JPS5912562Y2 - Calibration circuit for strain measurement - Google Patents

Calibration circuit for strain measurement

Info

Publication number
JPS5912562Y2
JPS5912562Y2 JP830078U JP830078U JPS5912562Y2 JP S5912562 Y2 JPS5912562 Y2 JP S5912562Y2 JP 830078 U JP830078 U JP 830078U JP 830078 U JP830078 U JP 830078U JP S5912562 Y2 JPS5912562 Y2 JP S5912562Y2
Authority
JP
Japan
Prior art keywords
calibration
strain
strain gauge
bridge
bridge power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP830078U
Other languages
Japanese (ja)
Other versions
JPS54112159U (en
Inventor
治吉 本田
Original Assignee
株式会社共和電業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社共和電業 filed Critical 株式会社共和電業
Priority to JP830078U priority Critical patent/JPS5912562Y2/en
Publication of JPS54112159U publication Critical patent/JPS54112159U/ja
Application granted granted Critical
Publication of JPS5912562Y2 publication Critical patent/JPS5912562Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【考案の詳細な説明】 本考案は2個の較正用抵抗と1個のブリッジ電源と、こ
れらを切り換えるための2個のスイッチから構或される
ひずみ測定用較正回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a strain measurement calibration circuit that is comprised of two calibration resistors, one bridge power supply, and two switches for switching between them.

従来、ひずみ測定器の較正方法には並列抵抗法、基準電
圧挿入法、二重電橋法がある。
Conventional methods for calibrating strain measuring instruments include the parallel resistance method, reference voltage insertion method, and double bridge method.

第1図は従来の並列抵抗法による較正方法の一例を示す
回路図で、1はひずみゲージで構或するホイートストン
?リッジ、2はブリッジ電源、3は増幅器、rは較正用
抵抗、S1は較正用スイッチである。
Figure 1 is a circuit diagram showing an example of a calibration method using the conventional parallel resistance method, in which 1 is a Wheatstone strain gauge. ridge, 2 is a bridge power supply, 3 is an amplifier, r is a calibration resistor, and S1 is a calibration switch.

第2図は従来の基準電圧挿入法による較正方法の一例を
示す回路図で、r2,r3,r4,r5,r6は較正用
抵抗、S2,S3は測定、較正の切り換えスイッチで、
S2,S3をa側に選択すると測定の状態になり、b側
にすると較正の状態になる。
Figure 2 is a circuit diagram showing an example of a calibration method using the conventional reference voltage insertion method, where r2, r3, r4, r5, and r6 are calibration resistors, S2 and S3 are measurement and calibration switches,
When S2 and S3 are selected to the a side, the measurement state is entered, and when they are set to the b side, the calibration state is entered.

第3図は従来の二重電橋法による較正方法の一例を示す
回路図で、4は較正用ブリッジ電源、r7,r8, r
9, rto, rllは較正用抵抗、S4は較正用ス
イッチである。
Figure 3 is a circuit diagram showing an example of a calibration method using the conventional double bridge method, where 4 is a calibration bridge power supply, r7, r8, r
9, rto, rll are calibration resistors, and S4 is a calibration switch.

並列抵抗法はゲージ抵抗によって較正値が変わることと
、測定中の較正は困難という欠点があった。
The parallel resistance method has the disadvantage that the calibration value changes depending on the gauge resistance and that calibration during measurement is difficult.

基準電圧挿入法は他の方式に比べて操作法が複雑なこと
と、ゲージ抵抗によって較正値が変るという難点があっ
た。
The reference voltage insertion method has the disadvantage that the operation method is more complicated than other methods, and the calibration value changes depending on the gauge resistance.

また二重電橋法については、最も広く用いられ、その較
正値は、ひずみゲージの抵抗値に関係なく一定で、測定
中にも較正を実施することができるが、較正用ブリッジ
電源を必要とすること、較正ホイートストンブリッジに
零点変動があると、測定誤差を誘発するという欠点があ
った。
The double bridge method is the most widely used, and its calibration value is constant regardless of the resistance value of the strain gauge, and calibration can be performed even during measurement, but it requires a bridge power source for calibration. However, if there is a zero point fluctuation in the calibration Wheatstone bridge, it has the disadvantage of inducing measurement errors.

そしてこれら従来技術に共通の欠点として、ひずみゲー
ジで構或するホイートストンブリッジの電源が定電圧源
か、または定電流源(ひずみゲージまでの距離が長いと
き定電流方式が用いられる。
A common drawback of these conventional techniques is that the power source for the Wheatstone bridge, which is constructed from strain gauges, is either a constant voltage source or a constant current source (when the distance to the strain gauge is long, a constant current method is used).

)かによって、何らかの回路変更を加えないと使用でき
ないという欠点があった。
), it had the disadvantage that it could not be used without some kind of circuit modification.

本考案は、これら従来のひずみ測定用較正回路の欠点を
除去するため、ひずみゲージ用ブリッジ電源が定電圧源
または定電流源のいずれかの場合にでも共用でき、しか
も簡単な回路構戊で正確な較正のできるひずみ測定用較
正回路を提供しようとするものである。
In order to eliminate the drawbacks of these conventional strain measurement calibration circuits, the present invention allows the bridge power supply for strain gauges to be used in either a constant voltage source or a constant current source, and is accurate with a simple circuit configuration. The present invention aims to provide a calibration circuit for strain measurement that allows accurate calibration.

第4図は本考案の一実施例の回路図であって、Ss,S
sはブリッジ電源切換スイッチ、R1,R2は較正用抵
抗である。
FIG. 4 is a circuit diagram of an embodiment of the present invention, in which Ss, S
s is a bridge power supply changeover switch, and R1 and R2 are calibration resistors.

第5図は第4図においてS5,S6をa側に切り換えた
時、すなわちひずみ測定時の等価回路図で、第6図は第
4図においてS5,S6をb側に切り換えた時、すなわ
ち較正時の等価回路図である。
Figure 5 is an equivalent circuit diagram when S5 and S6 are switched to the a side in Figure 4, that is, when strain is measured, and Figure 6 is an equivalent circuit diagram when S5 and S6 are switched to the b side in Figure 4, that is, during calibration. FIG.

第5図に示すひずみ測定時には、ブリッジ電源が、ホイ
ートストンブリッジ1を励振し、一方、第6図に示す較
正時には、ブリッジ電源が較正用抵抗RLR2と閉ルー
プ回路を構威する。
During strain measurement shown in FIG. 5, the bridge power source excites the Wheatstone bridge 1, while during calibration shown in FIG. 6, the bridge power source forms a closed loop circuit with the calibration resistor RLR2.

このような構造になっているから、ブリッジ電源が定電
圧源の場合、第6図においてその出力電圧をEとすれば
、増幅器3の入力には なる較正電圧が発生する。
Because of this structure, if the bridge power supply is a constant voltage source and its output voltage is E in FIG. 6, a calibration voltage is generated to be input to the amplifier 3.

同様にブリッジ電源が定電流源の場合、その出力電流を
Iとすれば、R2Iなる較正電圧を発生する。
Similarly, if the bridge power supply is a constant current source, and its output current is I, a calibration voltage R2I is generated.

これら定電圧源の場合に発生した較正電圧 と、定電流源の場合に発生した較正電圧R2Iとが相等
しくなるように、較正用抵抗R.,R2の値をそれぞれ
決めればブリッジ電源が定電圧源または定電流源のいず
れの場合でも、共通に使用できる。
The calibration resistor R2 is set so that the calibration voltage generated in the case of these constant voltage sources and the calibration voltage R2I generated in the case of the constant current source are equal to each other. , R2 can be used in common, regardless of whether the bridge power source is a constant voltage source or a constant current source.

すなわち第6図において、較正時に発生させる較正電圧
をeと決め、まずブリッジ電源が定電流源の場合を考え
てみると、その出力電流はあらかじめ、ひずみ測定に有
利な値■に定められているので、較正用抵抗R2は として、その値が決められる。
That is, in Fig. 6, the calibration voltage generated during calibration is determined as e, and if we first consider the case where the bridge power supply is a constant current source, its output current is preset to a value ■ that is advantageous for strain measurement. Therefore, the value of the calibration resistor R2 is determined as follows.

一方、ブリッジ電源が定電圧源の場合を考えると、較正
電圧eは前述のように なる関係があり、(2)式からR1を求めると、(3)
式に(1)式を代入して、R1を求めると、となる。
On the other hand, if we consider the case where the bridge power supply is a constant voltage source, the calibration voltage e has the relationship as described above, and when we calculate R1 from equation (2), we get (3)
Substituting equation (1) into the equation to find R1, we get:

このような関連のもとに、ブリッジ電源電圧E、較正電
圧e、較正用抵抗R.,R2を定めれば、ひずみゲージ
励振用ブリッジ電源が定電圧源でも定電流源でも、同一
の較正回路が共用できることになる。
Based on this relationship, the bridge power supply voltage E, the calibration voltage e, the calibration resistor R. , R2, the same calibration circuit can be used regardless of whether the strain gauge excitation bridge power source is a constant voltage source or a constant current source.

本考案のひずみ測定用較正回路は、以上述べたような構
威になっているので、次のような効果がある。
Since the strain measurement calibration circuit of the present invention has the structure described above, it has the following effects.

(1)第6図において増幅器3の入力インピーダンスを
較正用抵抗R2とホイートストンブリッジ1の出力抵抗
の合算値より十分大きく設定すれば、ひずみゲージの抵
抗値に影響されない正確な較正が可能となる。
(1) In FIG. 6, if the input impedance of the amplifier 3 is set to be sufficiently larger than the sum of the calibration resistor R2 and the output resistance of the Wheatstone bridge 1, accurate calibration that is not affected by the resistance value of the strain gauge becomes possible.

(2)第6図で明らかなように、本考案による較正を実
施している時は、ホイートストンブリッジ1が励振され
ていないので、較正値がゲージの抵抗の影響を一切受け
ない。
(2) As is clear from FIG. 6, when the calibration according to the present invention is performed, the Wheatstone bridge 1 is not excited, so the calibration value is not affected by the resistance of the gauge at all.

(3)較正回路がホイートストンブリッジになっていな
いので、較正回路の零点変動がない。
(3) Since the calibration circuit is not a Wheatstone bridge, there is no fluctuation in the zero point of the calibration circuit.

(4)ブリッジ電源が定電圧源または定電流源のいずれ
でも、特別な変更なしに、較正回路が共用できる。
(4) Whether the bridge power source is a constant voltage source or a constant current source, the calibration circuit can be shared without any special changes.

(5)ひずみゲージをスイッチボックス等で多点入力と
し、しかもゲージ抵抗値が個々に異なる場合でも、1個
の較正回路で共用できる。
(5) Even if the strain gauge is used as a multi-point input using a switch box or the like, and each gauge has a different resistance value, one calibration circuit can be used in common.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は従来の並列抵抗法、基準電圧
挿入法、二重電橋法による較正方法のそれぞれ一例を示
す回路図、第4図は本考案の一実施例の回路図、第5図
は第4図の測定時における等価回路図、第6図は第4図
の較正時における等価回路図である。 1・・・・・・ひずみゲージで構或するホイートストン
ブリッジ、2・・・・・・ブリッジ電源、3・・・・・
・増幅器、4・・・・・・較正用ブリッジ電源、r1〜
rll・・・・・・従来の較正回路例の較正用抵抗、R
1,R2・・・・・・本考案の較正回路の較正用抵抗、
S1〜S6・・・・・・スイッチ。
Figures 1, 2, and 3 are circuit diagrams showing examples of calibration methods using the conventional parallel resistance method, reference voltage insertion method, and double bridge method, respectively, and Figure 4 shows an example of the calibration method of the present invention. 5 is an equivalent circuit diagram at the time of measurement of FIG. 4, and FIG. 6 is an equivalent circuit diagram at the time of calibration of FIG. 4. 1...Wheatstone bridge composed of strain gauges, 2...Bridge power supply, 3...
・Amplifier, 4...Bridge power supply for calibration, r1~
rll... Calibration resistor of conventional calibration circuit example, R
1, R2... Calibration resistor of the calibration circuit of the present invention,
S1-S6...Switch.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ひずみゲージで構威するホイートストンブリッジの一つ
の出力端と該ホイートストンブリッジの出力を増幅する
増幅器の一つの入力端子との間に、2個の抵抗からなる
L型減衰回路を較正回路として直列に挿入したうえ、ひ
ずみ測定時には、ひずみゲージ励振用ブリッジ電源をひ
ずみゲージで構成するホイートストンブリッジの1対の
入力端に印加して、ひずみの測定を行い、一方、較正時
にはひずみゲージ励振用ブリッジ電源の出力を前記2個
一組の較正抵抗の両端に切り換え印加することにより、
ひずみゲージの抵抗値に左右されることなく、またひず
みゲージ励振用ブリッジ電源が定電圧源または定電流源
のいずれでも共通に使用できるようにしたことを特徴と
するひずみ測定用較正回路。
An L-type attenuation circuit consisting of two resistors is inserted in series as a calibration circuit between one output terminal of a Wheatstone bridge composed of a strain gauge and one input terminal of an amplifier that amplifies the output of the Wheatstone bridge. Furthermore, during strain measurement, the strain gauge excitation bridge power supply is applied to a pair of input terminals of the Wheatstone bridge composed of the strain gauge, and strain is measured.On the other hand, during calibration, the strain gauge excitation bridge power supply is applied to a pair of input terminals of the Wheatstone bridge. By switching and applying to both ends of the pair of calibration resistors,
A calibration circuit for strain measurement, which is independent of the resistance value of a strain gauge, and is characterized in that a bridge power source for strain gauge excitation can be commonly used as either a constant voltage source or a constant current source.
JP830078U 1978-01-26 1978-01-26 Calibration circuit for strain measurement Expired JPS5912562Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP830078U JPS5912562Y2 (en) 1978-01-26 1978-01-26 Calibration circuit for strain measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP830078U JPS5912562Y2 (en) 1978-01-26 1978-01-26 Calibration circuit for strain measurement

Publications (2)

Publication Number Publication Date
JPS54112159U JPS54112159U (en) 1979-08-07
JPS5912562Y2 true JPS5912562Y2 (en) 1984-04-16

Family

ID=28817119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP830078U Expired JPS5912562Y2 (en) 1978-01-26 1978-01-26 Calibration circuit for strain measurement

Country Status (1)

Country Link
JP (1) JPS5912562Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245761Y2 (en) * 1981-04-06 1990-12-04
JP4807207B2 (en) * 2006-09-22 2011-11-02 株式会社島津製作所 Measuring device and material testing machine

Also Published As

Publication number Publication date
JPS54112159U (en) 1979-08-07

Similar Documents

Publication Publication Date Title
ES2010991T5 (en) PROCEDURE FOR CONTROLLING DEVICES FOR THE MEASUREMENT OF FORCE OR MOMENT, AND THE CORRESPONDING DEVICE.
JPS5912562Y2 (en) Calibration circuit for strain measurement
US4404856A (en) Strain measuring device
SU1273739A1 (en) Multichannel measuring system with correction device for measuring characteristics
SU917101A2 (en) Digital multi-drop strain-gauge bridge
SU687395A1 (en) Method of periodic correction of amplifier zero drift
JPH0546090Y2 (en)
SU531084A1 (en) Parametric Conversion Device
SU1394183A1 (en) Magnetic induction measure
JPH09232647A (en) Hall element diving circuit
SU974280A1 (en) Remote converter of resistannce increment to current ratio
JPS6018702A (en) Displacement measuring device
SU539277A1 (en) Method for measuring cable conductor difference
SU1599679A1 (en) Device for measuring pressure
JP2687615B2 (en) Switch arc voltage measuring device
SU900132A1 (en) Strain gauge converter
SU1017998A2 (en) Electronic coulorimeter having controlled potential
SU842628A1 (en) Method of measuring precision electric resistor relative deviation
SU779893A1 (en) Device for automatic balancing of strain-gauge bridge
SU1679397A1 (en) A c digital automatic bridge
SU808875A1 (en) Device for measuring temperature difference ratio
SU1022059A1 (en) Device for measuring resistance variations
SU970239A1 (en) Method and device for compensating bridge measuring circuit separate balancing
SU1740997A1 (en) Semiconductor strain converter
SU1177775A1 (en) Method of determining location of cable insulation fault