 (en) Curing resin composition
JPH11247971A (en) Fiber reinforced resin machine part and manufacture therefor
CN107474483B (en) Dispersible epoxy resin material and preparation method thereof
CN106633665A (en) Inorganic/organic composite high-temperature ablation resistant material and preparation method thereof
JPS5974155A (en) Phenolic resin molding material
JPS60163959A (en) Production of phenolic resin molding material
CN114031747A (en) Low-viscosity high-performance epoxy resin system easy for dispersing nano materials and preparation method thereof
JPH06320540A (en) Molding material containing fire resisting fiber available for producing ablating article, its production, and its application
CN118126488A (en) Organosilicon modified impact-resistant phenolic moulding plastic and preparation method thereof
CN116218219A (en) Wear-resistant self-lubricating composite material based on naphthyridine biphenyl polyarylether resin and preparation method thereof