JPS59127003A - Optical attenuator - Google Patents
Optical attenuatorInfo
- Publication number
- JPS59127003A JPS59127003A JP58002296A JP229683A JPS59127003A JP S59127003 A JPS59127003 A JP S59127003A JP 58002296 A JP58002296 A JP 58002296A JP 229683 A JP229683 A JP 229683A JP S59127003 A JPS59127003 A JP S59127003A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- wavelength
- light
- attenuator
- attenuation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/264—Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
- G02B6/266—Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting the optical element being an attenuator
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2589—Bidirectional transmission
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は、光波長多重、伝送に用いられ特定波長の光に
対して任意の光減衰量を設定できる光減衰器に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an optical attenuator that is used for optical wavelength multiplexing and transmission and can set an arbitrary optical attenuation amount for light of a specific wavelength.
(従来技術)
光波長多重伝送方式のように1本の光ファイバに複数の
波長の光を伝送する場合、距離が短かく受光レベルが太
き過ぎる場合に光減衰器を必要とするが、従来の光減衰
器は光波長に対して光減衰量が変化しないものが一般的
であった。(Prior art) When transmitting light of multiple wavelengths through a single optical fiber, such as in optical wavelength division multiplexing transmission, an optical attenuator is required when the distance is short and the received light level is too high. Generally, the optical attenuator had an optical attenuation that did not change depending on the optical wavelength.
第1図は光波長多重伝送方式を用いない双方向光伝送系
の例であり、1,2は光端局装置、1ノ。FIG. 1 shows an example of a bidirectional optical transmission system that does not use an optical wavelength division multiplexing transmission system, in which 1 and 2 are optical terminal equipment;
21は電気光変換回路、12.22は光電気変換回路、
101,102は光ファイバ、103゜104は従来の
光波長特性を持たない光減衰器である。第1図のように
、それぞれの光伝送系に各各1本の光ファイバ101,
102が対応する場合には、それぞれの伝送系に最適な
減衰量を持った光減衰器103,104を挿入すること
が可能となる。21 is an electro-optical conversion circuit, 12.22 is an opto-electric conversion circuit,
101 and 102 are optical fibers, and 103 and 104 are optical attenuators that do not have conventional optical wavelength characteristics. As shown in FIG. 1, each optical transmission system has one optical fiber 101,
102, it becomes possible to insert optical attenuators 103 and 104 with optimal attenuation amounts into the respective transmission systems.
第2図は光減衰器103,104の光波長(λ)対光損
失(1oss )特性を示すものであり、光減衰器10
3,104の光波長λ1.λ2に対応して各々α、βの
光損失特性をもつことを示している。FIG. 2 shows the optical wavelength (λ) vs. optical loss (1oss) characteristics of the optical attenuators 103 and 104.
3,104 optical wavelengths λ1. It is shown that they have optical loss characteristics of α and β, respectively, corresponding to λ2.
従来の光波長特性を持たない光減衰器を用い一本の光フ
ァイバで双方向伝送を行う場合には全ての光波長に対し
て最適の受光レベルを設定できるとは限らない欠点、す
なわち光ファイバは光波長特性を持っていることから光
波長によシ送出レベルは一定とならず、したがって受光
部の受光感度が一定とならないという欠点があった。又
、従来の光波長特性を持たない光減衰器を用いて受光レ
ベルを調節しようとすると、一方の系で受光レベルが最
適となっても、他方の受光レベルが高すぎて受光部が飽
和したり低すぎてノイズが大きくなったりする欠点があ
った〇
(発明の目的)
本発明の目的は、これらの欠点を除去する為、光波長に
より光減衰量を任意に設定できるようにしたもので以下
詳細に説明する。When performing bidirectional transmission with a single optical fiber using an optical attenuator that does not have conventional optical wavelength characteristics, there is a drawback that it is not always possible to set the optimal light reception level for all optical wavelengths. Since it has optical wavelength characteristics, the transmission level is not constant depending on the optical wavelength, and therefore the light receiving sensitivity of the light receiving section is not constant. Also, if you try to adjust the light receiving level using a conventional optical attenuator that does not have optical wavelength characteristics, even if the light receiving level is optimal in one system, the light receiving level in the other system will be too high and the light receiving part will become saturated. (Objective of the Invention) In order to eliminate these drawbacks, the object of the present invention is to make it possible to arbitrarily set the amount of optical attenuation depending on the optical wavelength. This will be explained in detail below.
(発明の構成)
本発明は、光減衰量が光波長にょ9変tする複数の光減
衰素子より成り、多重伝送される複数種類の光波長に応
じて光減衰量が変化することを特徴とする光減衰器であ
る。(Structure of the Invention) The present invention is characterized in that it is composed of a plurality of optical attenuation elements whose optical attenuation varies depending on the optical wavelength, and the optical attenuation varies according to multiple types of optical wavelengths that are multiplexed. This is an optical attenuator.
(第1の実施例)
第3図は1本の光ファイバによる双方向光伝送系の例を
示し、3,4は光端局装置、31 、41L
は電気変換回路1.? 2.42は光電気変換回路、1
05.107は光合分波器、106は本発明の実施例に
よる光減衰器、10Bは光ファイバであ・る。(First Embodiment) FIG. 3 shows an example of a bidirectional optical transmission system using one optical fiber, in which 3 and 4 are optical terminal devices, and 31 and 41L are electrical conversion circuits 1. ? 2.42 is a photoelectric conversion circuit, 1
05.107 is an optical multiplexer/demultiplexer, 106 is an optical attenuator according to an embodiment of the present invention, and 10B is an optical fiber.
第4図(a) (b) (c)は光減衰器106を説明
するものである。第4図(a)は光減衰器106の構造
図を示し、RLI、RL2は各々光ファイバーからの光
を平行ビームに変換し又は平行ビームを光ファイバに入
るように集光する口、ドレンズ、F 1.F 2は光ゝ
減衰素子(干渉膜フィルタ)、第4図(b)は光減衰器
106の光波長(λ)対光損失(1oss )特性図、
第4図(c)は光減衰素子F1.F2に対応する光波長
(λ)対光損失(1oss )特性図を示す。FIGS. 4(a), 4(b), and 4(c) illustrate the optical attenuator 106. FIG. FIG. 4(a) shows a structural diagram of the optical attenuator 106, in which RLI and RL2 are an opening, a drain lens, and an F for converting light from an optical fiber into a parallel beam or concentrating a parallel beam to enter the optical fiber, respectively. 1. F2 is an optical attenuation element (interference film filter), FIG. 4(b) is a characteristic diagram of optical wavelength (λ) versus optical loss (1oss) of the optical attenuator 106,
FIG. 4(c) shows the optical attenuation element F1. A characteristic diagram of optical wavelength (λ) versus optical loss (1oss) corresponding to F2 is shown.
第3図、第4図において、光端局装置3の電気光変換回
路3ノからの波長λ1の光はロッドレンズRI、7を通
って平行ビームに変換され、第4図(c)の特性曲線a
を持つ光減衰素子F 1’によってλ1の波長部分はα
の減衰量を受け、ロッドレンズRL2により集光された
後光端局装置4の光電気変換回路42に送られる。又光
端局装置4の電気光変換回路41からの波長λ2の光は
ロッドレンズRL2を通って平行ビームに変換され、第
4図(c)の特性曲線すを持つ光減衰素子F2によって
λ2の波長部分はβの減衰量を受け、光端局装置3へ送
られる。従って、第4図(a)に示す光減衰器106の
光波長(λ)対光損失特性(1oss )は第4図(b
)に示すものとなり、光波長λ1.λ2の各各に対して
異った光減衰量を与えることになる。In FIGS. 3 and 4, light with a wavelength λ1 from the electro-optical conversion circuit 3 of the optical terminal device 3 passes through the rod lens RI, 7 and is converted into a parallel beam, with the characteristics shown in FIG. 4(c). curve a
The wavelength portion of λ1 is α
After receiving the attenuation amount, the light is focused by the rod lens RL2 and sent to the opto-electric conversion circuit 42 of the backlight terminal device 4. Further, the light of wavelength λ2 from the electro-optical conversion circuit 41 of the optical terminal equipment 4 is converted into a parallel beam through the rod lens RL2, and the light of wavelength λ2 is converted into a parallel beam by the optical attenuation element F2 having the characteristic curve shown in FIG. 4(c). The wavelength portion receives an attenuation amount of β and is sent to the optical terminal device 3. Therefore, the optical wavelength (λ) vs. optical loss characteristic (1oss) of the optical attenuator 106 shown in FIG. 4(a) is as shown in FIG. 4(b).
), and the optical wavelength λ1. A different amount of optical attenuation is given to each of λ2.
このように、それぞれの系に対して異った減衰量を与え
る光減衰素子(干渉膜フィルタ)を用意することにより
、それぞれの系に対して最適の受光レベルを設定するこ
とが可能となり、従来における上述した欠点を除くこと
が出来る利点を有することになる。In this way, by preparing optical attenuation elements (interference film filters) that provide different amounts of attenuation for each system, it becomes possible to set the optimal light reception level for each system, which This has the advantage of being able to eliminate the above-mentioned drawbacks.
(第2の実施例)
第5図は1本のファイバによる双方向光伝送系の他の例
を示し、109ならびに110は光端局装置3ならびに
光端局装置4各々に対して設けられる光減衰器であり、
それぞれの光端局装置3゜4の位置で受光レベルを最適
に調節できるようにしたものである。(Second Embodiment) FIG. 5 shows another example of a bidirectional optical transmission system using one fiber, and 109 and 110 are optical fibers provided for each of the optical terminal equipment 3 and the optical terminal equipment 4. is an attenuator,
The light receiving level can be optimally adjusted at the 3° and 4 position of each optical terminal device.
第6図(a) (b)は光減衰器109を説明するもの
であり、第6図(a)は光減衰器109の構造図、第6
図(b)は光減衰器109の光波長(λ)対光減衰量(
1oss )特性を示す。同様に第7図(a)は光減衰
器110の構造図、第7図(b)は光減衰器110の光
波長(λ)対光減衰量(1oss )特性を示す。6(a) and 6(b) explain the optical attenuator 109, FIG. 6(a) is a structural diagram of the optical attenuator 109, and FIG.
Figure (b) shows the optical attenuation amount (λ) versus the optical wavelength (λ) of the optical attenuator 109.
1oss) characteristics. Similarly, FIG. 7(a) is a structural diagram of the optical attenuator 110, and FIG. 7(b) shows the optical wavelength (λ) vs. optical attenuation (1oss) characteristic of the optical attenuator 110.
第5図、第6図、第7図を用いて本実施例を説明する。This embodiment will be explained using FIG. 5, FIG. 6, and FIG. 7.
光端局−3の電気光変換回路31からの波長λノの光は
光減衰器109では何ら減衰を受けず、光減衰器110
にて第7図(b)に示す減衰量αを受は光端局装置4へ
送られる。又、光端局装置4の電気光変換回路4ノから
の波長λ2のレーザー尤は光減衰器110では何ら減衰
を受けず、光減衰器109にて第6図(b)に示す、減
衰量βを受け、光端局装置3へ送られる。The light of wavelength λ from the electro-optical conversion circuit 31 of the optical terminal station-3 is not attenuated at all by the optical attenuator 109, and is not attenuated by the optical attenuator 110.
Then, the attenuation amount α shown in FIG. 7(b) is received and sent to the optical terminal device 4. Further, the laser beam of wavelength λ2 from the electro-optic converter circuit 4 of the optical terminal equipment 4 is not attenuated at all by the optical attenuator 110, and is attenuated by the optical attenuator 109 as shown in FIG. 6(b). β is received and sent to the optical terminal device 3.
このように光減衰器をそれぞれの光端局装置側に設け、
受光レベルを各々調節しても第1の実施例の場合と同様
、従来における欠点を除くことが出来る利点を有する。In this way, an optical attenuator is provided on each optical terminal equipment side,
Even if the received light levels are adjusted individually, there is an advantage that the drawbacks of the conventional method can be eliminated, as in the case of the first embodiment.
(第3の実施例)
次に多波双方向光波長多重伝送方式に使用され、光端局
装置側々に設けられる光減衰器について説明する。(Third Embodiment) Next, an optical attenuator used in the multiwave bidirectional optical wavelength division multiplexing transmission system and provided on each side of the optical terminal equipment will be described.
第8図は多波双方向光波長多重伝送方式の例を示し、5
はnヶの電気光変換回路511〜51nとnヶの光電気
変換回路521〜52nならびに光合分波器113から
成りn種類の波長の光の送受を行う光端局装置、6はn
ヶの電気光変換回路621〜62nとnヶの光電気変換
回路611〜61nから成りn種類の波長の九の送受を
行う光端局装置、111.112は本発明の実施例に係
る光減衰器、1o8は光ファイバである。Figure 8 shows an example of a multiwave bidirectional optical wavelength division multiplexing transmission system.
6 is an optical terminal device consisting of n electro-optical conversion circuits 511 to 51n, n photo-electric conversion circuits 521 to 52n, and an optical multiplexer/demultiplexer 113, and transmits and receives light of n different wavelengths;
111.112 is an optical attenuation device according to the embodiment of the present invention, which is composed of 621 to 62n of electro-optic conversion circuits and 611 to 61n of photo-electric conversion circuits, and performs transmission and reception of 9 wavelengths of n types. 1o8 is an optical fiber.
光端局装置5側に挿入される光減衰器11ノを第9図に
て説明する。第9図(a)は光減衰器111の構造図を
示し、RL7.RL2はレーザー光を平行ビームに変換
又は平行ビームを集光する口。The optical attenuator 11 inserted into the optical terminal equipment 5 side will be explained with reference to FIG. FIG. 9(a) shows a structural diagram of the optical attenuator 111, and RL7. RL2 is a port that converts laser light into a parallel beam or focuses a parallel beam.
ドレンズ、F21〜F2nはn種類の光波長λ21〜λ
2nに各々対応した光減衰特性をもち公知の干渉膜フィ
ルタ作成技術により作成出来る光減衰素子(干渉膜フィ
ルタ)、第9図(b)は光減衰器111の光波長(λ)
対光損失(1oss )特性図、第9図(c)は光減衰
素−子F2x〜F2nに対応した光波長(λ)対光損失
(1oss )特性図を示す(例えば光減衰素子F21
では波長λ21のところで最大の光減衰を行い、他の光
波長のところでは何ら光減衰を行わない)。同様に第1
0図(a)は第8図の光減衰器112の構造図、第10
図(b)は光減衰器112の光波長(λ)対光損失(1
oss )特性図、第10図(c)は光減衰素子Fil
〜Finに対応する光波長(λ)対光損失(1oss
)特性図を示す。Drain lens, F21 to F2n are n types of light wavelengths λ21 to λ
An optical attenuation element (interference film filter) that has optical attenuation characteristics corresponding to 2n and can be manufactured using a known interference film filter manufacturing technique, FIG. 9(b) shows the optical wavelength (λ) of the optical attenuator 111.
FIG. 9(c) shows a characteristic diagram of optical loss (1oss) versus optical wavelength (λ) corresponding to optical attenuation elements F2x to F2n (for example, optical attenuation element F21
In this case, the maximum optical attenuation is performed at the wavelength λ21, and no optical attenuation is performed at other optical wavelengths). Similarly, the first
0(a) is a structural diagram of the optical attenuator 112 in FIG.
Figure (b) shows the optical wavelength (λ) of the optical attenuator 112 versus the optical loss (1
oss ) characteristic diagram, Figure 10(c) shows the optical attenuation element Fil.
~ Optical wavelength (λ) corresponding to Fin vs. optical loss (1oss
) shows the characteristic diagram.
この場合も、第2の実施例にて2つの種類の波長の光の
伝送の場合と同じように、光端局装置5の電気光変換回
路511〜51nから送られたλノ1〜λ1nのn種類
の波長の光は光減衰器111では何ら減衰されず、光減
衰器112にて第10図(b)に示すように各々の波長
λ11〜λ1nに対応した減衰量β1〜βnを受けて光
端局装置6へ送られる。同様に電気光変換回路621〜
62nから送信されたλ21〜λ2nのn種類の波長の
光は光減衰器112では何ら減衰されず、光減衰器11
ノにて第9図(b)に示すように各々の波長λ21〜λ
2nに対応した減衰量α1〜αnを受けて光端局装置5
へ送られる。In this case as well, as in the case of transmitting light of two types of wavelengths in the second embodiment, the wavelengths of λ1 to λ1n sent from the electro-optical conversion circuits 511 to 51n of the optical terminal equipment 5 are The light of n different wavelengths is not attenuated at all by the optical attenuator 111, but is subjected to attenuation amounts β1 to βn corresponding to the respective wavelengths λ11 to λ1n by the optical attenuator 112, as shown in FIG. 10(b). The signal is sent to the optical terminal device 6. Similarly, the electro-optical conversion circuit 621~
The light of n types of wavelengths λ21 to λ2n transmitted from the optical attenuator 112 is not attenuated at all by the optical attenuator 112.
As shown in FIG. 9(b), each wavelength λ21 to λ
In response to the attenuation amounts α1 to αn corresponding to 2n, the optical terminal equipment 5
sent to.
このように多波双方向光波長多重伝送方式に本発明の実
施例に係る光減衰器を使用すれば、それぞれの光伝送系
に対して最適の受光レベルを設定できる。本実施例の場
合は第2実施例において波長が2種類であったものをn
種類に拡張し、その各々の波長に対応して減衰させるも
のであり、上述した他の実施例と同じように従来の欠点
を解決することができる。As described above, if the optical attenuator according to the embodiment of the present invention is used in a multiwave bidirectional optical wavelength division multiplexing transmission system, an optimal light reception level can be set for each optical transmission system. In the case of this embodiment, there are two types of wavelengths in the second embodiment.
The present invention is expanded to different types of wavelengths and attenuated correspondingly to each wavelength, and the conventional drawbacks can be solved in the same way as the other embodiments described above.
(第4の実施例)
第11図は第8図に示した光減衰器111と光減衰器1
12の機能を合わせた1つの光減衰器115を用いた多
波双方向光波長多重伝送方式の例を示す(記号は第8図
と同じものを示す)。(Fourth embodiment) FIG. 11 shows the optical attenuator 111 and optical attenuator 1 shown in FIG.
An example of a multiwave bidirectional optical wavelength division multiplexing transmission system using one optical attenuator 115 having 12 functions is shown (symbols are the same as in FIG. 8).
第12図(a) (b) (c)は光減衰器115を説
明するものである。第12図(a)は光減衰器115の
構造図を示し、記号は第9図(a)、第10図(a)と
同じものであり、第12図(b)は光減衰器115の光
波長(λ)対光損失(1oss )特性図、第12図(
c)は光減衰素子F 11〜F I n 、 F 21
〜F 2 nに対応した光波長(λ)対光損失(1os
s入特性入金性す0第11図、第12図において、光端
局装置5の電気光変換回路511〜51nから送られる
波長(λII〜λ7n)の光は口、ドレンズRL7を通
って平行ビームに変換され、第12図(b)の特性曲線
を持つ光減衰素子Fll〜Finによって各々対応した
減衰を受け(光減衰素子F21〜F2nによっては減衰
されない)、ロッドレンズRL2により集光された後、
光端局装置6の光電気変換回路611〜61nに各々対
応して送られる。又、光端局装置6の電気光変換回路6
21〜62n7J・ら送られる波長(λ21〜λ2n)
の光は口、ドレンズRL、?を通って平行ビームに変換
され、第12図(b)の特性曲線を持つ光減衰素子F2
1〜F2nによって各々対応した減衰を受け(光減衰素
子Fll〜Finによっては減衰されない)、ロッド1
/ンズRLIにより集光された後、光端局装置5の光電
気変換回路521〜52nに各々対応して送られる。FIGS. 12(a), 12(b), and 12(c) illustrate the optical attenuator 115. FIG. FIG. 12(a) shows a structural diagram of the optical attenuator 115, the symbols are the same as those in FIG. 9(a) and FIG. 10(a), and FIG. 12(b) shows the structure of the optical attenuator 115. Optical wavelength (λ) vs. optical loss (1oss) characteristic diagram, Figure 12 (
c) are optical attenuation elements F 11 to F I n , F 21
~ Optical wavelength (λ) corresponding to F 2 n vs. optical loss (1 os
In Figures 11 and 12, light of wavelengths (λII to λ7n) sent from the electro-optical conversion circuits 511 to 51n of the optical terminal device 5 passes through the drain lens RL7 and becomes a parallel beam. The light is converted into a light beam, subjected to corresponding attenuation by the light attenuation elements Fll to Fin having the characteristic curve shown in FIG. ,
The signals are sent to the photoelectric conversion circuits 611 to 61n of the optical terminal device 6, respectively. Moreover, the electro-optical conversion circuit 6 of the optical terminal device 6
Wavelength sent from 21 to 62n7J・(λ21 to λ2n)
The light is from the mouth, drain RL, ? The optical attenuator F2 is converted into a parallel beam through the optical attenuator F2 and has the characteristic curve shown in FIG.
1 to F2n (not attenuated by the optical attenuation elements Fll to Fin), the rod 1
After the light is collected by the /ns RLI, it is sent to the opto-electrical conversion circuits 521 to 52n of the optical terminal device 5, respectively.
このように、異る複数の波長に各々対応した減衰量を与
える光減衰素子(干渉膜フィルタ)を用意することによ
り、それぞれの系に対して最適の受光レベルを設定する
ことが可能となシ、上記本発明の他の実施例の場合と同
様に従来の欠点を除去できる利点を有する。In this way, by preparing optical attenuation elements (interference film filters) that provide attenuation amounts corresponding to multiple different wavelengths, it is possible to set the optimal light reception level for each system. , has the advantage of eliminating the conventional drawbacks as in the case of the other embodiments of the present invention.
(発明の効果)
本発明の光減衰器は、特定波長に対して任意の光減衰量
を持たせることができるので、複数の波長を使用する光
波長多重伝送系に対して最適の受光レベルを設定するこ
とができ、高品位の光伝送系を構成することができる。(Effects of the Invention) The optical attenuator of the present invention can have an arbitrary amount of optical attenuation for a specific wavelength, so it can provide the optimal light reception level for an optical wavelength division multiplexing transmission system that uses multiple wavelengths. It is possible to configure a high-quality optical transmission system.
第1図は光波長多重伝送方式を用いない双方向光伝送系
の説明図、第2図は第1Mに示す従来の光減衰器10
、? 、 104の光波長(λ)対光損失(1oss
)%性図、第3図は1本の光ファイバによる双方向光伝
送系の説明図、第4図は本発明法1の実施例に係る光減
衰器106の説明図、第5図は1本の光ファイバによる
他の双方向光伝送系の説明図、第6図は本発明法2の実
施例に係る光減衰器109の説明図、第7図は本発明法
2の実施例に係る光減衰器110の説明図、第8図は1
本の光ファイバによる多波双方向光波長多重伝送系の説
明図、第9図は本発明法3の実施例に係る光減衰器11
1の説明図、第10図は本発明法:3の実施例に係る光
減衰器112の説明図、第11図は1本の光ファイバに
よる他の多波双方向光波長多重伝送系の説明図、第12
図は本発明法4の実施例に係る光減衰器115の説明図
である。
3+ 4 H5+ 15 光端局装置1.? 1 、
41 。
5ノ1〜51n、621〜62n ・電気光変換回路
、32 、42 、521〜52 n 、 611〜6
7n光電気変換回路、106,109,110゜111
.112.115 ・光減衰器、105゜107.1
13,114−光合分波器、708−光ファイバ、RL
I 、RLI ロッドレンズ、F 1 、 F 2 、
F 11〜F I n 、 F 21〜F 2 n
−光減衰素子。
Il+
(b)
AI+ Al1 Al1 人Ir1All
AZ2AZ3 A<n 1ff−1(八
)第9図
(C)
八ll ハ12 ’L13 ハ1つ ノv
1 u2 八t3 八211 尤yztλ
)手続補正書(睦)
5B、4.22
昭和 年 月 日
特許庁長官 殿
1、事件の表示
昭和58年 特 許 願第oo2296量2、発明の
名称
光減衰器
3 補正をする者
事件との関係 特 許 出 願 人任 所(
〒105) 東京都港区虎ノ門1丁目7番12号4、
代理人
住 所(〒105) 東京都港区虎ノ門1丁目7番1
2号も、補正の内容 別紙のとおり補正する
゛ ′)a4.Z2(1)明細書第2頁第18行から第
19行目にある「送出レベルは一定と々らず、しだがっ
て」とあるのを削除する。
(2)同書第8頁第3行目に「最大の」とあるのを−「
最小の」と補正する。
(3)図面「第5図」と[第12図(a)(内容に変更
なし) (b) (C) Jを別紙のとおり補正する。
第5図Figure 1 is an explanatory diagram of a bidirectional optical transmission system that does not use an optical wavelength division multiplexing transmission system, and Figure 2 is a conventional optical attenuator 10 shown in Figure 1M.
,? , 104 optical wavelength (λ) vs. optical loss (1oss
3 is an explanatory diagram of a bidirectional optical transmission system using one optical fiber, FIG. 4 is an explanatory diagram of an optical attenuator 106 according to an embodiment of method 1 of the present invention, and FIG. FIG. 6 is an explanatory diagram of an optical attenuator 109 according to an embodiment of method 2 of the present invention, and FIG. 7 is an explanatory diagram of another bidirectional optical transmission system using optical fibers. An explanatory diagram of the optical attenuator 110, FIG.
FIG. 9 is an explanatory diagram of a multiwave bidirectional optical wavelength division multiplexing transmission system using optical fibers, and FIG. 9 is an optical attenuator 11 according to an embodiment of method 3 of the present invention.
1, FIG. 10 is an explanatory diagram of the optical attenuator 112 according to the embodiment of method 3 of the present invention, and FIG. 11 is an explanatory diagram of another multi-wave bidirectional optical wavelength division multiplexing transmission system using one optical fiber. Figure, 12th
The figure is an explanatory diagram of an optical attenuator 115 according to an embodiment of method 4 of the present invention. 3+ 4 H5+ 15 Optical terminal equipment 1. ? 1,
41. 5 No. 1-51n, 621-62n ・Electro-optical conversion circuit, 32, 42, 521-52n, 611-6
7n photoelectric conversion circuit, 106, 109, 110° 111
.. 112.115 ・Optical attenuator, 105°107.1
13,114-Optical multiplexer/demultiplexer, 708-Optical fiber, RL
I, RLI rod lens, F 1, F 2,
F 11 - F I n , F 21 - F 2 n
- Optical attenuation element. Il+ (b) AI+ Al1 Al1 Person Ir1All
AZ2AZ3 A<n 1ff-1 (8) Figure 9 (C) 8ll Ha12 'L13 Ha1 Nov
1 u2 8t3 8211 yztλ
) Procedural amendment (Mutsu) 5B, 4.22 Showa year, month, day, Japan Patent Office Commissioner, 1, Indication of the case, 1988 Patent Application No. OO2296 Volume 2, Name of the invention Optical attenuator 3 Person making the amendment Related patent application office (
105) 1-7-12-4 Toranomon, Minato-ku, Tokyo.
Agent address (105) 1-7-1 Toranomon, Minato-ku, Tokyo
Item 2 will also be amended as per the attached sheet.
゛ ′) a4. Z2(1) Delete the statement ``The output level is not constant, therefore,'' in lines 18 to 19 of page 2 of the specification. (2) In the 3rd line of page 8 of the same book, the word ``largest'' is replaced by ``-''
The minimum is corrected. (3) Drawings "Figure 5" and [Figure 12 (a) (no change in content) (b) (C) J will be corrected as shown in the attached sheet. Figure 5
Claims (1)
り成り、多重伝送される複数種類の光波長に応じて光減
衰量が変化することを特徴とする光減衰器。1. An optical attenuator comprising a plurality of optical attenuation elements whose optical attenuation varies depending on the optical wavelength, and whose optical attenuation varies according to a plurality of types of optical wavelengths that are multiplexed and transmitted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58002296A JPS59127003A (en) | 1983-01-12 | 1983-01-12 | Optical attenuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58002296A JPS59127003A (en) | 1983-01-12 | 1983-01-12 | Optical attenuator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59127003A true JPS59127003A (en) | 1984-07-21 |
Family
ID=11525400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58002296A Pending JPS59127003A (en) | 1983-01-12 | 1983-01-12 | Optical attenuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59127003A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6451733A (en) * | 1987-08-21 | 1989-02-28 | Fujitsu Ltd | Frequency multiplex optical communication system |
US5319733A (en) * | 1992-01-02 | 1994-06-07 | Adc Telecommunications, Inc. | Variable fiber optical attenuator |
US5588087A (en) * | 1992-01-02 | 1996-12-24 | Adc Telecommunications, Inc. | Overlapping fusion attenuator |
US6211981B1 (en) | 1996-11-29 | 2001-04-03 | Nec Corporation | Optical wavelength multiplex transmission system using repeaters |
US6236482B1 (en) | 1997-06-06 | 2001-05-22 | Nec Corporation | WDM optical communication system |
US6327075B1 (en) | 1998-01-28 | 2001-12-04 | Nec Corporation | Optical gain equalization unit, optical gain equalization method, and optical fiber transmission line |
JP2006129327A (en) * | 2004-11-01 | 2006-05-18 | Showa Electric Wire & Cable Co Ltd | Wavelength multiplexed transmission system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4430091Y1 (en) * | 1966-12-15 | 1969-12-12 | ||
JPS5369053A (en) * | 1976-11-30 | 1978-06-20 | Nippon Selfoc Co Ltd | Photoconductive wave passage |
JPS5369050A (en) * | 1976-11-30 | 1978-06-20 | Nec Corp | Light attenuator |
JPS54137355A (en) * | 1978-04-14 | 1979-10-25 | Cit Alcatel | Optical attenuator fixed to ray of light guided by means of optical fiber |
JPS5640321A (en) * | 1979-09-10 | 1981-04-16 | Fujitsu General Ltd | Tuning indication unit |
JPS5655910A (en) * | 1979-10-13 | 1981-05-16 | Fujitsu Ltd | Production of optical multilayer film |
JPS57191608A (en) * | 1981-05-22 | 1982-11-25 | Canon Inc | Trimming filter |
-
1983
- 1983-01-12 JP JP58002296A patent/JPS59127003A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4430091Y1 (en) * | 1966-12-15 | 1969-12-12 | ||
JPS5369053A (en) * | 1976-11-30 | 1978-06-20 | Nippon Selfoc Co Ltd | Photoconductive wave passage |
JPS5369050A (en) * | 1976-11-30 | 1978-06-20 | Nec Corp | Light attenuator |
JPS54137355A (en) * | 1978-04-14 | 1979-10-25 | Cit Alcatel | Optical attenuator fixed to ray of light guided by means of optical fiber |
JPS5640321A (en) * | 1979-09-10 | 1981-04-16 | Fujitsu General Ltd | Tuning indication unit |
JPS5655910A (en) * | 1979-10-13 | 1981-05-16 | Fujitsu Ltd | Production of optical multilayer film |
JPS57191608A (en) * | 1981-05-22 | 1982-11-25 | Canon Inc | Trimming filter |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6451733A (en) * | 1987-08-21 | 1989-02-28 | Fujitsu Ltd | Frequency multiplex optical communication system |
US5319733A (en) * | 1992-01-02 | 1994-06-07 | Adc Telecommunications, Inc. | Variable fiber optical attenuator |
US5588087A (en) * | 1992-01-02 | 1996-12-24 | Adc Telecommunications, Inc. | Overlapping fusion attenuator |
US6211981B1 (en) | 1996-11-29 | 2001-04-03 | Nec Corporation | Optical wavelength multiplex transmission system using repeaters |
US6236482B1 (en) | 1997-06-06 | 2001-05-22 | Nec Corporation | WDM optical communication system |
US6327075B1 (en) | 1998-01-28 | 2001-12-04 | Nec Corporation | Optical gain equalization unit, optical gain equalization method, and optical fiber transmission line |
JP2006129327A (en) * | 2004-11-01 | 2006-05-18 | Showa Electric Wire & Cable Co Ltd | Wavelength multiplexed transmission system |
JP4602739B2 (en) * | 2004-11-01 | 2010-12-22 | 昭和電線ケーブルシステム株式会社 | WDM transmission system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4644145A (en) | Optical receiver with electrically variable attenuator | |
US7936991B2 (en) | Optical line terminating apparatus and optical communication system | |
RU2000113800A (en) | BIDIRECTIONAL OPTICAL AMPLIFIER (OPTIONS) AND METHOD OF BIDIRECTIONAL COMMUNICATION (OPTIONS) | |
JPH0681119B2 (en) | WDM optical transmission system | |
US6188509B1 (en) | Simple bidirectional add/drop amplifier module based on a single multiplexer | |
JPH08256115A (en) | Optical fiber network system | |
KR930703755A (en) | Optical communication system | |
JPS59127003A (en) | Optical attenuator | |
CN106814423A (en) | A kind of multichannel light receiving element and receiver module | |
US20240259107A1 (en) | Optical receiving assembly and optical module | |
EP0201825A3 (en) | Optical fiber communication with frequency-division-multiplexing | |
KR100342516B1 (en) | Band-split bidirectional add/drop multiplexer and amplifier module with common mid-stage devices | |
JPS60184216A (en) | Hybrid optical multiplexer/demultiplexer | |
SE9701668D0 (en) | Low loss, optical add / drop WDM node | |
US20020126958A1 (en) | Optical monitor | |
CN206649186U (en) | A kind of multichannel light receiving element and receiving module | |
KR20130037568A (en) | Optical line terminal in passive optical network based on tdma and method for process optical signal thereof | |
AU2001272084B2 (en) | Optical add drop and dispersion compensation apparatus | |
CN212343784U (en) | 100G OTN optical signal WDM multiplexing system | |
CN101091343A (en) | System and method for mitigating dispersion slope in an optical communication system | |
JPS6330030A (en) | Optcal wavelength multiplex transmission system | |
JPH09214435A (en) | Optical packet address detector | |
JP2978217B2 (en) | Optical cross connect device | |
CN208314253U (en) | Array waveguide type wavelength division multiplexer | |
JPS5992639A (en) | Optical signal transmission system |