JPS59127007A - Dichroic filter - Google Patents

Dichroic filter

Info

Publication number
JPS59127007A
JPS59127007A JP268583A JP268583A JPS59127007A JP S59127007 A JPS59127007 A JP S59127007A JP 268583 A JP268583 A JP 268583A JP 268583 A JP268583 A JP 268583A JP S59127007 A JPS59127007 A JP S59127007A
Authority
JP
Japan
Prior art keywords
wavelength
reflection factor
reflectance
transmittivity
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP268583A
Other languages
Japanese (ja)
Inventor
Shunji Kishida
岸田 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP268583A priority Critical patent/JPS59127007A/en
Publication of JPS59127007A publication Critical patent/JPS59127007A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/284Interference filters of etalon type comprising a resonant cavity other than a thin solid film, e.g. gas, air, solid plates

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To approximate the transmittivity of the 2nd wavelength to an ideal value by providing plural reflecting surfaces which has a low reflection factor to light of the 1st wavelength, a high reflection factor to light of the 2nd close wavelength, and varies in reflection factor monotonously in an intermediate wavelength range and its circumferential wavelength ranges. CONSTITUTION:Normal etalon, etc., are used for reflecting surfaces 2 on the optical polished surface of a substrate 1; and a multilayered film having about 20 layers for obtaining a high reflection factor is vapor-deposited and a film having about 10 layers for compensation is formed to obtain sharp monotonous reflection factor characteristics. The reflecting surfaces 2 are opposed to each other in parallel by using a spacer 3. This multilayered vapor-deposited film has such spectral characteristics that the film has the low reflection factor R1 to the 1st wavelength lambda1 and the high reflection factor R2 to the 2nd wavelength lambda2 and varies in reflection factor monotonously with wavelength, so the transmittivity is almost 100% in a range of the wavelength lambda1 and a waveform range wherein said condition is satisfied is wide. On the other hand, the transmittivity to the 2nd wavelength lambda2 is extremely low because of extremely small transmittivity condition and the high reflection factor R2 and about (1-R2)<2>/4- 2.5X10<-5>.

Description

【発明の詳細な説明】 本発明は、光学フィルター、とくに波長の近接した光に
対する分離度を高めたダイクロイックフィルターに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical filter, and particularly to a dichroic filter that increases the degree of separation of light having close wavelengths.

従来、近接した2波長の光を分離するダイクロイックフ
ィルターとしては、2tfl長に対する反射率の差が大
きい30層程度の多層膜蒸着鏡を利用メするものと、前
記2波長に対し高反射率の反射面を対向させたエタロン
を利用するものの2つが主に知られている。しかし、こ
れらはそれぞれ以下に述べる欠点を有する。
Conventionally, dichroic filters that separate two wavelengths of light that are close to each other have been made using a multilayer film deposited mirror with about 30 layers, which has a large difference in reflectance for a 2tfl length, and a dichroic filter that has a high reflectance for the two wavelengths. Two main types are known that utilize etalons with opposing surfaces. However, each of these has drawbacks as described below.

まず多層膜蒸着鏡を用いる場合には、2v長に対する反
射率の差を大きくすることが、2波長の波長が近接した
場合に特に難かしく、このため反射率の低い第1の波長
の元に対する透過率が理想値の100cljよりもかな
り下が9、逆に反射率の高い第2の波長の光に対する透
過率が理想値の0%よシも若干高くなるという欠点があ
った。そこで2彼長の光に対する分離度を高めるのに、
この多層膜蒸着鋭を光学的に縦列配置すると、前記の第
1の波長の光に対する透過率がさらに下がるという欠点
を生じた。
First, when using a multilayer mirror, it is difficult to increase the difference in reflectance for the 2V length, especially when the two wavelengths are close to each other. There was a drawback that the transmittance was 9, which was considerably lower than the ideal value of 100clj, and conversely, the transmittance for light of the second wavelength, which had a high reflectance, was slightly higher than the ideal value of 0%. Therefore, 2. To increase the degree of separation from the light of the boyfriend,
Optically arranging the multilayer film deposits in tandem resulted in a drawback that the transmittance for the light of the first wavelength further decreased.

一方、エタロン全周いる場合には、前記の第1と第2の
波長に対し同程度の高い反射率ヲ有する反射面で干渉鏡
面を構成する。このとき、このエタロンの分光透過特性
には、良く知られた周期的な透過ピークが現わ゛れるの
で、前記の第1および第2の波長をそれぞれこのエタロ
ンの透過率の極小および極大波長に対応させればこのエ
タロンはダイクロイ、クツイルターとして機能する。
On the other hand, when the entire circumference of the etalon exists, the interference mirror surface is constituted by a reflecting surface having a similar high reflectance for the first and second wavelengths. At this time, well-known periodic transmission peaks appear in the spectral transmission characteristics of this etalon, so the first and second wavelengths are set to the minimum and maximum wavelengths of the etalon's transmittance, respectively. If made compatible, this etalon will function as a dichroi and a kutsuilter.

この場合、2波長の光の分離度を上げるために反射面の
反射率Rtなるべく高くする。こうすると第1の波長に
対する透過率はほぼ(1−R)/4で与えられ、充分低
くできる。一方、第2の波長の透過率は、Rt−100
%近くに高くした高フィネス状態では、反射面の面精度
や平行度、および入射ビームの指向性の不充分さKよシ
理想値の100チに対しその半分種度に下がることが多
く、このことがエタロンを用いたグイクロイックミラー
の欠点である。
In this case, the reflectance Rt of the reflective surface is made as high as possible in order to increase the degree of separation of the two wavelengths of light. In this way, the transmittance for the first wavelength is approximately (1-R)/4, which can be made sufficiently low. On the other hand, the transmittance of the second wavelength is Rt-100
In a high finesse state near %, the surface accuracy and parallelism of the reflecting surface and the insufficient directivity of the incident beam often decrease to half the ideal value of 100 degrees. This is a drawback of the guichroic mirror using an etalon.

本発明の目的は、以上の従来のダイクロイックフィルタ
ーの欠点を除去し、従来の2a類のフィルターの特長を
合わせ持ち、さらに2つのフィルターにない特徴である
、第2の波長の透過率を理想値の100チに近づけた特
性を有するダイクロイ、クツイルターを提供することに
ある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the conventional dichroic filter, combine the features of the conventional 2a type filter, and further increase the transmittance of the second wavelength to an ideal value, which is a feature that the two filters do not have. The object of the present invention is to provide a dichroic and Kutsuilter having characteristics close to those of 100.

本発明によれば、第1の波長の光に対し反射率が低く、
前記第1の波長に近接した第2の波長の光に対しては反
射率が高く、しかも前記第1の波長と前記第2の波長の
中間およびその周辺の波長域で反射率が単調忙変化する
反射面を複数有し、前記の複数の反射面が相互に干渉面
を構成して成ミことを特徴とするダイクロイックフィル
ターが得られる。
According to the present invention, the reflectance is low for light of the first wavelength;
The reflectance is high for light of a second wavelength close to the first wavelength, and the reflectance changes monotonically in a wavelength range between and around the first wavelength and the second wavelength. There is obtained a dichroic filter characterized in that it has a plurality of reflecting surfaces, and the plurality of reflecting surfaces mutually constitute interference surfaces.

以下図面を用いて本発明の具体的実施例を詳細に説明す
る。
Hereinafter, specific embodiments of the present invention will be described in detail using the drawings.

第1図は、本発明の一実施例の断面図であり、基板1の
光学研磨面上に多層膜蒸着を施した反射面2を、スペー
サ3を使って平行に対向させる。
FIG. 1 is a sectional view of an embodiment of the present invention, in which reflective surfaces 2, each having a multilayer film deposited on an optically polished surface of a substrate 1, are arranged to face each other in parallel using a spacer 3. FIG.

この多層の蒸着膜の分光特性は、第2図に示すごとく、
第1の波長λ、で反射率R1が低く、この第1の波長λ
、に近接した第2の波長λ2で反射率R7が高く、しか
も反射率が波長に対し単調に変化している。具体的には
、波長1.3μm付近で、λ、とλ、の差が約0.1μ
mの場合にR,; 0.2 、 R,:; 0.99程
度の分離特性を有する30層程度からなる多層膜蒸着が
可能である。2つの反射面20間隔dは、波長λ。
The spectral characteristics of this multilayer deposited film are as shown in Figure 2.
The reflectance R1 is low at the first wavelength λ, and the reflectance R1 is low at the first wavelength λ.
, the reflectance R7 is high at the second wavelength λ2 close to , and the reflectance changes monotonically with respect to the wavelength. Specifically, at a wavelength of around 1.3 μm, the difference between λ and λ is approximately 0.1 μm.
In the case of m, it is possible to deposit a multilayer film consisting of about 30 layers having separation characteristics of about R,; 0.2 and R, :; 0.99. The distance d between the two reflective surfaces 20 is the wavelength λ.

の半波長の整数倍で、かつ波長λ、の半波長の半整数倍
に近くなるよう選ぶ。このような条件を満たすd//i
無限にあるが、ここではそのうち最も小さい値となるよ
う選ぶ。この場合の、本実施例による分光透過特性を第
3図に示す。
It is chosen to be an integer multiple of a half wavelength of the wavelength λ, and close to a half integer multiple of a half wavelength of the wavelength λ. d//i that satisfies these conditions
There are an infinite number of values, but here we choose the smallest value. In this case, the spectral transmission characteristics according to this example are shown in FIG.

第1の波長λ、に対しては本実施しリの干渉器としての
透過率極大条件が満たされていることと、反射面の反射
率R8が低いことにより、本実施例の透過率は極めて1
00%に近くなり、しかもその条件が満たされる波長範
囲が広い。一方第2の波長λ。
For the first wavelength λ, the transmittance of this example is extremely high because the maximum transmittance condition for the interferometer in this example is satisfied and the reflectance R8 of the reflective surface is low. 1
00%, and the wavelength range in which this condition is satisfied is wide. On the other hand, the second wavelength λ.

に対しては、逆に透過率極小条件と反射率R7の高さと
により、透過率は極めて低くなり、その値はほぼ(1−
R,)”/4〜2.5X10−’となる。λ、よりも長
波長側の幅の狭い透過ピークは、波長λ1よりも干渉次
数のひとつ小さい透過量極太条件によって現われるピー
クで、この波長では反射率が極めて大きいためにエタロ
ンと同様、透過率の最大値が100%よりもかなり低く
なるうえ、透過帯域も極めて狭くなっている。このよう
な幅の狭い透過 4ピークの存在はダイクロイックフィ
ルターの特性上は好ましくないが、実用上差しつかえな
い。
On the other hand, due to the minimum transmittance condition and the high reflectance R7, the transmittance becomes extremely low, and its value is approximately (1-1).
R,)''/4~2.5X10-'.The narrow transmission peak on the longer wavelength side than λ is the peak that appears under the extremely thick transmission condition, which is one interference order smaller than the wavelength λ1. Because the reflectance is extremely high, the maximum transmittance is much lower than 100%, just like the etalon, and the transmission band is also extremely narrow.The existence of these four narrow transmission peaks is due to the dichroic filter. Although it is unfavorable in terms of its characteristics, it is acceptable in practice.

本発明では、第2図のごとく反射面として波長λ1とλ
、の中間およびその周辺で単調に変化する反射率を有す
る反射面を用いているので、特に波長λ、の近辺の広い
波長範囲にわたって低反射率になっている。このため本
発明のダイクロイックフィルターの波長λ1付近の透過
率は、前述のごとく広い範囲にわたって100%に近い
高透過率になっている。この優れた特性は、反射面とし
て通常のエタロン等に用いる、高反射率を得るための2
0層程度の多層膜蒸着を施こしたうえに、上記の急峻で
単調な反射率特性を得るだめの10層程度の補償用の膜
を施こして得られる。前記の20層程度の多層膜蒸着で
は、高反射率である波長域の両端で、反射率が低下する
波長域が61、この領域を利用すれば、従来のエタロン
によっても本発明の効果と類似の効果が得られるごとく
考えられるが、前記の多層膜蒸着の反射率の変化は緩慢
で、しかも反射率の低下した波長域で、反射率の波長に
対する大きな振動が避けられない。
In the present invention, as shown in FIG. 2, wavelengths λ1 and λ
Since a reflecting surface having a reflectance that monotonically changes between and around the wavelength λ is used, the reflectance is low over a wide wavelength range, especially around the wavelength λ. Therefore, the transmittance of the dichroic filter of the present invention near the wavelength λ1 is high, close to 100% over a wide range as described above. This excellent property is used as a reflective surface for ordinary etalons, etc. to obtain high reflectance.
It is obtained by depositing about 0 multilayer films and then applying about 10 compensation films to obtain the steep and monotonous reflectance characteristics described above. In the multilayer film deposition of about 20 layers described above, the wavelength range where the reflectance decreases is 61 at both ends of the wavelength range where the reflectance is high, and if this range is utilized, the effect similar to that of the present invention can be achieved even with a conventional etalon. However, the change in the reflectance of the multilayer film deposition described above is slow, and in the wavelength range where the reflectance decreases, large fluctuations in the reflectance with respect to wavelength are unavoidable.

これらのことの反映として、反射面の反射率が低下する
波長域金利用する従来のエタロンを用いたダイクロイッ
クフィルターでは、本発明のごとく近接した波長に対す
る高い分離度が得られないうえ、低反射域での波長に対
する反射率の振動による高透過率領域O透過率の振動が
生じ、本発明の特長である、高透過率の波長領域の広さ
も得られない。
As a reflection of these factors, conventional etalon-based dichroic filters that use gold in the wavelength range where the reflectance of the reflective surface decreases cannot achieve the high degree of separation for adjacent wavelengths as the present invention, and also The vibration of the transmittance in the high transmittance region O occurs due to the vibration of the reflectance with respect to the wavelength at , and the wide wavelength region of high transmittance, which is a feature of the present invention, cannot be obtained.

以上、本発明により従来の欠点を除去し、2つの近接し
た波長に対する分離度が高く、特に、一方9波長の光に
対する透過率が極めて高い、従来にない実用的なダイク
ロイックフィルターが得られる。
As described above, the present invention eliminates the drawbacks of the conventional filter, and provides an unprecedented practical dichroic filter that has a high degree of separation for two adjacent wavelengths, and in particular has an extremely high transmittance for light of nine wavelengths.

なお、本発明の趣旨を逸脱することなく、いくつかの変
形が可能である。  。
Note that several modifications are possible without departing from the spirit of the invention. .

干渉面の数は2つに限定する必要はなく、例えば3つの
干渉面からなる複合共振効果により、2つの波長に対す
る分離度を高めることが可能であり、その場合、第1図
の一方の基板の2つの光学面の両方全反射面とする構成
が考えられる。
The number of interference surfaces does not need to be limited to two; for example, it is possible to increase the degree of separation for two wavelengths by a composite resonance effect consisting of three interference surfaces. In that case, one of the substrates in FIG. A configuration in which both of the two optical surfaces are total reflection surfaces can be considered.

干渉面の数が2つの場合には、基板をひとつにして、そ
の両面を平行にして干渉面とすることは当然可能である
が、ただしその場合には、基板の厚さを薄くすることに
限界があるため、第3図の分光透過特性に余分な透過ピ
ークが現われてくる。
If the number of interference surfaces is two, it is naturally possible to use one substrate and make both sides parallel to serve as the interference surface, but in that case, it is necessary to reduce the thickness of the substrate. Because of the limitations, extra transmission peaks appear in the spectral transmission characteristics shown in FIG.

また、反射面2の反射率を第2図とは逆にλ1に対し高
く、λ、に対しては低くすることは容易で、それに応じ
、長波長のλ2の光に対して透過率の極めて高いダイク
ロイックフィルターが得られるのは当然である。
Moreover, contrary to Fig. 2, it is easy to make the reflectance of the reflective surface 2 high for λ1 and low for λ, and accordingly, the transmittance for the long wavelength λ2 light is extremely high. Naturally, a high quality dichroic filter can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の断面図全示し、1は基板
、2は反射面、3はスペーサを表わす。 第2図は、反射面2の分光反射特性を示し、第3図は、
本発明の一実施例の分光透過特性を示す。 代り人弁理士 内腔  −晋
FIG. 1 is a complete cross-sectional view of an embodiment of the present invention, in which 1 represents a substrate, 2 represents a reflective surface, and 3 represents a spacer. FIG. 2 shows the spectral reflection characteristics of the reflective surface 2, and FIG. 3 shows the spectral reflection characteristics of the reflective surface 2.
3 shows the spectral transmission characteristics of an example of the present invention. Patent attorney on your behalf - Susumu

Claims (1)

【特許請求の範囲】[Claims] 第1の波長の光に対し反射率が低く、前記第1の波長に
近接した第2の波長の光に対しては反射率が高く、しか
も前記第」の波長と前記第2の波長の中間およびその周
辺の波長域で反射率が単調に変化する反射面を複数有し
、前記の複数の反射面が相互に干渉面を構成して成るこ
とを特徴とするダイクロイックフィルター。
The reflectance is low for light of a first wavelength, the reflectance is high for light of a second wavelength close to the first wavelength, and the reflectance is intermediate between the first wavelength and the second wavelength. A dichroic filter having a plurality of reflecting surfaces whose reflectance monotonically changes in wavelength ranges around the wavelength range, the plurality of reflecting surfaces mutually forming interference surfaces.
JP268583A 1983-01-11 1983-01-11 Dichroic filter Pending JPS59127007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP268583A JPS59127007A (en) 1983-01-11 1983-01-11 Dichroic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP268583A JPS59127007A (en) 1983-01-11 1983-01-11 Dichroic filter

Publications (1)

Publication Number Publication Date
JPS59127007A true JPS59127007A (en) 1984-07-21

Family

ID=11536143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP268583A Pending JPS59127007A (en) 1983-01-11 1983-01-11 Dichroic filter

Country Status (1)

Country Link
JP (1) JPS59127007A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193007A (en) * 1986-02-13 1987-08-24 ソ−ン イ−エムアイ ピ−エルシ− Lighting apparatus
US5516618A (en) * 1995-04-03 1996-05-14 Xerox Corporation Method of making carriers having coatings with fillers
US5695043A (en) * 1990-01-26 1997-12-09 Ikegami Tsushinki Co., Ltd. Method of and an apparatus for conveying objects for inspection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224417A (en) * 1975-08-19 1977-02-23 Matsushita Electric Ind Co Ltd Multi-channel reception tuner
JPS542854A (en) * 1977-06-07 1979-01-10 Aatoneichiyaa Kk Wig

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224417A (en) * 1975-08-19 1977-02-23 Matsushita Electric Ind Co Ltd Multi-channel reception tuner
JPS542854A (en) * 1977-06-07 1979-01-10 Aatoneichiyaa Kk Wig

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193007A (en) * 1986-02-13 1987-08-24 ソ−ン イ−エムアイ ピ−エルシ− Lighting apparatus
US5695043A (en) * 1990-01-26 1997-12-09 Ikegami Tsushinki Co., Ltd. Method of and an apparatus for conveying objects for inspection
US5516618A (en) * 1995-04-03 1996-05-14 Xerox Corporation Method of making carriers having coatings with fillers

Similar Documents

Publication Publication Date Title
JP3844886B2 (en) Manufacturing method of optical filter
US4128303A (en) Anti reflection coating with a composite middle layer
US7006292B2 (en) Multi-cavity optical filter
US4952025A (en) Rugate filter incorporating parallel and series addition
US5071225A (en) Beam splitter for producing a plurality of splitted light beams for each of wavelength components of an incident light beam
US7319560B2 (en) Partitioned-cavity tunable fabry-perot filter
CA2220291C (en) Multilayer thin film dielectric bandpass filter
US4666250A (en) Interference filter design using flip-flop optimization
US4367921A (en) Low polarization beam splitter
US4269481A (en) Multiple-cavity electro-optic tunable filter
US4826267A (en) Spectral filter with integral antireflection coating
US5410431A (en) Multi-line narrowband-pass filters
US3960441A (en) Anti-reflection coating having pseudo-inhomogeneous layers
WO1999036811A1 (en) Optical interference filter
US6407863B1 (en) Dual transmission band interference filter
US5475531A (en) Broadband rugate filter
US5181143A (en) Multiple line rugate filter with index clipping
US7315420B2 (en) CWDM filter with four channels
US4800568A (en) Gas laser with a frequency-selective dielectric layer system
JPS59127007A (en) Dichroic filter
US20030128432A1 (en) Polarization independent thin film optical interference filters
JPH07281024A (en) Polarized beam splitter
JPS58223101A (en) Production of polygonal mirror
CA2337223A1 (en) Dual transmission band interference filter
JP2000284121A (en) Polarized light separating film and polarized light separating prism