JPS5912631B2 - Horizontal ribbon crystal growth method - Google Patents

Horizontal ribbon crystal growth method

Info

Publication number
JPS5912631B2
JPS5912631B2 JP747476A JP747476A JPS5912631B2 JP S5912631 B2 JPS5912631 B2 JP S5912631B2 JP 747476 A JP747476 A JP 747476A JP 747476 A JP747476 A JP 747476A JP S5912631 B2 JPS5912631 B2 JP S5912631B2
Authority
JP
Japan
Prior art keywords
growth
growth interface
ribbon
crystal
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP747476A
Other languages
Japanese (ja)
Other versions
JPS5291785A (en
Inventor
勃士 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP747476A priority Critical patent/JPS5912631B2/en
Priority to DE2633961A priority patent/DE2633961C2/en
Publication of JPS5291785A publication Critical patent/JPS5291785A/en
Priority to US05/863,480 priority patent/US4329195A/en
Publication of JPS5912631B2 publication Critical patent/JPS5912631B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 本発明は、横引きリボン結晶成長法においてリボン結晶
がそこから成長する成長界面の熔融体側からの加熱方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of heating from the melt side of a growth interface from which a ribbon crystal grows in a horizontally drawn ribbon crystal growth method.

従来知られている横引きリボン結晶成長法では、成長界
面とそれを熔融体側から加熱する加熱装置の発熱表面と
の距離に対する配慮が充分でな((例えば、5choc
kley :U、S、P、3031275.1962や
Bleil 、 Journal of Crysta
lGrowthll 969 )、比較的大きな距離(
1/4”以上)で行なわれていた(例えば、Bleil
In the conventionally known horizontally drawn ribbon crystal growth method, sufficient consideration is not given to the distance between the growth interface and the heating surface of the heating device that heats it from the melt side (for example, 5choc
kley: U, S, P, 3031275.1962 and Bleil, Journal of Crysta
lGrowthll 969), relatively large distance (
1/4" or more) (for example, Bleil
.

U、S、P、3681033.1972)。U, S, P, 3681033.1972).

このような条件でリボン成長を行う場合には、成長界面
での温度の狂いや変動に対する制御作用の時間的遅れが
大きく、極めて小さな許容範囲をもって所定の寸法に制
御されるべき成長界面が、位置的にも時間的にも大きな
変動を呈する。
When ribbon growth is performed under such conditions, there is a large time delay in controlling temperature deviations and fluctuations at the growth interface, and the growth interface, which should be controlled to a predetermined dimension with an extremely small tolerance, is It exhibits large fluctuations both physically and temporally.

その結果、成長したリボン結晶の巾、厚さ、表面平坦度
等の寸法はバラツキが大きく、また転位密度が犬で時に
は双晶面等のり治ス・ディフェクトも発生する等結晶性
が悪゛<、ひいては、成長歩留りを極めて低いものにす
ると共に、成長操作を運転作業者にとって非常に難しい
ものにすることが実際に経験されたのである。
As a result, the dimensions of the grown ribbon crystals, such as width, thickness, and surface flatness, vary greatly, and the crystallinity is poor, with dislocation densities being high and bonding defects such as twin planes sometimes occurring. It has been actually experienced that this results in very low growth yields and makes the growth operation very difficult for operators.

本発明は、従来の横引きリボン結晶成長法の持つこのよ
うな欠点を無くシ、横引き法により、巾が広く厚さの薄
いリボン結晶を、寸法精度も結晶性も良く、成長歩留り
も高く製造できるようにする方法を提供することを目的
とするものである。
The present invention eliminates these drawbacks of the conventional horizontally drawn ribbon crystal growth method, and uses the horizontally drawn method to produce wide and thin ribbon crystals with good dimensional accuracy and crystallinity, and a high growth yield. The purpose is to provide a method for manufacturing.

また、横引き法を手動操作で行う時にはその操作を容易
にし、自動制御で行う場合には、その制御性を高めるこ
とによって、量産に用いうるようにする方法を提供する
ことも本発明のもう一つの目的である。
Another object of the present invention is to provide a method that can be used in mass production by making the horizontal drawing process easier when it is performed manually, and by improving its controllability when it is performed automatically. It is one purpose.

即ち、本発明は、結晶性物質の横引きリボン結晶成長法
において、坩堝に支持された熔融体の表面に接触するリ
ボン状の種結晶または成長結晶の接液面の全部または一
部に形成及び/または維:時された成長界面に対し、該
成長界面の下方30mm以下の位置に、該成長界面にほ
ぼ平行な発熱表面を有する加熱装置を設け、該加熱装置
の発熱量を調整することによって、前記成長界面の幾何
学的形状を所定の位置と寸法に制御することを特徴とす
る結晶性物質の横引きリボン結晶成長法を要旨とするも
のであって、上記の目的を達成するのに不可欠の効果を
有するものである。
That is, the present invention provides a ribbon-shaped seed crystal that is in contact with the surface of a melt supported in a crucible or a ribbon-shaped seed crystal that is formed on all or part of the liquid-contacted surface of a growing crystal in a horizontally drawn ribbon crystal growth method for a crystalline substance. / or by providing a heating device having a heat generating surface substantially parallel to the growth interface at a position 30 mm or less below the growth interface, and adjusting the amount of heat generated by the heating device. , the gist of which is a horizontally drawn ribbon crystal growth method for crystalline materials, which is characterized by controlling the geometrical shape of the growth interface to a predetermined position and size, and to achieve the above object. It has an essential effect.

以下、実施例と図を用いて本発明の方法を詳しく説明す
る。
Hereinafter, the method of the present invention will be explained in detail using examples and figures.

第1図は、本発明の方法を実施する横引きリボン結晶成
長法の一例に用いる結晶成長炉内の主要部を示すもので
ある。
FIG. 1 shows the main parts inside a crystal growth furnace used in an example of the horizontally drawn ribbon crystal growth method for carrying out the method of the present invention.

そのa図は、リボン結晶の引き出し方向に平行な垂直断
面図であり、b図はその平面図である。
The figure a is a vertical sectional view parallel to the drawing direction of the ribbon crystal, and the figure b is a plan view thereof.

図中、1は成長させている目的の結晶性物質(例えばシ
リコン等の半導体材料)の薄くて巾の広いリボン結晶で
あり、原料である上記結晶性物質の熔融体より成る引出
浴2の自由表面から矢印に示すように水平方向に引き出
される。
In the figure, reference numeral 1 denotes a thin and wide ribbon crystal of the target crystalline substance being grown (for example, a semiconductor material such as silicon), and a drawing bath 2 consisting of a melt of the crystalline substance as the raw material is free. It is pulled out horizontally from the surface as shown by the arrow.

この引出浴は、高温でそれと反応しないし、機械的強度
も失なわない材料で作った坩堝(例えば高純度グラファ
イト製坩堝4に容れた高純度石英製坩堝)3によって安
定に支持されつつ坩堝の下部や側部に設けた加熱装置5
,6,7及び8(例えば高純度グラファイト製の抵抗加
熱発熱体を用いるのが便利)によって凝固点以上の温度
に加熱、維持される。
This withdrawal bath is stably supported by a crucible (for example, a high-purity quartz crucible contained in a high-purity graphite crucible 4) made of a material that does not react with it at high temperatures and does not lose its mechanical strength. Heating device 5 installed at the bottom or side
, 6, 7, and 8 (for example, it is convenient to use a resistance heating element made of high-purity graphite) to maintain the temperature above the freezing point.

リボン結晶は、リボン1の引出浴2との接液面FFBB
の一部に形成された引出方向に平行でない微小角度で交
わる面”FBGI Bc+t(以下成長界面という)に
沿う熔融体層を例えば自然放冷や先願たる特願昭50−
136841号(特公昭57−20278号)の方法等
によって冷却し、絶えず凝固点以下に保つことにより、
この面に連続的に結晶成長を起こさせる一方、その引出
方向と逆の方向への成長速度と平衡する速度で上記の方
向に引き出すことにより、連続的に成長させられる。
The ribbon crystal is the liquid contact surface FFBB of the ribbon 1 with the withdrawal bath 2.
The melt layer along the plane "FBGI Bc + t" (hereinafter referred to as growth interface) formed in a part of the drawing direction and intersecting at a small angle that is not parallel to the drawing direction may be cooled naturally or
By cooling it by the method of No. 136841 (Special Publication No. 57-20278) and keeping it constantly below the freezing point,
Continuous growth is achieved by causing crystal growth to occur continuously on this surface, and by pulling out in the above direction at a rate that is balanced with the growth rate in the direction opposite to the pulling direction.

以上までは横引き法に共通の基本的要件であるが、本発
明の方法の特徴とする点は次の点にある。
The above-mentioned basic requirements are common to all horizontal drawing methods, but the method of the present invention is characterized by the following points.

即ち、図に示したように、成長界面FFBGIBG□の
下方に設けた加熱装置5の上部発熱表面が成長界面にほ
ぼ平行で、成長界面からの距離りが30龍以下の非常に
近い所にある点である。
That is, as shown in the figure, the upper heating surface of the heating device 5 provided below the growth interface FFBGIBG□ is approximately parallel to the growth interface, and is very close to the growth interface at a distance of less than 30 dragons. It is a point.

このような特徴を持つ本発明の方法によって成長界面を
正確に形成、維持することが効果的に実施できるように
なるのであるが、その作用、効果を詳しく説明する前に
、成長界面の持つ重要な役割を理解する必要がある。
The method of the present invention, which has these characteristics, enables the accurate formation and maintenance of a growth interface. However, before explaining its functions and effects in detail, we will explain the importance of the growth interface. It is necessary to understand the role of

即ち、第1には、本出願人の先願たる特願昭50−91
099号(特公昭57−22917号)の方法の通り、
成長リボン厚さに比べ成長界面の長さを充分長くして成
長界面の面積を充分大きくすることにより、高速成長に
伴って成長界面に大量に発生する凝固熱を分散させ、且
つ効果的に分散放熱させることにある。
That is, firstly, the applicant's earlier patent application 1986-1991
According to the method of No. 099 (Special Publication No. 57-22917),
By making the length of the growth interface sufficiently long compared to the growth ribbon thickness and making the area of the growth interface sufficiently large, the solidification heat generated in large quantities at the growth interface due to high-speed growth can be dispersed and effectively dispersed. The purpose is to dissipate heat.

第2に、結晶は成長界面だけから成長するから、リボン
結晶の幾何学的形状を正確に制御するには、成長界面の
幾何学的形状が場所的にも時間的にも所定の形状と許容
誤差範囲に正確に制御されねばならない。
Second, since crystals grow only from the growth interface, precise control of the geometry of ribbon crystals requires that the geometry of the growth interface be aligned with a given shape in both space and time. It must be precisely controlled within the error range.

特にリボン結晶の幾何学的形状の内成長界面の形状によ
って主として決定されるのは、巾、厚さ、及び表裏両面
の平坦度である。
In particular, the shape of the ingrowth interface of the ribbon crystal geometry primarily determines the width, thickness, and flatness of the front and back surfaces.

この内、巾は例、えば第1図すに示すように加熱装置7
と5の加熱量と、成長界面の直上に対向して設けた冷却
装置(図には示していない)を用いる場合にはその冷却
量の調整によって、リボン結晶の巾方向における成長界
面の外形線(2つのF−BGo)の位置及び直線度を制
御する。
Among these, the width is, for example, the heating device 7 as shown in Figure 1.
The outline of the growth interface in the width direction of the ribbon crystal is Control the position and straightness of (two F-BGo).

また、このためには引出浴の側方にある加熱装置7の代
りに、引出浴の上方に配置した加熱装置を用いる方法も
既に知られているし、本発明と類似して引出浴の下方に
配置した加熱装置で行う方法も良い。
Furthermore, for this purpose, a method is already known in which a heating device placed above the draw-out bath is used instead of the heating device 7 placed on the side of the draw-out bath; It is also good to use a heating device placed in the

次に、表面の平坦度については、水平用法では坩堝と引
出装置の相対的上下位置関係を調整できる機構により液
面と上記表面とを上下方向で一致させることにより、ま
た、微小角度傾斜用法では成長界面の成長方向の外形線
F(フロント・ラインという)を引出方向に輛直な直線
に保つことにより、更に、裏面の平坦度については、水
平用法では成長界面の引出方向の端部BGI (成長界
面のバック・ラインという)が引出方向に平行な一平面
に常に横たわるように主として加熱装置6と7の発熱量
分布に注意を払うことにより、また、微小角度傾斜用法
では成長界面のバック・ラインBG□を引出方向に垂直
な直線で且つ一定の位置に保つことによって制御する。
Next, regarding the flatness of the surface, in the horizontal method, the liquid level and the above surface are made to match in the vertical direction using a mechanism that can adjust the relative vertical positional relationship between the crucible and the drawing device, and in the case of the small angle tilt method, By keeping the outline F of the growth interface in the growth direction (referred to as the front line) as a straight line perpendicular to the drawing direction, the flatness of the back surface can be further improved by keeping the edge BGI of the growth interface in the drawing direction ( By paying attention mainly to the heat generation distribution of the heating devices 6 and 7 so that the back line of the growth interface always lies on one plane parallel to the drawing direction, and in the small angle tilting method, the back line of the growth interface is Control is performed by keeping the line BG□ in a straight line perpendicular to the drawing direction and at a constant position.

本発明は、主として残る厚さの制御方法を改良するもの
であって、前述の幾何学的形状の他の項目の制御を行う
ことを前提にこれ等と組合せて実施するものである。
The present invention mainly improves the remaining thickness control method, and is intended to be implemented in combination with the above-mentioned control of other geometrical shapes.

即ち、表面は上記の通り水平用法では液面と同一平面に
あるように制御しつつ微小角度傾斜用法ではフロント・
ラインFを引出方向に垂直な直線に保ちつつ、成長界面
の直上に冷却装置を用いる場合はその冷却量も調整する
にしても、成長界面を下側からの主たる加熱源である加
熱装置5の発熱量を調整して、F−Bo□間の厚さ方向
のズレを所定値に保つことによって制御する。
In other words, the surface is controlled so that it is flush with the liquid level in horizontal usage as described above, while the front surface is controlled to be flush with the liquid level in small angle tilt usage.
If a cooling device is used directly above the growth interface, the amount of cooling is adjusted while keeping the line F in a straight line perpendicular to the drawing direction. Control is performed by adjusting the amount of heat generated and maintaining the deviation in the thickness direction between F and Bo□ at a predetermined value.

以上のように、横引きリボン結晶の幾何学的形状は、主
として成長界面の位置と形状を正確に制御することによ
って所定値に制御されるのである。
As described above, the geometric shape of the horizontally drawn ribbon crystal is controlled to a predetermined value mainly by accurately controlling the position and shape of the growth interface.

第3に、成長界面を正確な寸法に制御することは、リボ
ン単結晶を成長させる場合には更に重要な意義を持って
いる。
Thirdly, controlling the growth interface to precise dimensions is even more important when growing ribbon single crystals.

即ち、成長界面近傍では成長した結晶は凝固点に近い高
温となっているので通常応力を受けそれが比較的小さく
ても容易に転位や結晶粒界を生じる状態にあり、従って
成長界面が場所的にも時間的にもその形状を変える場合
には、それに対応する温度の変動があるため、この部分
に発生する熱応力によって転位等の結晶欠陥が発生する
In other words, near the growth interface, the grown crystal is at a high temperature close to the freezing point, so it is normally subjected to stress, which easily causes dislocations and grain boundaries even if the stress is relatively small. When the shape changes over time, there is a corresponding temperature change, and the thermal stress generated in this area causes crystal defects such as dislocations.

特に成長界面が平坦でフロント・ラインFからバックラ
インBGI にかけできるだけなだらかに成長リボン
の厚さが増大するように制御すれば、リボン結晶が必要
な厚さを持ち、且つ高速成長による凝固熱の成長界面内
の均一な分散に必要な平坦度を持つために成長界面上部
リボン中に引出方向に向う微小な温度勾配を実現できる
一方、上記の結晶欠陥の原因となる程の温度勾配の発生
がなくせる。
In particular, if the growth interface is flat and the thickness of the growing ribbon is controlled to increase as gently as possible from the front line F to the back line BGI, the ribbon crystal will have the required thickness and the solidification heat will increase due to high-speed growth. Because it has the flatness necessary for uniform dispersion within the interface, it is possible to realize a minute temperature gradient in the ribbon above the growth interface in the drawing direction, but it does not generate a temperature gradient that is large enough to cause the crystal defects mentioned above. let

以上のように、成長界面の幾何学的形状を所定の位置と
寸法に正確に制御すること、即ち成長界面の調整とは第
1図すにおけるFF、FBoエ 。
As described above, accurately controlling the geometrical shape of the growth interface to a predetermined position and size, that is, adjusting the growth interface, refers to the FF and FBo et in Figure 1.

BGI BG□およびBGIFの直線性と位置の不変性
の調整であり、具体的には結晶成長中に前記の各部を目
視観測しつつ加熱装置および冷却装置により温度を調整
して、前記各部がいったん形成された位置から変わらぬ
ようかつ直線部分が曲がらぬように維持することである
BGI Adjusts the linearity and positional constancy of BG It is to maintain the straight portion so that it does not change from the position in which it was formed and that the straight portion does not bend.

従って昇温または降温の命令が加熱装置を通じて鋭敏に
成長界面に伝わることが必要不可欠の要件である。
Therefore, it is essential that the command to raise or lower the temperature be transmitted to the growth interface through the heating device.

本発明は主として結晶の厚さの制御法改良を目的とする
ものであって、この目的を達成するためには第1図aの
FBo□ ができるだけなだらかに厚さが増大するよう
に制御すればよい(即ちFBG■ の直線制御)との経
験に基づいてその実現に努めこにもかかわらず、第2図
a、bのような加熱装置を用いると昇温・降温の命令が
迅速に成長界面に伝わらず、第2図a、bに示したよう
に結晶裏面に凹凸を生じてしまう失敗を繰り返した。
The main purpose of the present invention is to improve the method of controlling the crystal thickness, and in order to achieve this purpose, the thickness of FBo□ in Fig. Despite efforts to realize this based on experience with good (i.e., linear control of FBG), using a heating device like the one shown in Figure 2 a and b, the command to raise or lower the temperature can be quickly applied to the growth interface. However, as shown in Figures 2a and 2b, there were repeated failures resulting in unevenness on the back surface of the crystal.

そこで本発明者は種々検討の結果、成長界面と発熱表面
との位置関係が少なくとも第1図aにおいてhく30m
TItであれば制御の困難性が相当軽減できることを確
認して本発明を完成したのである。
Therefore, as a result of various studies, the present inventor found that the positional relationship between the growth interface and the heating surface is at least 30m in Fig. 1a.
The present invention was completed after confirming that TIt could considerably reduce the difficulty of control.

このような本発明においては、次に述べるように、その
制御に関し顕著な作用、効果を有している。
As described below, the present invention has remarkable functions and effects regarding its control.

先ず第1に、平らな発熱面から近距離ではこれに平行に
拡がる等温面が形成されるので、その発熱量を調整する
ことにより所定の位置に凝固等温面が容易に形成される
ため、これが成長界面の所定の位置に一致するように調
整することは容易であり、従って比較的平坦な成長界面
が所定の位置に容易に形成できる。
First of all, an isothermal surface extending parallel to a flat heat-generating surface is formed at a short distance, so by adjusting the amount of heat generated, a solidification isothermal surface can be easily formed at a predetermined position. It is easy to adjust to match the predetermined location of the growth interface, so that a relatively flat growth interface can be easily formed in the predetermined location.

第2に、加熱装置の設定のヅレや電源装置の電圧変動等
、何らかの原因による熱的条件の不正ないし変動が発生
した時、加熱装置の発熱量の調整を行えば、発熱面と成
長界面の距離が近いのでそれに対する成長界面での温度
変化応答が速いので、系の制御!特性が良く入る結果、
成長界面での変動が小さくなる。
Second, when the thermal conditions are incorrect or fluctuate due to some reason, such as a deviation in the settings of the heating device or a voltage fluctuation in the power supply device, adjusting the amount of heat generated by the heating device will allow the heating surface and the growth interface to Since the distance between the two is close, the temperature change response at the growth interface is fast, so the system can be controlled! As a result of good characteristics,
Fluctuations at the growth interface are reduced.

第3に、前述の第1の効果で成長界面の温度を決定する
上で、引出浴下側からの加熱装置の役割が冷却装置その
他に比べ大きくでき、最終的には上部からの強制冷却を
はふいても成長界面の形成と寸法制御ができる一方、引
出浴上部に低温の機構部分が無くなるので、引出浴表面
から蒸発するSiやその酸化物による低温での析出物の
落下による異常結晶の発生を無くせる。
Thirdly, in determining the temperature of the growth interface due to the first effect mentioned above, the role of the heating device from the bottom of the withdrawal bath can be greater than that of the cooling device and others, and ultimately forced cooling from the top can be achieved. While it is possible to form a growth interface and control the dimensions even if the surface is wiped, there is no low-temperature mechanical part in the upper part of the withdrawal bath, so Si and its oxides that evaporate from the surface of the withdrawal bath can prevent the formation of abnormal crystals due to the fall of precipitates at low temperatures. Eliminate occurrence.

これも歩留の向上をもたらす。This also results in improved yield.

第4に、引出浴の温度調節の応答が速い結果、引出操作
が簡単になり、引出操作中、特にその初期)こおける熱
的条件の変化の大きい操作時期に発生し勝ちな、高過ぎ
る温度による種結晶の溶失、低過ぎる温度による坩堝周
辺との固化橋絡等による運転能率の低下が非常に減少で
きる。
Fourth, as a result of the fast response of the temperature control of the withdrawal bath, the withdrawal operation is simplified, and excessively high temperatures are likely to occur during the withdrawal operation, especially during periods of operation when there are large changes in thermal conditions (especially at the beginning). The reduction in operating efficiency due to dissolution of seed crystals due to melting, solidification bridging with the surroundings of the crucible due to too low temperature, etc. can be greatly reduced.

以上のような本発明の方法と異なり、頭初に述べた従来
法による実施する横引きリボン結晶成長法の例を第2図
a、bを以て示す。
An example of the horizontally drawn ribbon crystal growth method, which is different from the method of the present invention as described above and is carried out by the conventional method mentioned at the beginning, is shown in FIGS. 2a and 2b.

第2図aは、高周波誘導加熱法による1例で、図に示し
てない電源装置から制御された高周波電力の供給を受け
、中心を水冷される導体パイプで作った加熱コイル5に
より、発熱体ともなる高純度グラファイト坩堝4に誘導
エネルギーを発生させ、その内側の高純度透明石英坩堝
3内で熔融されたにせよ、第2図すの抵抗加熱法による
1例のように、図に示していない各々別の電源装置から
制御された電力の供給を受ける高純度グラファイト製の
抵抗加熱発熱体5により、その内側の高純度石英坩堝3
内で熔融されたにせよ、形成された原料結晶性物質より
成る引出浴2の表面に接触しつつ矢印方向に引き出され
るリボン結晶1の接液面F−B間を、図中の破線と矢印
で示す熱流によって温度制御をするが、何れにするも従
来法は加熱面と成長界面とがほぼ平行で、その距離りは
30mm以下である、という本発明の要件を満していな
いもので、そのためにデリケートな温度調整ができない
Figure 2a shows an example of the high-frequency induction heating method, in which a heating coil 5 made of a conductor pipe whose center is water-cooled receives controlled high-frequency power from a power supply device (not shown in the figure) and generates a heating element. Even if induced energy is generated in the high-purity graphite crucible 4, which is also used, and melted in the high-purity transparent quartz crucible 3 inside the crucible 4, as shown in the example of the resistance heating method shown in Figure 2, The high-purity quartz crucible 3 inside the high-purity graphite resistance heating element 5 receives controlled power supply from separate power supplies.
Even if the ribbon crystal 1 is melted inside, it is drawn out in the direction of the arrow while contacting the surface of the drawing bath 2 made of the formed raw material crystalline material. The temperature is controlled by the heat flow shown in , but in any case, the conventional method does not meet the requirements of the present invention that the heating surface and the growth interface are almost parallel and the distance between them is 30 mm or less. As a result, delicate temperature adjustments cannot be made.

即ち第2図aのように発熱面が所定の成長界面(一点破
線で示す)に平行でなかったり、bのように平行であっ
ても距離は大きく熱抵抗が大きいために温度調節に対す
る応答遅れが大きいため、成長したリボン結晶の厚さ変
動が大きく、それに対応して結晶性も悪い部分が多くな
り。
In other words, as shown in Figure 2 a, the heating surface is not parallel to the prescribed growth interface (indicated by a dashed line), or even if it is parallel as shown in b, the distance is large and the thermal resistance is large, resulting in a delay in response to temperature adjustment. Because of the large thickness, the thickness of the grown ribbon crystal varies greatly, and there are correspondingly many areas with poor crystallinity.

成長歩留は極めて低いものであっただけでなく、引出の
初期における操作は極めて困難なもので、熟練者でも成
功率は低かった。
Not only was the growth yield extremely low, but the initial draw operation was extremely difficult and the success rate was low even for experienced personnel.

以上の説明で明らかなように、「特許請求の範囲」に記
載された本発明の方法は、実際の横引き法によるリボン
結晶の成長に用いて極めて有効であることを実験により
認めた。
As is clear from the above description, it has been experimentally confirmed that the method of the present invention described in the claims is extremely effective when used in actual growth of ribbon crystals by the horizontal drawing method.

特にシリコンのリボン結晶成長の場合には成長界面と発
熱面との距離が30mrrt以下にした時、その効果が
顕著であることを確認した。
In particular, in the case of ribbon crystal growth of silicon, it was confirmed that the effect is remarkable when the distance between the growth interface and the heat generating surface is set to 30 mrrt or less.

また、本発明の一実施例としては本出願人の先願である
特願昭50−155814号(特公昭57−21516
号)の方法、所謂、無坩堝法のように固状の原料結晶性
物質で保持された成長界面の直下の熔融体で直接発熱さ
せる方法も挙げることができる。
Further, as an embodiment of the present invention, Japanese Patent Application No. 50-155814 (Japanese Patent Publication No. 57-21516) is an earlier application of the present applicant.
There is also a method in which heat is generated directly in the molten material directly below the growth interface held by a solid raw material crystalline material, such as the method of No. 1, the so-called crucibleless method.

すなわちこの場合でも本発明の方法の作用、効果が同じ
に得られることは自明である。
That is, it is obvious that the same effects and effects of the method of the present invention can be obtained even in this case.

なお、成長界面と発熱表面との平行度はそれ程厳密さを
要しないことが実際に確められたが、これは成長界面で
の単位面積当りの凝固熱発生量が、下方の熔融体から流
れ込む顕熱量に比べて大きくなるような高速成長では、
成長界面の加熱装置による加熱ムラが高速成長による自
己制御性によって均一に発生する凝固熱によって打ち消
されるためと考えられ、事実、通常の高速成長で実施す
る成長界面とリボン結晶上面との交角がlO°以下の条
件では、リボン結晶上面と発熱面とが平行となるように
すれば充分であった。
In addition, it was actually confirmed that the parallelism between the growth interface and the heating surface does not need to be very strict, but this is because the amount of solidification heat generated per unit area at the growth interface flows from the molten material below. In fast growth where the amount of heat is large compared to the amount of sensible heat,
This is thought to be because the heating unevenness caused by the heating device at the growth interface is canceled out by the solidification heat uniformly generated due to the self-control property of high-speed growth, and in fact, the intersection angle between the growth interface and the top surface of the ribbon crystal in normal high-speed growth is 1O Under conditions of less than 100°C, it was sufficient to make the top surface of the ribbon crystal parallel to the heat generating surface.

然し、成長させるリボン結晶の厚さが非常に犬で、比較
的成長速度を落して行う場合には、第3図の様に、所定
の成長界面に平行な発熱面を設けて実施するのが望まし
かった。
However, if the thickness of the ribbon crystal to be grown is very small and the growth rate is to be relatively slow, it is recommended to provide a heat generating surface parallel to the predetermined growth interface as shown in Figure 3. It was desirable.

次に実施例によって説明する。Next, an example will be explained.

熔融体を保持する部分の寸法が、巾120朋、長さ15
0mm1深さ15mmの石英坩堝を用い、グラファイト
製抵抗加熱体を第1図のように配置した。
The dimensions of the part that holds the melt are width 120 mm and length 15 mm.
A graphite resistance heating element was arranged as shown in FIG. 1 using a quartz crucible with a size of 0 mm and a depth of 15 mm.

その供給電力を制御して発熱量を調整し、シリコンの熔
融温度1430℃の近傍で成長界面の形状が所望のもの
となるように観測しつつ成長させた。
The power supply was controlled to adjust the amount of heat generated, and the growth was performed while observing the desired shape of the growth interface near the silicon melting temperature of 1430°C.

このとき加熱体5および6と、坩堝に支持されたシリコ
ン熔融体の自由表面とは平行でかつその距離は30間で
、リボン結晶の成長界面FFBGIBo工と加熱体5,
6はほぼ平行で29mm〜30mmの距離関係にあった
At this time, the heating bodies 5 and 6 are parallel to the free surface of the silicon melt supported in the crucible, and the distance between them is 30 mm.
6 were almost parallel and had a distance relationship of 29 mm to 30 mm.

その結果引き出し速度300龍/分で厚さLm4巾40
mrttの良質なシリコンリボン単結晶が得られた。
As a result, the thickness was Lm4 and the width was 40 mm at a withdrawal speed of 300 dragons/min.
A high quality silicon ribbon single crystal of mrtt was obtained.

本実施例においては76例中57例が所期の目的を達成
したが(成功率75係)、第2図すの装置でh=45m
mの場合、成功は75例中27例(成功率36係)に過
ぎなかった。
In this example, 57 out of 76 cases achieved the intended purpose (success rate: 75).
In the case of m, only 27 out of 75 cases (success rate: 36) were successful.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術思想を説明するための種々の実施例
の態様を示す概略図である。 第1図aはリボン結晶引出部近傍の引出方向に平行な垂
直断面図、第1図すはa図部分の平面図で、本発明の方
法の特徴を体現した加熱装置5と成長界面F−Bo□の
相互配置を示す。 第2図a、bは共に加熱装置5と成長界面F−BG□の
関係が好ましくない場合の引出部近傍の垂直断面図であ
り、第3図は本発明の方法で成長界面F−BG□の長さ
が、リボン結晶の厚さに比べそれ程大きくない場合に、
加熱装置5の発熱面を成長界面と平行となるように配置
した場合の引出部近傍の垂直断面図である。 図中、1はリボン状の種結晶または成長結晶、2は原料
結晶性物質より成る引出浴、3は高純度石英坩堝、4は
高純度グラファイト坩堝、5,6゜7.8は加熱装置、
Fは成長界面のフロント・ライン、BGIは成長界面の
バック・ライン、Bはリボン結晶の接触部のバンク・ラ
イン、hは成長界面と加熱装置の発熱面の距離を示す。
The drawings are schematic diagrams showing aspects of various embodiments for explaining the technical idea of the present invention. FIG. 1a is a vertical sectional view parallel to the drawing direction near the ribbon crystal drawing part, and FIG. 1 is a plan view of the part shown in FIG. The mutual arrangement of Bo□ is shown. FIGS. 2a and 2b are vertical cross-sectional views of the vicinity of the extraction part when the relationship between the heating device 5 and the growth interface F-BG□ is unfavorable, and FIG. When the length of is not much larger than the thickness of the ribbon crystal,
FIG. 3 is a vertical cross-sectional view of the vicinity of the lead-out portion when the heat generating surface of the heating device 5 is arranged parallel to the growth interface. In the figure, 1 is a ribbon-shaped seed crystal or growing crystal, 2 is a withdrawal bath made of raw material crystalline material, 3 is a high-purity quartz crucible, 4 is a high-purity graphite crucible, 5, 6° 7.8 is a heating device,
F is the front line of the growth interface, BGI is the back line of the growth interface, B is the bank line of the ribbon crystal contact, and h is the distance between the growth interface and the heating surface of the heating device.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶性物質の横引きリボン結晶成長法において、坩
堝に支持された熔融体の表面に接触するリボン状の種結
晶または成長結晶の接液面の全部または一部に形成及び
/または維持された成長界面に対し、該成長界面の下方
30龍以下の位置に、該成長界面にほぼ平行な発熱表面
を有する加熱装置を設け、該加熱装置の発熱量を調整す
ることによって、前記成長界面の幾何学的形状を所定の
位置と寸法に制御することを特徴とする結晶性物質の横
引きリボン結晶成長法。
1 In the horizontally drawn ribbon crystal growth method for crystalline substances, a ribbon-shaped seed crystal that contacts the surface of a melt supported in a crucible or a ribbon formed and/or maintained on all or part of the liquid contact surface of a growing crystal. A heating device having a heat generating surface approximately parallel to the growth interface is provided at a position of 30 degrees or less below the growth interface, and by adjusting the amount of heat generated by the heating device, the geometry of the growth interface can be adjusted. A horizontally drawn ribbon crystal growth method for crystalline materials, which is characterized by controlling the chemical shape to a predetermined position and size.
JP747476A 1975-07-28 1976-01-28 Horizontal ribbon crystal growth method Expired JPS5912631B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP747476A JPS5912631B2 (en) 1976-01-28 1976-01-28 Horizontal ribbon crystal growth method
DE2633961A DE2633961C2 (en) 1975-07-28 1976-07-28 Method of pulling a thin ribbon of single crystal semiconductor
US05/863,480 US4329195A (en) 1975-07-28 1977-12-22 Lateral pulling growth of crystal ribbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP747476A JPS5912631B2 (en) 1976-01-28 1976-01-28 Horizontal ribbon crystal growth method

Publications (2)

Publication Number Publication Date
JPS5291785A JPS5291785A (en) 1977-08-02
JPS5912631B2 true JPS5912631B2 (en) 1984-03-24

Family

ID=11666771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP747476A Expired JPS5912631B2 (en) 1975-07-28 1976-01-28 Horizontal ribbon crystal growth method

Country Status (1)

Country Link
JP (1) JPS5912631B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9587324B2 (en) * 2014-05-12 2017-03-07 Varian Semiconductor Equipment Associates, Inc. Apparatus for processing a melt

Also Published As

Publication number Publication date
JPS5291785A (en) 1977-08-02

Similar Documents

Publication Publication Date Title
US4329195A (en) Lateral pulling growth of crystal ribbons
US4226834A (en) Lateral pulling growth of crystal ribbons and apparatus therefor
US4289571A (en) Method and apparatus for producing crystalline ribbons
US8262795B2 (en) Method and apparatus for the production of crystalline silicon substrates
KR20090055644A (en) C-plane sapphire method and apparatus
US5069742A (en) Method and apparatus for crystal ribbon growth
JP2020040874A (en) Device and method for controlling thickness of crystal sheet grown on melt
US5055157A (en) Method of crystal ribbon growth
US5229083A (en) Method and apparatus for crystal ribbon growth
JPS5912631B2 (en) Horizontal ribbon crystal growth method
JP2003504295A (en) Edge meniscus control for crystal ribbon growth
JP2587932B2 (en) Silicon ribbon manufacturing method
JPS6111914B2 (en)
JPS5912636B2 (en) How to pull ribbon-shaped single crystals
CN213624473U (en) Crucible device for growing silicon carbide crystal based on liquid phase epitaxial method
US20150075419A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
RU2531514C1 (en) Heater for growth of monocrystals from melt by vertical pulling technique
JP2004010461A (en) Apparatus for manufacturing crystal and method for manufacturing crystal
CN115537911A (en) Method and equipment for preparing large-size crystal by Czochralski method
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPS6111913B2 (en)
KR101339151B1 (en) Apparatus and method for growing monocrystalline silicon ingots
JPS5845191A (en) Method and device for manufacturing crystalline ribbon
AU2004309149A1 (en) Device for depositing a polycrystalline silicon layer on a support
JPS6229394B2 (en)