JPS59126703A - Operating method of hot stove - Google Patents

Operating method of hot stove

Info

Publication number
JPS59126703A
JPS59126703A JP311983A JP311983A JPS59126703A JP S59126703 A JPS59126703 A JP S59126703A JP 311983 A JP311983 A JP 311983A JP 311983 A JP311983 A JP 311983A JP S59126703 A JPS59126703 A JP S59126703A
Authority
JP
Japan
Prior art keywords
hot
air
blasting
furnace
stove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP311983A
Other languages
Japanese (ja)
Inventor
Yoshio Shimoda
下田 良雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP311983A priority Critical patent/JPS59126703A/en
Publication of JPS59126703A publication Critical patent/JPS59126703A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/10Other details, e.g. blast mains

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To improve thermal efficiency in a hot stove installation for a blast furnace consisting of three units of hot stoves by overlapping the start of blasting to the another hot stove in the end period of the blasting stage for each hot stove at a prescribed ratio. CONSTITUTION:A hot stove installation for a blast furnace consisting of three units of hot stoves A, B, C is selectively operated according to a cycle consisting of a combustion stage, pressurizing stage and blasting stage, by which hot wind is fed successively to a blast furnace 4. A part of the blasting stage for one other hot stove B is started in overlap at an overlap rate of <=40% of the entire period in each blasting stage at the end period of the blasting stage for the hot stove A. The blasting overlapped from the furnace B to the furnace C and from the furnace C to the furnace A is thereafter repeated in the same way. Since there is no need for maintaining the hot wind at the temp. considerably higher than the assigned temp., thermal efficiency is improved.

Description

【発明の詳細な説明】 本発明は、熱風炉の操業方法に関し、さらに詳細には、
3基の熱風炉から成る高炉熱風炉の操業方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a hot air stove, and more specifically,
This invention relates to a method of operating a blast furnace hot blast furnace consisting of three hot blast stoves.

一般に、高炉1基に対して:3基の熱風炉が設けられて
いる場合、熱風炉設備の送風系は第1図に示すような構
成となっている。すなわち、送風機1からそれぞれ送風
弁2a、2b、2cを介して熱風炉A、B、Cに送給さ
れる冷風は、熱風炉の蓄熱室で加熱され、熱風となって
熱風弁3 a g 3 b + 3 cを介して高炉4
に送風される。この場合、各熱風炉は、第2図のスケジ
ー−ルに示さするように、常時1基が通風状態に、他の
2基が燃焼状態にあるように順次切替運転される○ ところで、高炉に送風される熱風は常に所定の温度を保
つことが必要であるが、上記のようなシングル送風方式
の場合には、蓄熱室で加温される熱風温度は送風工程の
終段で下がる傾向があり、送風工程の末期には高炉への
送風温度が低くなることが生じる。このため、従来は、
高炉送風の指定温度(たとえば1100℃)確保のため
に、送風工程の末期において熱風温度が所定温度となる
よう、あらかじめ過剰のエネルギーを投入して蓄熱し、
送風工程の前半では過剰に高い温度(たとえば1300
℃)の熱風を得、これに冷風(約180℃)を吹き込ん
で所定の温度に調整することを行なっていた。付言すれ
ば、送風工程初期における送風源、度が1300℃であ
る場合、送風工程末期(60分後)に送風温度は約11
50℃程度となる。々お、第1図において、5a、5b
、5cは冷風送給のための混合冷風弁である。このよう
に、従来のシングル送風方式では、過剰のエネルギーを
投入して過剰に加熱した。ヒで、冷風を用いて温度調節
するということを行なわなければならないため、熱的損
失は避は得す、熱効率が悪かった。
Generally, when three hot blast furnaces are provided for one blast furnace, the blowing system of the hot blast furnace equipment is configured as shown in FIG. That is, the cold air sent from the blower 1 to the hot-air stoves A, B, and C via the blower valves 2a, 2b, and 2c, respectively, is heated in the heat storage chamber of the hot-air furnace, becomes hot air, and is sent to the hot-air valves 3a, 2b, and 3. B+3 Blast furnace 4 via c
Air is blown to In this case, as shown in the schedule in Figure 2, each hot blast furnace is operated in sequence so that one unit is always in the ventilation state and the other two are in the combustion state. The hot air that is blown must always maintain a specified temperature, but in the case of the single air blowing method as described above, the temperature of the hot air heated in the heat storage chamber tends to drop at the final stage of the blowing process. , the temperature of the air blown to the blast furnace may become low at the end of the air blowing process. For this reason, conventionally,
In order to ensure the specified temperature of blast furnace air (for example, 1100°C), excess energy is input in advance to store heat so that the hot air temperature reaches the specified temperature at the end of the air blowing process.
During the first half of the blowing process, excessively high temperatures (e.g. 1300
The conventional method was to obtain hot air at a temperature of 180°C and then blow cold air (approximately 180°C) into it to adjust the temperature to a predetermined temperature. In addition, if the temperature of the air source at the beginning of the air blowing process is 1300°C, the air temperature at the end of the air blowing process (60 minutes later) will be approximately 11
The temperature will be around 50℃. In Figure 1, 5a, 5b
, 5c is a mixed cold air valve for supplying cold air. As described above, in the conventional single air blowing method, excessive energy was input and excessive heating occurred. Since the temperature had to be adjusted using cold air, heat loss was unavoidable, but thermal efficiency was poor.

そこで、本発明の目的は、大過剰エネルギーを投入して
所定送風温度よりはるかに高温の熱風を得るという手段
をとらなくとも、送風工程を通じて所定温度の熱風送風
を達成することができ、熱風炉燃料の消費節減を果たす
ことができる熱風炉の操業方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a hot-air blower that can achieve hot air blowing at a predetermined temperature through the blowing process without having to invest a large amount of excess energy to obtain hot air at a temperature much higher than the predetermined blowing temperature. An object of the present invention is to provide a method of operating a hot blast stove that can reduce fuel consumption.

す女コつち、本発明は、3基の熱風炉から成る高炉熱風
炉設備において、各熱風炉の送風工程の末期に、他の1
の熱風炉の送風工程を一部オーバラ、プさせて開始し、
このオーバラップ率を各送風工程全期の40係以下とす
ることを特徴とするものである。
The present invention is a blast furnace hot blast equipment consisting of three hot blast furnaces, and at the end of the blowing process of each hot blast furnace, the other one
Start by partially overlapping the blowing process of the hot air stove,
It is characterized in that the overlap ratio is set to 40 times or less for the entire period of each air blowing process.

次に、本発明を図面に基いて説明する。Next, the present invention will be explained based on the drawings.

第3図は、本発明方法による送風スケジュールの一例を
示す。熱風炉A、B、Cの送風系は基本的には第1図の
構成になるものである。各熱風炉A、B、Cは、燃焼工
程、充圧工程および送風工程から成るサイクルに従って
切替運転され、順次高炉に熱風を送風するようになって
いる。第3図の例によれば、熱風炉Aが送風工程に入る
と、熱風炉Bは堆焼工程から充圧工程に移行する。一方
、熱風炉Cは送風工程から排圧工程を経て燃焼工程に移
行する。次いで、熱風炉Aの送風工程が末期に到ると、
熱風炉Bが送風工程に入り、熱風炉Aの送風と一部オー
バラ、プして送風を行なうことになる。この熱風炉Bの
送風時には、熱風炉Cが燃焼状態から充圧状態に移行し
、熱風炉Bの送風工程末期では熱風炉Cも送風状態に入
ることになる。このようにして熱風炉Bの送風工程末期
において、熱風炉Cからの送風が一部オーバラツプして
行なわれる。同様に、熱風炉Cが送風工程にある時は、
熱風炉Aが燃焼状態から充圧状態となり、次いで、熱風
炉Cの送風工程末期において、熱風炉Cの送風と一部オ
ーバラツプして送風を開始することとなる。以上の切替
操作を繰り返すことによって、本発明の操炉方法が行な
われる。
FIG. 3 shows an example of a ventilation schedule according to the method of the present invention. The air blowing systems of hot air stoves A, B, and C basically have the configuration shown in FIG. Each of the hot blast furnaces A, B, and C is operated in a switching manner according to a cycle consisting of a combustion process, a pressurizing process, and a blowing process, and sequentially blows hot air to the blast furnace. According to the example of FIG. 3, when the hot air stove A enters the blowing process, the hot air stove B shifts from the composting process to the pressurizing process. On the other hand, the hot air stove C moves from the blowing process to the exhausting process and then to the combustion process. Next, when the blowing process of hot air stove A reaches its final stage,
Hot air stove B enters the air blowing process, and blows air that partially overlaps with the air blowing from hot air stove A. When the hot air stove B blows air, the hot air stove C shifts from the combustion state to the pressurized state, and at the end of the air blowing process of the hot air stove B, the hot air stove C also enters the blowing state. In this way, at the end of the blowing process of the hot air stove B, the blowing air from the hot air stove C is partially overlapped. Similarly, when hot air stove C is in the blowing process,
The hot air stove A changes from the combustion state to the pressurized state, and then, at the end of the air blowing process of the hot air stove C, the air blowing starts partially overlapping with the air blowing of the hot air stove C. By repeating the above switching operation, the furnace operating method of the present invention is carried out.

さらに詳細に説明すると、各戸A、B、Cは、その燃焼
工程において、初期熱風温度が高炉送風指定温度より若
干高めの温度となるように蓄熱される。たとえば、高炉
送風指定温度が1100℃である場合には、1200℃
程度に蓄熱される。
More specifically, in each of the houses A, B, and C, during the combustion process, heat is stored so that the initial hot air temperature is slightly higher than the designated blast furnace air blowing temperature. For example, if the designated blast furnace air temperature is 1100℃,
Heat is stored to a certain extent.

上記したように、従来は、1100℃の送風を実施する
ためには、初期熱風温度が1300℃程度となるように
蓄熱を行ない、送風工程末期において約1150℃の熱
風を得るように操業されていたが本発明によればたとえ
ば約1200℃程度の蓄熱が行なわれる。そして、この
蓄熱温度が送風工程末期になって低下し、送風温度が高
炉指定温度より低くなるときに、その熱風炉の送風工程
に一部オーバラソブさせて他の1の熱風炉の送風を開始
し、全体として指定温度の熱風送風を行なうようになっ
ている。
As mentioned above, conventionally, in order to blow air at 1100°C, heat is stored so that the initial hot air temperature is about 1300°C, and the operation is carried out to obtain hot air of about 1150°C at the end of the blowing process. However, according to the present invention, heat storage of, for example, about 1200° C. is performed. Then, when this heat storage temperature decreases at the end of the blasting process and the blasting temperature becomes lower than the specified blast furnace temperature, the blasting process of that hot blast furnace is partially oversubscribed and the blasting of another hot blast furnace is started. , the whole unit blows hot air at a specified temperature.

オーパラ、プして送風を行なう熱風炉の各送風量は、高
炉に送風される熱風の温度が全体として指定温度もしく
は指定温度より若干高めとなるように配分される。熱風
温度が指定温度よシ高めとなる場合には、混合室におい
て冷風と混合されて温度調節される。
The amount of air blown by the hot blast furnace, which blows air over and over, is distributed so that the temperature of the hot air blown to the blast furnace as a whole is a specified temperature or slightly higher than the specified temperature. When the hot air temperature is higher than the specified temperature, it is mixed with cold air in a mixing chamber to adjust the temperature.

一部重複して送風を行なう熱風炉の送風工程におけるオ
ーバラップ率は、熱風炉の熱効率が最高となるように選
ばれる。この際、熱風炉の燃料であるBガスおよびター
ルの燃焼設備能力ならびに公害面からの単位時間当9最
犬Bガスおよびタール燃焼可能量、排ガス温度max、
珪石温度mm等が勘案される。送風工程をオーバラップ
させると、そのオーバラップ率に応じてそれぞれ効果を
有するが、一般的に各送風工程全期に対して約40係程
度オーバラップさぜるのが限度である。これは、オーバ
ラップ率が40係を超えると、熱風炉切替操作が頻繁と
なり、作業量が増加して却って経済的にも問題を生じる
からである。
The overlap ratio in the blowing process of the hot air stove, which blows air partially overlappingly, is selected so that the thermal efficiency of the hot air stove is maximized. At this time, the combustion equipment capacity of B gas and tar, which are the fuel of the hot stove, the maximum amount of B gas and tar that can be combusted per unit time from a pollution standpoint, the maximum exhaust gas temperature,
The silica stone temperature mm etc. are taken into consideration. When the air blowing processes are overlapped, each has an effect depending on the overlap ratio, but generally the overlap is about 40 factors for the entire period of each air blowing process. This is because if the overlap ratio exceeds 40, the hot air stove switching operation becomes frequent, which increases the amount of work and causes an economical problem.

上記した表から明らかなように、送風工程を5係またば
10係オーパラ、プさせることにより、熱効率を0.3
7%捷たけ0.77係向上させることができる。
As is clear from the table above, by changing the air blowing process to 5 or 10, the thermal efficiency can be reduced by 0.3.
It can be improved by 0.77% by 7%.

このように、本発明によれば、燃焼時に大過剰のエネル
ギーを投入して初期熱風を指定温度より大巾に高くして
おく必要がないので、熱効率を改善することができると
ともに、送風温度調節に要する冷風吹込み量を減少する
ことができ経済的に有利である。
As described above, according to the present invention, there is no need to input large excess energy during combustion to make the initial hot air much higher than the specified temperature, so it is possible to improve thermal efficiency and to adjust the air blowing temperature. It is economically advantageous because the amount of cold air required for blowing can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は3基の熱風炉から成る熱風炉設備の送風系を示
す概要図、第2図はそのシングル送風式送風スケジー−
ル、第3図は本発明による送風スケンーールである。 1・・送風機 2 a 、+ 2 b y 2 c・・
送風弁3a、3b、3c・・熱風弁 4・・高炉5a、
 5b、 5c ”混合冷!弁 A、B、C・・熱風炉 特許出願人  住友金属工業株式会社 第1図 第2図 のπコ送風 し−」燃慟 L−−−j光バー第3図 一送風 −燃・1立 L  −J光月
Figure 1 is a schematic diagram showing the ventilation system of a hot-blast stove facility consisting of three hot-blast stoves, and Figure 2 is a schematic diagram of the single-blast fan system.
FIG. 3 shows a blower scale according to the present invention. 1...Blower 2 a, + 2 b y 2 c...
Blow valves 3a, 3b, 3c...Hot air valve 4...Blast furnace 5a,
5b, 5c ``Mixed cooling! Valve A, B, C...Hot blast furnace patent applicant Sumitomo Metal Industries, Ltd. One wind - Moe 1 standing L - J Kozuki

Claims (1)

【特許請求の範囲】[Claims] (1)3基の熱風炉から成る高炉熱風炉設備において、
各熱風炉の送風工程の末期に、他の1の熱風炉の送風工
程を一部オーバラソプさせて開始し、このオーバラップ
率を各送風工程全期の40係以下とすることを特徴とす
る熱風炉の操業方法。
(1) In a blast furnace hot-blast equipment consisting of three hot-blast stoves,
At the end of the blowing process of each hot air stove, the blowing process of another hot air stove is started by partially overlapping the blowing process, and the overlap ratio is set to 40 times or less of the entire period of each blowing process. How to operate a furnace.
JP311983A 1983-01-11 1983-01-11 Operating method of hot stove Pending JPS59126703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP311983A JPS59126703A (en) 1983-01-11 1983-01-11 Operating method of hot stove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP311983A JPS59126703A (en) 1983-01-11 1983-01-11 Operating method of hot stove

Publications (1)

Publication Number Publication Date
JPS59126703A true JPS59126703A (en) 1984-07-21

Family

ID=11548465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP311983A Pending JPS59126703A (en) 1983-01-11 1983-01-11 Operating method of hot stove

Country Status (1)

Country Link
JP (1) JPS59126703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243705A (en) * 1986-04-16 1987-10-24 Ishikawajima Harima Heavy Ind Co Ltd Operating method for hot stove and temperature control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243705A (en) * 1986-04-16 1987-10-24 Ishikawajima Harima Heavy Ind Co Ltd Operating method for hot stove and temperature control device

Similar Documents

Publication Publication Date Title
US2820348A (en) Utilizing intermittently produced waste heat
CN110205427A (en) A kind of intelligence hot-blast stove Optimal Control System and method
JPH10245611A (en) Method for controlling hot stove
JPS59126703A (en) Operating method of hot stove
JP3267140B2 (en) Heating furnace, combustion control method thereof, and combustion control device
CN108413416A (en) With five high Room RTO ceramic heat-storing combustion furnaces of heat exchange efficiency
JPH09287013A (en) Device for utilizing heat in hot stove
US4877013A (en) Hot blast stove installation
JP2002266012A (en) Waste heat recovering equipment for hot air stove for blast furnace
KR100406423B1 (en) A combustion control method of hot stove in blast furnace process
JPS61207504A (en) Method for controlling combustion in hot stove
JPH0593218A (en) Method for controlling combustion of hot stove
JPH05331514A (en) Cooling method for hot stove at the time of stopping
JP2011195939A (en) Method for operating hot stove facility
JPS63226524A (en) Combustion control in hot blast furnace
JPH06185375A (en) Blast heating device
JPS63140009A (en) Method for generating high-temperature hot air for metallurgical furnace
CN2075653U (en) Concentrate heat exchange strong wind warm ball type hot wind furnace group
JPH06228620A (en) Method for controlling combustion in hot air stove
JPH05156333A (en) Method for controlling combustion in hot stove
JPH0694378A (en) Recovering method for waste heat of cupola
JPH0136908Y2 (en)
JPS58157909A (en) Device for utilizing heat
JPS63293108A (en) Operational method of hot blast stove
JPS55148706A (en) Blast furnace operating method