JPS59126992A - Reactor - Google Patents

Reactor

Info

Publication number
JPS59126992A
JPS59126992A JP58003017A JP301783A JPS59126992A JP S59126992 A JPS59126992 A JP S59126992A JP 58003017 A JP58003017 A JP 58003017A JP 301783 A JP301783 A JP 301783A JP S59126992 A JPS59126992 A JP S59126992A
Authority
JP
Japan
Prior art keywords
reactor
main vessel
vibration
reactor main
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58003017A
Other languages
Japanese (ja)
Inventor
桜井 彰雄
陽一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Central Research Institute of Electric Power Industry
Original Assignee
Toshiba Corp
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Central Research Institute of Electric Power Industry filed Critical Toshiba Corp
Priority to JP58003017A priority Critical patent/JPS59126992A/en
Publication of JPS59126992A publication Critical patent/JPS59126992A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、−次冷却材として液体金属を使用し、かつタ
ンク型に構成された原子炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a nuclear reactor that uses liquid metal as a secondary coolant and is constructed in the form of a tank.

〔発明の技術的背景〕[Technical background of the invention]

高速増殖炉は、一般に、冷却材として液体金属す) I
Jウムで代表される液体金属を用い、かつ軽水炉型原子
炉に比較して高い温度で運転される。そこで、このよう
な高速増殖炉にあっては、原子炉運転開始時や停止時に
、ft容器、炉心機材、配管等が熱応力で損傷されるの
を防止するため、通常、これら構成部材の肉厚を薄くす
る方式が採用されている。
Fast breeder reactors generally use liquid metal as the coolant) I
It uses liquid metal, typically Jium, and operates at higher temperatures than light water reactors. Therefore, in such a fast breeder reactor, in order to prevent the ft vessel, core equipment, piping, etc. from being damaged by thermal stress when starting or stopping reactor operation, the walls of these structural members are usually A method is used to reduce the thickness.

しかし、上述のように原子炉構成部材の肉厚を薄くする
ことは、たとえば地震等の振動荷重に対して強度的に弱
くなることは免れ得ない。
However, reducing the thickness of the nuclear reactor components as described above inevitably makes them weaker in terms of strength against vibration loads such as earthquakes.

特に、液体金属冷却材が通流する一次配管系を薄肉にす
ることは安全上問題である。
In particular, it is a safety problem to make the primary piping system through which the liquid metal coolant flows thin.

ところで2このよう々問題を解決するために、可能な限
シ配管類を無くするようにした原子炉、すなわち、具体
的には一次冷却材と二次冷却材とを熱交換させる一次熱
交換器を原子炉主容器内に設置するようにした、いわゆ
るタンク型原子炉構造が考えられている。このタンク型
の原子炉は第1図に示すように、原子炉主容器1の内部
に炉心2、炉心上部機構6および冷却材4を収容すると
ともに一次熱交換器3、ポンプ5を収容し、上端開口を
いわゆる蓋体7で蓋した構造となっている。そして、上
記原子炉主容器1は、上記蓋体7を支持部材として用い
、この蓋体7を介して建屋の床8に設けられたビット9
内に吊下げられている。上記炉心2は炉心支持機構lO
を介して上記原子炉主容器1内に固定されており、炉心
2の下端にはポンプ5に接続された入口11が位置して
いる。また上記−火熱交換器3は竪型に形成されており
、前記蓋体7に支持固定されている。この−火熱交換器
3の下端には一次冷却材の出口Z2、また、中途位置に
は上記−次冷却材の入口13が位置し、さらに上端には
2次冷却材の流出配管14、流入配管Z5がそれぞれ設
置されている。
By the way, 2. In order to solve these problems, a nuclear reactor is designed to eliminate piping as much as possible, specifically, a primary heat exchanger that exchanges heat between the primary coolant and the secondary coolant. A so-called tank-type nuclear reactor structure is being considered, in which the reactor is installed inside the main reactor vessel. As shown in FIG. 1, this tank-type nuclear reactor houses a reactor core 2, a core upper mechanism 6, and a coolant 4 inside a reactor main vessel 1, as well as a primary heat exchanger 3 and a pump 5. It has a structure in which the upper end opening is covered with a so-called lid body 7. The reactor main vessel 1 uses the lid body 7 as a support member, and the bit 9 provided on the floor 8 of the building through the lid body 7.
suspended inside. The core 2 is a core support mechanism lO
An inlet 11 connected to a pump 5 is located at the lower end of the reactor core 2 . Further, the fire heat exchanger 3 is formed in a vertical shape, and is supported and fixed to the lid body 7. An outlet Z2 for the primary coolant is located at the lower end of this thermal heat exchanger 3, and an inlet 13 for the secondary coolant is located halfway, and an outflow pipe 14 and an inflow pipe for the secondary coolant are located at the upper end. Z5 is installed in each.

このような構成の原子炉にあって、ポンプ53働きによ
って原子炉主容器1の下部に存在する冷却材4が入口1
1から炉心2の内部へ導びがれ炉心2で加熱された後炉
心上部より出て自由液面を形成しながら一次熱交換器3
の入口13から一次熱交換器3内部へ流入し、内部で2
次冷却材と熱交換して低温になシ、出口12から上記原
子炉主容器1の下部へ流出し、入口12へと循環する。
In a nuclear reactor having such a configuration, the coolant 4 present in the lower part of the reactor main vessel 1 is transferred to the inlet 1 by the action of the pump 53.
1 into the core 2, heated by the core 2, and then exited from the upper part of the core to form a free liquid level while the primary heat exchanger 3
flows into the primary heat exchanger 3 from the inlet 13 of the
The coolant then exchanges heat with the coolant to achieve a low temperature, flows out from the outlet 12 to the lower part of the reactor main vessel 1, and circulates to the inlet 12.

上記停“−次冷却材と熱交換して高温となった2次冷却
材は、前記流出配管14から図示しない2火熱交惰器へ
流れ熱交換した後流入配管15よシ再び一次熱交換器3
の内部へと循環する。
The secondary coolant, which has reached a high temperature by exchanging heat with the above-mentioned secondary coolant, flows from the outflow pipe 14 to a two-fire heat exchanger (not shown), exchanges heat, and then returns to the primary heat exchanger through the inflow pipe 15. 3
circulates inside.

このようなタンク型原子炉梧造を秤用することによって
、−火熱交換器系の配管を無くすることができ、地震に
対する安全度を向上させることができる。
By using such a tank-type nuclear reactor, piping for the -fire heat exchanger system can be eliminated, and the safety level against earthquakes can be improved.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上述のタンク型原子炉構造を採用した原
子炉であっても地震振動荷重に対して十分だとは言えな
い。前と象五更主容器1は前記蓋体7の周辺部で床8に
支持されて“ビット9内に吊下げられているので、この
原子炉を力学モデルに晋失えると、上記原子炉の系は、
一端固定支持の片持梁構造と考えることができるしたが
って、外部から上記原子炉主容器1に水平方向に衝撃入
力が加わった場合、第2図に示すような曲げ剪断振動が
発生する。この振動の固有振動数は、上記原子炉主容器
1の曲げ剛性と、炉心2、−火熱交換器3等の内部部材
を収容した上記原子炉主容器1全体の1量とによって決
まる。上述のタンク型原子炉構造においては、原子炉主
客器1の側壁を薄くしているため上記の曲げ剛性が小さ
く、さらに内部に一次熱交換器3、ポンプ5等が収容さ
れているので原子炉主容器1全体の重量が重い。したが
って、タンク型原子炉構造の固有振動数は、−火熱交換
器を原子炉主容器の外部に設置したループ型原子炉猪造
の場合に比較して低い。実際に割算してみると第2図に
示す力学モデルの固有振動数は数ヘルツであシ、この数
値は地震における地盤の卓越振動数にほぼ一致する。し
たがって、地震発生時に上記原子炉主容器1は共振状態
を示し、この原子炉主容器1の蓋体7の連結部の近傍に
太き々曲げ剪断応力が生じる可能性がある。
However, even reactors employing the tank-type reactor structure described above cannot be said to be sufficient against seismic vibration loads. The main vessel 1 is supported on the floor 8 around the lid 7 and suspended in the bit 9, so if this reactor is reduced to a mechanical model, the above reactor The system of
It can be considered as a cantilever structure with fixed support at one end. Therefore, when an external impact is applied to the reactor main vessel 1 in the horizontal direction, bending and shear vibrations as shown in FIG. 2 occur. The natural frequency of this vibration is determined by the bending rigidity of the reactor main vessel 1 and the total volume of the reactor main vessel 1 that accommodates internal members such as the reactor core 2 and the thermal heat exchanger 3. In the tank-type nuclear reactor structure described above, the side wall of the reactor main passenger unit 1 is made thin, so the above-mentioned bending rigidity is small, and the primary heat exchanger 3, pump 5, etc. are housed inside, so the reactor The weight of the main container 1 as a whole is heavy. Therefore, the natural frequency of the tank-type nuclear reactor structure is lower than that of the loop-type nuclear reactor in which the -fire heat exchanger is installed outside the reactor main vessel. When actually divided, the natural frequency of the mechanical model shown in Figure 2 is several hertz, and this value almost matches the predominant frequency of the ground during an earthquake. Therefore, when an earthquake occurs, the reactor main vessel 1 exhibits a resonant state, and a large bending shear stress may occur in the vicinity of the connecting portion of the lid 7 of the reactor main vessel 1.

さらに、前記冷却材4が原子炉主容器1内で自由液面を
形成しているので、地震発生時に上記原子炉容器1が振
動するとスロッシング等の流体振動が発生する。この流
体振動は原子炉主容器1および内部に収容されている梯
器に損傷を与える可能性がある。
Further, since the coolant 4 forms a free liquid level within the reactor main vessel 1, fluid vibrations such as sloshing occur when the reactor vessel 1 vibrates during an earthquake. This fluid vibration may damage the reactor main vessel 1 and the ladder housed therein.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鉦みてなされたもので、そ
の目的とするところは、タンク型の持金を損うことなく
、まだ全体の複雑化を招くこと外しに、地震発生時等に
おける原子炉主容器の振動を減少させること−ができ、
もって安全性向上化を図ることができる原子炉を提供す
ることにある。
The present invention has been made in view of the above circumstances, and its purpose is to prevent damage to the tank-type retainer, without complicating the entire structure, and to provide protection in the event of an earthquake, etc. It is possible to reduce the vibration of the reactor main vessel,
The objective is to provide a nuclear reactor that can improve safety.

〔発明の構成〕[Structure of the invention]

本発明では、建屋の床と原子炉主容器のルーフスラブ、
いわゆる蓋体との間に防振機能を備えた弾性材を介在さ
せたことを特徴としている。
In the present invention, the floor of the building and the roof slab of the reactor main vessel,
It is characterized by interposing an elastic material with a vibration-proofing function between it and the so-called lid body.

〔発明の効果〕〔Effect of the invention〕

上述のような構成であれば、防振機能を備えた弾性材を
介して原子炉主容器が床からピット内へ吊下げらカーで
いるので、原子炉主容器を含む系の固有温動数を従来の
タンク型原子炉のそわ−に比1紋して低くすることがで
き、地震の卓越搗III数からずらすことができる。し
たがって、地震発生時にnl」記原子炉主容光を含む系
は共振状態を示さ々いので、上記原子炉主容器(弓−大
きく振動しガい。その結果、上記原子炉主容器の係体と
の連結部の近傍位置に発生ずる曲げ剪断応力を減少させ
ることができる。
With the above configuration, the reactor main vessel is suspended from the floor into the pit via an elastic material with a vibration-isolating function, which reduces the inherent thermal frequency of the system including the reactor main vessel. It is possible to make the earthquake much lower than that of a conventional tank-type nuclear reactor, and to deviate it from the predominant earthquake frequency. Therefore, when an earthquake occurs, the system containing the reactor main body light does not exhibit a resonance state, so the reactor main vessel (arch) vibrates greatly.As a result, the reactor main vessel It is possible to reduce the bending shear stress generated in the vicinity of the connecting portion.

さらに防振視・、能を侃えた弾性制の粘性作用によシ上
記原、子炉主容器の振動時におりる振幅を湿少さぜるこ
とかでき、上述の曲げ剪断応力の発生をさらに減少させ
ることかできる。
In addition, it is possible to dampen the vibration amplitude of the above-mentioned reactor and sub-reactor main vessels due to the viscous action of the elastic control system with vibration isolation, which further reduces the occurrence of the above-mentioned bending shear stress. It can be reduced.

また、原子炉主容器の振動を滅、少させることかできる
ので、上n12原子炉主賓器内の冷却制のスロッシング
宅の流体振動による上記原子炉主容器の側片等の摺俳を
防止することができる。
In addition, since the vibration of the reactor main vessel can be reduced, it is possible to prevent the side pieces of the reactor main vessel from sliding due to the fluid vibration of the cooling system sloshing housing in the upper N12 reactor main guest vessel. be able to.

以上のように防振機能を備えた弾性材を設置することに
よって、従来のタンク型構造の原子炉よりもさらに安全
性向上化を図れる原子炉を提供できる。
As described above, by installing an elastic material with a vibration-proofing function, it is possible to provide a nuclear reactor that can further improve safety than a conventional nuclear reactor with a tank-type structure.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実旅例を図面を参照しながら説明する。 A practical example of the present invention will be described with reference to the drawings.

第3図は本発明に係る原子炉の概略構成を示す断面図で
あシ、第1図と同一部分は同一符号で示しである。した
がって重複する部分の説明は省略する。
FIG. 3 is a sectional view showing a schematic configuration of a nuclear reactor according to the present invention, and the same parts as in FIG. 1 are designated by the same symbols. Therefore, the explanation of the overlapping parts will be omitted.

この実施例では、蓋体7と床8との間に円柱状の防振ゴ
ムN16を設けている。この防振ゴゆ ム層16は原子炉主容器10周方向に等間隔配置されて
いる。その他の構成は第1図に示す従来の原子炉と同じ
である。
In this embodiment, a cylindrical anti-vibration rubber N16 is provided between the lid 7 and the floor 8. The anti-vibration rubber layers 16 are arranged at equal intervals in the circumferential direction of the reactor main vessel 10. The rest of the configuration is the same as the conventional nuclear reactor shown in FIG.

このような構成にあっては、上記防振ゴム層16の剛性
は、原子炉主容器1の側壁のそれに比較して十分小さい
。上記原子炉主容器1は、上記防振ゴム層16を介して
ビット9内に吊下げられているので、第2図に示した力
学モデルに置襄えると、実施例の原子炉の系は根元部の
剛性が低い一端固定支持の片持梁構造と考えt卑 盗る。したがって、梁全体の曲げ剛性も低くなシ、この
梁の固有振動数は、従来の原子炉をカイ〜 学モデルに置変えた場合の梁の固有振動数よシ低くなる
。したがって、防振ゴム層16が設置された原子炉の原
子炉主容器1を含む系の水平方向固有振動数は従来の原
子炉のそれに比較して低くなる。
In such a configuration, the rigidity of the vibration-proof rubber layer 16 is sufficiently smaller than that of the side wall of the reactor main vessel 1. Since the reactor main vessel 1 is suspended in the bit 9 via the vibration-proof rubber layer 16, when placed in the mechanical model shown in FIG. 2, the reactor system of the example is Think of it as a cantilever structure with one end fixed and supported, with low rigidity at the base. Therefore, the bending rigidity of the entire beam is low, and the natural frequency of this beam is lower than the natural frequency of the beam when a conventional nuclear reactor is replaced with a mechanical model. Therefore, the horizontal natural frequency of the system including the reactor main vessel 1 of the nuclear reactor in which the vibration-proof rubber layer 16 is installed is lower than that of a conventional nuclear reactor.

すなわち、上記固有振動数は地震における地盤の卓越振
動数とは一致しない。したがって、地震発生時に前記原
子炉主容器1は共振状態を示さないので、大きく振動す
ることはない。
That is, the above natural frequency does not match the predominant frequency of the ground during an earthquake. Therefore, when an earthquake occurs, the reactor main vessel 1 does not exhibit a resonance state, and therefore does not vibrate significantly.

その結果、上記原子炉主容器1の蓋体7の近傍位置の側
壁に大きな曲げ剪断応力が発生しない。   − さらに前記防振ゴム層16は粘性作用もするので、上記
原子炉主容器1の振動の振幅を抑制する。したがって、
地震発生時には前述の効果に加えて曲げ剪断応力はさら
に減少する。
As a result, large bending shear stress is not generated on the side wall of the reactor main vessel 1 in the vicinity of the lid 7. - Furthermore, since the vibration-proof rubber layer 16 also has a viscous effect, it suppresses the amplitude of vibration of the reactor main vessel 1. therefore,
In addition to the above-mentioned effects, the bending shear stress is further reduced when an earthquake occurs.

それに加えて、前述のように原子炉主容器1)1− の振動は減少するので、原子炉主容器1内に自由液面を
形成して存在する冷却材4のスロッシング等の流体振動
による上記原子炉主容器1の側壁、−火熱交換器3の側
壁および蓋体7の内側壁等の損傷の発生を防止すること
ができる。
In addition, as mentioned above, the vibrations of the reactor main vessel 1) 1- are reduced, so that the above-mentioned vibrations due to fluid vibrations such as sloshing of the coolant 4 existing in the reactor main vessel 1 forming a free liquid level are reduced. Damage to the side wall of the reactor main vessel 1, the side wall of the -fire heat exchanger 3, the inner wall of the lid 7, etc. can be prevented from occurring.

以上のように防振ゴム層16を殺傷゛することによって
、原子炉主容器1の側壁の曲げ剪断応力を減少させ、上
記原子炉主容器1の側壁等の損傷を防止することができ
るので、原子炉の安全性を向上させることができる。
By killing the vibration-proof rubber layer 16 as described above, it is possible to reduce the bending shear stress on the side wall of the reactor main vessel 1 and prevent damage to the side wall, etc. of the reactor main vessel 1. The safety of nuclear reactors can be improved.

なお、地震発生時、振動の歪(変位)は前記防振コゝム
層16に集中するが、上記防振ゴム層16は比較的大き
な歪でも吸収できるので特に問題け々い。
Incidentally, when an earthquake occurs, vibrational strain (displacement) concentrates on the vibration-proof comb layer 16, but this is particularly problematic because the vibration-proof rubber layer 16 can absorb even relatively large strains.

このように弾性材として防震ゴム凧を用いた原子炉の原
子炉主容器の泡散発生時の振動応答の一割算例を示すと
以下のとうシである。
An example of the vibration response when foaming occurs in the reactor main vessel of a nuclear reactor using a seismic rubber kite as an elastic material is shown below.

計算を簡単にするために、原子炉主容器と蓋体7とを合
成した形状を内径22m、外径22.1mの円筒形とし
、原子炉主容器内の部材も含めた全体の京都を約130
00 tonとする。防振ゴム層は直径1 tn p 
FJさ0.1mの円板状加硫ゴムとし、この円板を10
枚重ねて防振ゴム層を形成したものとする。そして、こ
の防振ゴム層を原子炉主容器の周上24ケ所に等間陥に
配誼したものとする。このような構成にあっ、て、上言
ビ防振ゴム層1個の水平方向および垂直方向のバネ定数
をそilぞれ7.8 X 103ton/m、2.7 
X 10’ ton/mとすると、24個の防振ゴム層
全体の水平方向および平曲方向のバネ定数は各々1.9
X105ton/m * 6.5 X 104 ton
/mとなる。このバネに重量13000 tonの構造
物が接続されているので、この系の水平方向および垂直
方向の固有振動数はそれぞれ1.9 Hz 、1.1 
Hzとなる。水平方向の固有振動数は前述した従来の防
振ゴム層を使用しない場合の固有振動数に比較して約1
/4の値である。したがって、原子炉主容器の固有振動
数を地震における地盤の卓越振動数よりずらすことがで
きる。
To simplify calculations, the combined shape of the reactor main vessel and lid 7 is assumed to be a cylindrical shape with an inner diameter of 22 m and an outer diameter of 22.1 m, and the entire Kyoto area including the parts inside the reactor main vessel is approximately 130
00 tons. The anti-vibration rubber layer has a diameter of 1 tn p
A disk-shaped vulcanized rubber with an FJ of 0.1 m is used, and this disk is 10
The anti-vibration rubber layer is formed by stacking two layers. The anti-vibration rubber layers are arranged at 24 evenly spaced locations on the circumference of the reactor main vessel. With this configuration, the horizontal and vertical spring constants of one anti-vibration rubber layer are 7.8 x 103 ton/m and 2.7, respectively.
If X 10' ton/m, the spring constants of the entire 24 vibration-proof rubber layers in the horizontal direction and the flat bending direction are each 1.9.
X105ton/m *6.5X104ton
/m. Since a structure with a weight of 13,000 tons is connected to this spring, the horizontal and vertical natural frequencies of this system are 1.9 Hz and 1.1, respectively.
Hz. The natural frequency in the horizontal direction is approximately 1 compared to the natural frequency when the conventional anti-vibration rubber layer is not used.
/4 value. Therefore, the natural frequency of the reactor main vessel can be shifted from the predominant frequency of the ground during an earthquake.

々お、上述した数値例の場合、防振ゴム層の水平方向歪
(剪断歪)および垂直方向歪(圧縮歪)は各々30チ以
下であシ、通常の防振ゴムの許容型範囲内に入る。捷た
上記構成の原子炉においては、原子炉主容器が防振ゴム
層を介して床に設箇されているので、上記原子炉主容器
の床に対する変位が大きく々す、この変位は水平方向で
九人19crn和度となる。しかし上記変位によって支
障を受ける機器、たとえば2次冷却材の配管等が上記程
度の変位によって損傷を受け々いよすな原子炉プラント
の設計をすることは可能である。
In the case of the above numerical example, the horizontal strain (shear strain) and vertical strain (compressive strain) of the vibration isolating rubber layer are each 30 inches or less, which is within the allowable range of normal vibration isolating rubber. enter. In the shunted nuclear reactor with the above configuration, the reactor main vessel is installed on the floor via a vibration-proof rubber layer, so the displacement of the reactor main vessel with respect to the floor is large, and this displacement is in the horizontal direction. So there will be 9 people and 19 crn Wado. However, it is possible to design a nuclear reactor plant in which equipment that is affected by the above-mentioned displacement, such as secondary coolant piping, etc., is not damaged by the above-mentioned displacement.

第4図は、上述の数値例の原子炉における水平方向の地
震応答スペクトルを示すものである。
FIG. 4 shows the horizontal seismic response spectrum of the nuclear reactor in the above-mentioned numerical example.

図中Aは地震発生時の床面における加速度の周波数特性
であシ、Bは同一条件における原子炉主容器表面におけ
る加速度の周波数特性である。
In the figure, A is the frequency characteristic of acceleration on the floor surface when an earthquake occurs, and B is the frequency characteristic of acceleration on the surface of the reactor main vessel under the same conditions.

図から判るように原子炉主容器表面における加速度特性
は床面における加速度特性に比較して約22チ減少して
いる。判に原子炉主容器への振動入力となる床面での地
震応答波形が建屋のフィルタ効果によって正弦波に近い
場合には、前述した固有振動数を卓越振動数からずらす
ことによって原子炉主容器側壁の曲げ剪断応力を犬1「
に減少させることが期待できる。
As can be seen from the figure, the acceleration characteristics on the surface of the reactor main vessel are reduced by about 22 cm compared to the acceleration characteristics on the floor surface. If the seismic response waveform at the floor surface, which is the vibration input to the reactor main vessel, is close to a sine wave due to the filter effect of the building, by shifting the above-mentioned natural frequency from the dominant frequency, the reactor main vessel The bending shear stress of the side wall is
can be expected to decrease to

なお、本発明は、上述した実施例に限定されるものでは
々い。実施例では防振様能を備えた弾性相として防振ゴ
ムを設誼したが、他の防振弾性相であってもよい。
Note that the present invention is not limited to the embodiments described above. In the embodiment, vibration-proofing rubber is used as the elastic phase having a vibration-proofing function, but other vibration-proofing elastic phases may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のタンク型原子炉の概略構成を示す断面図
、W2図は地震発生時における従来の原子炉主容器の振
動モードを新明するだめの図、第3図1d二本発明の一
実旋例に係る原子炉の(収略構成を示す断面図、第4図
は同実施例における原子炉の地震応答特性の一例を示す
図である。 1・・・原子炉主容器、2・・・炉心、3・・・−成熱
交換器、4・・・冷却材、5・・・ポンプ、6・・・炉
心上部機構、7・・・蓋体、8・・・床、9・・・ビッ
ト、16・・・防振ゴム層。 出願人代理人  弁理士 鈴 江 武 彦第3図 第4図
Figure 1 is a cross-sectional view showing the schematic configuration of a conventional tank-type nuclear reactor, Figure W2 is a diagram illustrating the vibration mode of the conventional main reactor vessel during an earthquake, and Figure 3 is a cross-sectional view showing the schematic configuration of a conventional tank-type nuclear reactor. FIG. 4 is a cross-sectional view showing a schematic configuration of a nuclear reactor according to one practical example. FIG. 4 is a diagram showing an example of seismic response characteristics of a nuclear reactor in the same example. ... core, 3 ... - formation heat exchanger, 4 ... coolant, 5 ... pump, 6 ... core upper mechanism, 7 ... lid body, 8 ... floor, 9 ... Bit, 16 ... Anti-vibration rubber layer. Applicant's representative Patent attorney Takehiko Suzue Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 一次冷却材として液体金属を使用する原子炉であって、
上記−次冷却材と二次冷却材とを熱交換させる熱交換器
を原子炉主容器内に位置させるとともに上記原子炉主容
器を、この原子炉主容器の上部に連結された支持部材を
介して建屋の床に支持させる関係に上記床に設けられた
ビット内に吊下げ設置してなるタンク型の原子炉におい
て、上記床と上記支持部材との間に防振機能を備えた弾
性材を介在させてなることを特徴とする原子炉。
A nuclear reactor using liquid metal as a primary coolant, the reactor comprising:
A heat exchanger for exchanging heat between the secondary coolant and the secondary coolant is located in the reactor main vessel, and the reactor main vessel is connected to the reactor main vessel via a support member connected to the upper part of the reactor main vessel. In a tank-type nuclear reactor that is installed suspended in a bit provided on the floor so as to be supported by the floor of the building, an elastic material having a vibration-proofing function is installed between the floor and the support member. A nuclear reactor characterized by being made by intervening.
JP58003017A 1983-01-12 1983-01-12 Reactor Pending JPS59126992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58003017A JPS59126992A (en) 1983-01-12 1983-01-12 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58003017A JPS59126992A (en) 1983-01-12 1983-01-12 Reactor

Publications (1)

Publication Number Publication Date
JPS59126992A true JPS59126992A (en) 1984-07-21

Family

ID=11545561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58003017A Pending JPS59126992A (en) 1983-01-12 1983-01-12 Reactor

Country Status (1)

Country Link
JP (1) JPS59126992A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658691A (en) * 1979-10-19 1981-05-21 Tokyo Shibaura Electric Co Nuclear reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658691A (en) * 1979-10-19 1981-05-21 Tokyo Shibaura Electric Co Nuclear reactor

Similar Documents

Publication Publication Date Title
US4922671A (en) Method for effectively restraining response of a structure to outside disturbances and apparatus therefor
KR920000597B1 (en) Antiseismic support structure
JPS59126992A (en) Reactor
Fujita et al. Aseismic study on the reactor vessel of a fast breeder reactor
JPS5934191A (en) Tank type reactor with vibration-damping mechanism
JPH04270992A (en) Earthquake isolation fast breeder reactor
JPS59150377A (en) Reactor
JPS59151092A (en) Reactor
JPS6055178A (en) Vibration-proof support structure
JPH08114687A (en) Method and device for suppressing vibration of sodium liquid surface in reactor vessel
JPS59151093A (en) Reactor
JPS6131997A (en) Vessel for high-temperature liquid
JPH0131157B2 (en)
Martakis et al. On the use of meta-foundations for seismic isolation: a practical application for conventional buildings
Shin et al. Seismic response of submerged secondary systems in base-isolated structures
JPH043463Y2 (en)
JPS6047990A (en) Housing of nuclear reactor
JP2532408Y2 (en) Sloshing prevention device for fast breeder reactor
Wu et al. Sloshing of coolant in a seismically isolated reactor
JPS60151583A (en) Fast breeder reactor
JPS6034382A (en) Vibration-proof supporter for suspension support type high-temperature vessel
JP3192959B2 (en) Anti-vibration tank structure
JPS6285891A (en) Supporter for pressure vessel of nuclear reactor
JPH0232994A (en) Large size container having earthquake-proof structure and reactor
JPS59155785A (en) Nuclear reactor