JPS59125073A - Multipoint potential detecting element - Google Patents

Multipoint potential detecting element

Info

Publication number
JPS59125073A
JPS59125073A JP57231484A JP23148482A JPS59125073A JP S59125073 A JPS59125073 A JP S59125073A JP 57231484 A JP57231484 A JP 57231484A JP 23148482 A JP23148482 A JP 23148482A JP S59125073 A JPS59125073 A JP S59125073A
Authority
JP
Japan
Prior art keywords
electro
light
optical element
electrodes
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57231484A
Other languages
Japanese (ja)
Inventor
Nobue Tsujiuchi
辻内 伸恵
Yoneji Takubo
米治 田窪
Yasutaka Horibe
堀部 泰孝
Kazuo Eda
江田 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57231484A priority Critical patent/JPS59125073A/en
Publication of JPS59125073A publication Critical patent/JPS59125073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To detect simultaneously the potential of plural parts, and to make a detecting element small in size and low in its cost by forming plural pairs of opposed electrodes of a potential detecting side electrode and a ground side electrode, on an electro-optical element, and placing these electrodes so that a distance between the adjacent potential detecting side electrodes attains twice or more comparing with a distance between the opposed electrodes. CONSTITUTION:A light emitted from a fluorescent lamp 8 passes through a polarizer 12 and goes into an electro-optical element 9. 400 pairs of opposed electrodes are formed on the electro-optical element 9 by electrodes 10, 11, and when the surface of a detecting electrode train 18 is opposed in parallel to a linear area to be measured, voltage is applied between each electrode 10, therefore, when a light passes through in the electro-optical element 9 between the electrodes 10, 11, a double refraction is generated in accordance with the applied voltage, and the intensity of a light passing through an analyser 13 on which the polarizer 12 and an optical axis are placed so as to be orthogonal is varied. Its transmission light intensity is detected by a phototransistor of a photodetecting element 14, and the applied voltage is detected by a variation of the intensity of a light before and after transmitting the electro-optical element 9. In this case, when a distance between the adjacent electrodes 10, 10 is set to twice of a distance between the opposed electrodes 10, 11, a crosstalk between the adjacent electrodes 10, 10 can be nearly disregarded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複数箇所の電位を一度に検出することができ
る多点電位検知素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a multi-point potential sensing element that can detect potentials at multiple locations at once.

従来例の構成とその問題点 近年、複写機の発達に伴い、画質の改善が要求されてい
る。画質改善における問題点の一つは、印字むらである
。印字むらを無くすためには、複写機の感光体ドラム上
の電位分布が常に正しく制御されていなければならない
。そこで感光体ドラ曝 ム上の電位分布を測定し、フィードバック制御すること
か必要とされている。
Conventional Structure and Problems In recent years, with the development of copying machines, there has been a demand for improved image quality. One of the problems in improving image quality is uneven printing. In order to eliminate uneven printing, the potential distribution on the photoreceptor drum of the copying machine must be properly controlled at all times. Therefore, it is necessary to measure the potential distribution on the photoreceptor drum and perform feedback control.

従来の18位検知素子について第1図を用いて説明する
。(1)は光源、(2)は被測定電位を受ける検知側電
極、(3)は接地側電極、(4)は電気光学素子、(5
)は光検知素子、(6)は偏光子、(7)は偏光子(6
)の光軸と直交する洸軸を持つ検光子である。光源(1
)より偏光子(6)に入射した光は、直線偏光となり、
電気光学素子(4)に入る。電気光学素子(4)には、
対向電極を構成する検知側電極(2)と接地側電極(3
)とが設けられており、各々の電極(2) (3)の電
位差、即ち印加電圧によって複屈折が生ずる。その複屈
折量は印加電圧の大きさに依る。複屈折を起こした光は
検光子(7)を通って光検知素子(5)に入るが、検光
子(7)は、偏光子(6)と直交した光軸を持つため、
透過光量は印加電圧の大きさによって変化する。検知側
電極(2)を、被測定部分、例えば感光体ドラムに近づ
けて設けておけば、感光体ドラム上の電位は、感光体ド
ラムと検知側電極(2)との間で形成される静電容量と
、検知側電極(2)と接地側電aii (3)との間で
形成される静電容量とで静電分割された電圧が、電極(
2) (3)の間に加わる。従ってこの電圧による透過
光量の変化を測定することによって感光体ドラム上の電
位が求められる。しかしながら、上記のような構成にお
いては、複写機の感光体ドラム上の電位分布測定等の広
い領域の測定、或いは多数箇所の測定の場合、検知素子
が多数箇必要となり、高価格になると共に複雑な構造に
なるばかりでなく、特性のバラツキが生じるなどの欠点
がある。
A conventional 18th position detection element will be explained using FIG. 1. (1) is the light source, (2) is the detection side electrode that receives the potential to be measured, (3) is the ground side electrode, (4) is the electro-optical element, (5)
) is a photodetecting element, (6) is a polarizer, and (7) is a polarizer (6
) is an analyzer with a optical axis perpendicular to the optical axis of the Light source (1
) The light incident on the polarizer (6) becomes linearly polarized light,
It enters the electro-optical element (4). The electro-optical element (4) includes:
The sensing side electrode (2) and the grounding side electrode (3) that constitute the counter electrode
), and birefringence occurs due to the potential difference between the respective electrodes (2) and (3), that is, the applied voltage. The amount of birefringence depends on the magnitude of the applied voltage. The birefringent light passes through the analyzer (7) and enters the photodetector (5), but since the analyzer (7) has an optical axis perpendicular to the polarizer (6),
The amount of transmitted light changes depending on the magnitude of the applied voltage. If the detection side electrode (2) is provided close to the part to be measured, for example, the photoconductor drum, the potential on the photoconductor drum will depend on the static voltage formed between the photoconductor drum and the detection side electrode (2). The voltage that is electrostatically divided between the capacitance and the capacitance formed between the sensing side electrode (2) and the grounding side electrode (3) is applied to the electrode (
2) Add during (3). Therefore, by measuring the change in the amount of transmitted light due to this voltage, the potential on the photosensitive drum can be determined. However, with the above configuration, when measuring a wide area such as measuring the potential distribution on the photoreceptor drum of a copying machine, or when measuring multiple locations, a large number of sensing elements are required, making the system expensive and complicated. Not only does this result in a rough structure, but it also has drawbacks such as variations in characteristics.

また、1個の素子を用いて感光体ドラムに沿って走査す
る方法を用いた場合には、測定時間が長くなる、構造が
複雑になる等の問題点を有していた。
Furthermore, when a method of scanning along a photosensitive drum using one element is used, there are problems such as a long measurement time and a complicated structure.

発明の目的 本発明は上記従来の欠点を解消するもので、複数箇所の
電位を一度に検出することができる多点電位検知菓子を
提供することを目的とする。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and an object of the present invention is to provide a multi-point potential detection confectionery that can detect potentials at multiple locations at once.

発明の構成 上記目的を達するため、第1の発明にかかる多点電位検
知素子は、光源と、この光源からの光が偏光子を介して
入射される電気光学素子と、この電気光学素子を通過し
た光が前記偏光子の光軸と直交する光軸を有する検光子
を介して入射される光検知素子とを備え、前記電気光学
素子には、光の入射面及び出射面と直交する一対の面に
、電位検知側電極と接地側電極との対向電極を複数対形
成し、これら電極は、隣接する電位検知側電極間の距離
が対向電極間の距離の2倍以二上・になるように配置し
て、前記対向電極間に加わったtX位差に応じた透過光
量の変化により複数箇所の9位を同時に検出する構成と
したものである。
Structure of the Invention In order to achieve the above object, a multi-point potential sensing element according to a first invention includes a light source, an electro-optical element into which light from the light source is incident via a polarizer, and a light passing through the electro-optical element. the electro-optical element includes a light detecting element through which the light is incident through an analyzer having an optical axis perpendicular to the optical axis of the polarizer, and the electro-optical element has a pair of light detecting elements perpendicular to the light incident surface and the light exit surface. A plurality of pairs of opposing electrodes including a potential sensing side electrode and a grounding side electrode are formed on the surface, and these electrodes are arranged so that the distance between adjacent potential sensing side electrodes is at least twice the distance between the facing electrodes. The structure is such that position 9 at a plurality of locations can be detected simultaneously by changing the amount of transmitted light according to the tX position difference applied between the opposing electrodes.

また第2の発明は、光源と、この光源からの光が偏光子
を介して入射される電気光学素子と、この電気光学素子
を通過した光が前記偏光子の光軸と直交する光軸を有す
る検光子を介して入射される光検知素子とを備え、前記
電気光学素子には、光の入射面及び出射面に、電位検知
側電極と接地側電極との対向電極をそれぞれ複数対形成
し、これら電極は、同一面内に形成された電位検知側電
極間の距離が対向電極間の距離の2倍以上になるよ−う
に、かつ入射面に形成された対向電極対と出射面に形成
された対向電極対とが入射面及び出射面に垂直な方向か
ら見て互いに重なり合オ〕ず千鳥状をなすように、かつ
前記電気光学素子の入射面と出射面との間の厚みが前記
対向電極間の距離の2倍以上になるように配置して、前
記対向電極間に加わった電位差に応じた透過光量の変化
により複数箇所の電位を同時に検出する構成としたもの
である また第8の発明は、光源と、この光源からの光が偏光子
を介して入射される電気光学素子と、この電気光学素子
を通過した光が前記偏光子の光軸と直交する光軸を有す
る検光子を介して入射される光検知素子とを備え、前記
電気光学素子には、光の入射面及び出射面と直交する一
対の面のうち一方の面に接地側電極を形成して、前記電
気光学素子の前記一対の面のうち他方の面を被測定部分
に対向させたときに前記電気光学素子に加わる電位差に
応じた透過光量の変化により被測定部分の電位分布を同
時に検出する構成としたものである。
Further, a second invention includes a light source, an electro-optical element into which light from the light source is incident via a polarizer, and an optical axis of the light passing through the electro-optical element that is orthogonal to the optical axis of the polarizer. the electro-optical element includes a plurality of pairs of opposing electrodes, each of which is a potential detection side electrode and a ground side electrode, formed on a light incident surface and a light exit surface, respectively. , these electrodes are formed on the input surface and the output surface so that the distance between the potential detection side electrodes formed in the same plane is at least twice the distance between the opposing electrodes. The thickness between the incident surface and the output surface of the electro-optical element is such that the opposite electrode pairs formed in the electro-optical element are arranged in a staggered manner and do not overlap each other when viewed from the direction perpendicular to the incident surface and the output surface. The electrodes are arranged so that the distance between the opposing electrodes is at least twice the distance between the opposing electrodes, and the potentials at a plurality of locations are simultaneously detected by changing the amount of transmitted light according to the potential difference applied between the opposing electrodes. The invention provides a light source, an electro-optical element into which light from the light source enters through a polarizer, and an analyzer in which the light passing through the electro-optical element has an optical axis orthogonal to the optical axis of the polarizer. A ground side electrode is formed on one of a pair of surfaces orthogonal to the light incident surface and the light exit surface of the electro-optical element, and the electro-optic The electric potential distribution of the part to be measured is simultaneously detected by changing the amount of transmitted light according to the potential difference applied to the electro-optical element when the other of the pair of surfaces of the element is opposed to the part to be measured. It is.

実施例の説明 以下、本発明の実施例について、図面に基づいで説明す
る。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on the drawings.

第2図は第1の発明の実施例における多点電位検知素子
の斜視図で、(8月よ蛍光灯を用いた光源、(9)は電
気光学素子であり、ここでは酸素雰囲気中テ1150℃
で20時間ホットプレス焼成してIIEシタランタン(
La)を添加したジルコン酸鉛−チタン酸鉛(Pbo、
gg La114z ) (zro、4 Tio、6>
 0. ((PLZT、 12/40/60) )を用
いた。このPLZT焼結体の諸定数は、屈折率n = 
2.55 、自然複屈折△no ”’ 1.148 刈0 、ポッケルス定数r。= 1.1 x lo  
 (m/v)である。OQ(ロ)は電極、@に)はそれ
ぞれ偏光子と検光子であり、接着剤付の高分子系の偏光
膜でそれぞれの光軸が直交するように配設されている。
FIG. 2 is a perspective view of a multi-point potential detection element in an embodiment of the first invention, in which a light source using a fluorescent lamp (Aug. 9) is an electro-optical element; ℃
Hot press fired for 20 hours to make IIE Sitarantan (
Lead zirconate-lead titanate (Pbo,
gg La114z ) (zro, 4 Tio, 6>
0. ((PLZT, 12/40/60)) was used. The various constants of this PLZT sintered body are refractive index n =
2.55, natural birefringence △no ”' 1.148 moi 0, Pockels constant r. = 1.1 x lo
(m/v). OQ (b) is an electrode, and @) is a polarizer and an analyzer, respectively, which are polymeric polarizing films with adhesive and are arranged so that their optical axes are perpendicular to each other.

(ロ)はフォトトランジスタを並列に配設した光検知素
子である。前記電気光学素子(9)及び電極OQ卸は、
厚み90 μmの(PLZT 、 12/40/60 
) セラミック基板の両面にアルミニウム(Al)!極
を約1μmの厚さに蒸着し、常温で2 k v /mm
の電界を120分間印加して分極を行なった後、一方側
面の電極をフォトリソグラフィー技術を用いて電極幅2
0μ−2電極間隔180μmの電極パターンtこ加工し
て電極OQを形成し、続いてスクライバ−によって8c
mX90μmのチップに切出したものである。前記電気
光学素子(9L電極OO◇η、偏光子(2)、検光子(
2)から成るm位検知部Q′i)は、非常に小さく、こ
のままでは取扱いに不便である。そこで第8図に示すよ
うに、9a位検知部αηの表裏両面に樹脂板(ハ)OQ
を接着剤で貼り付けた。その時、各電極01の中央部か
らリード線(イ)を取り出し、予め樹脂板に)に形成さ
れた孔を通して、予め樹脂板(ト)の表面に形成された
、前記電極ぐ1と同じ形状の検知電極(ト)に接続した
(b) is a photodetecting element in which phototransistors are arranged in parallel. The electro-optical element (9) and electrode OQ wholesaler are:
90 μm thick (PLZT, 12/40/60
) Aluminum (Al) on both sides of the ceramic substrate! The electrode was deposited to a thickness of about 1 μm, and the thickness was 2 kv/mm at room temperature.
After polarization was performed by applying an electric field of
An electrode pattern with an electrode spacing of 180 μm is processed to form an electrode OQ, and then an 8c
It was cut into a chip of m×90 μm. The electro-optical element (9L electrode OO◇η, polarizer (2), analyzer (
2) is very small and is inconvenient to handle as it is. Therefore, as shown in Fig. 8, a resin plate (C)
was attached with adhesive. At that time, take out the lead wire (A) from the center of each electrode 01, pass it through the hole previously formed in the resin plate (), and connect it to the same shape as the electrode 1 previously formed on the surface of the resin plate (G). Connected to the sensing electrode (G).

また電極(ロ)からも同様にリード線(ロ)を取り出し
、樹脂板αQの孔を通して樹脂板(IQの外部に引き出
した。なお電極Qυは接地電極であり、導線(ロ)は接
地される。
Similarly, the lead wire (B) was taken out from the electrode (B) and pulled out to the outside of the resin plate (IQ) through the hole in the resin plate αQ.The electrode Qυ is a ground electrode, and the conductor (B) is grounded. .

次に動作を説明する。蛍光灯(8)より出た光は、偏光
子に)を通って電気光学素子(9)に入る。電気光学素
子(9)には、電極(11(ロ)によって400吋の対
向電極が形成されており、そこで検知電極列(至)表面
を、測定したい線状領域に平行に対向させると、各電極
al (11) l[に電圧が印加されるので、電極(
119間の電気光学素子(9)中を光が通過する際に印
加電圧に応じて複屈折を生じ、偏光子(ロ)と光軸が直
交するように配設されている検光子(至)を通過した光
の強度が変化する。その透過光強度を光検知素子Q4の
フォトトランジスタで検知し、電気光学素子(9)透過
前後の光の強度変化で印加電圧を検出する。ここで、隣
り合う電極α191間の距離を対向電極輪(11)間の
距離の2倍にしたことにより、隣り合う電極0101間
のクロストークがほぼ無視できた。
Next, the operation will be explained. The light emitted from the fluorescent lamp (8) passes through a polarizer and enters the electro-optical element (9). In the electro-optical element (9), a 400-inch counter electrode is formed by electrodes (11 (b)), and when the surface of the sensing electrode array (to) is opposed parallel to the linear area to be measured, each Since a voltage is applied to the electrode al (11) l[, the electrode (
When light passes through the electro-optical element (9) between 119 and 119, birefringence occurs depending on the applied voltage, and the analyzer (to) is arranged so that the optical axis is orthogonal to the polarizer (b). The intensity of the light that passes through changes. The intensity of the transmitted light is detected by the phototransistor of the light detection element Q4, and the applied voltage is detected by the change in the intensity of the light before and after passing through the electro-optical element (9). Here, by making the distance between adjacent electrodes α191 twice the distance between opposing electrode rings (11), crosstalk between adjacent electrodes 0101 could be almost ignored.

このように本実施例によれば、電気光学素子(9)上に
m極θQを緻密に且つ多数形成したことにより、線状領
域の電位分布を高解像度に検出することができる。
As described above, according to this embodiment, by densely forming a large number of m-poles θQ on the electro-optical element (9), the potential distribution in the linear region can be detected with high resolution.

次に第2の発明の実施例について説明する。第4図は第
2の発明の実施例における多点電位検知素子の電極を設
けた電気光学素子部分の斜視図で、(11〜勢はアルミ
ニウムからなる電極であり、電極列(財)(財)は互い
につながっている。また電極α1(1)及び電極に)(
ホ)はそれぞれ電極対を構成しており、素子表面に垂直
な方向から見て重ならないよう表裏で交互になるように
配設されている。(財)はiiの発明の実施例と同じ(
P L Z T 、 12/40/60 )セラミック
基板から切り出した電気光学素子で、90μmX8an
X90μmに切断しである。また、成極Qi m Uに
)は互いに同じ形状で、電極幅50μm、隣り合う′4
極間隔150μm、対向電極の間隔40μ−であり、表
面は端から′##1.極を形成してあり、裏面は端から
100μmのところから形成しである。そしてこのよう
にr「極Q〔4が形成された電気光学素子(ハ)に、第
1の究明の実施例と同様に偏光子及び検光子(図示せず
)を貼着して11位検知部(ハ)を得、これを第5図に
示すように、樹脂板に)(イ)に接着剤で貼り付ける。
Next, an embodiment of the second invention will be described. FIG. 4 is a perspective view of an electro-optical element portion provided with electrodes of a multi-point potential detection element in an embodiment of the second invention, in which (11 to 3) are electrodes made of aluminum; ) are connected to each other.Also, electrode α1(1) and electrode )(
E) constitute an electrode pair, and are arranged alternately on the front and back so that they do not overlap when viewed from the direction perpendicular to the element surface. (Foundation) is the same as the embodiment of the invention in ii (
P L Z T , 12/40/60) Electro-optical element cut out from a ceramic substrate, 90 μm x 8 an
It was cut to 90 μm. In addition, the polarization Qi m U) have the same shape, the electrode width is 50 μm, and the adjacent '4
The electrode spacing is 150 μm, the spacing between opposing electrodes is 40 μm, and the surface is '##1. A pole is formed, and the back surface is formed 100 μm from the end. Then, a polarizer and an analyzer (not shown) are attached to the electro-optical element (c) in which the r'pole Q [4] is formed in the same manner as in the first investigation example, and the 11th position is detected. Part (c) is obtained, and as shown in FIG. 5, this is attached to the resin plate (a) with adhesive.

(ハ)は電気光学素子(ハ)の底面の電極シ◇から取り
出したリード線で、樹脂板に)に形成された孔を通して
樹脂板(ロ)の外部に引き出され、接地される。また(
二)は電気光学素子(ハ)の電極01に)かう取り出し
たリード線で、これらリード線(ニ)は、電気光学素子
■の両面の電極Ql(イ)から交互に100μmの間隔
で素子上回を通って素子の厚み方向の中央辺引き出され
、さらに素子上直に垂直にまっすぐ樹脂板に)の孔を通
って上方に引き出されで、樹脂板(2)の表面に形成さ
れた検知電極唇に接続されている。この検知電極に)は
それぞれの電極が50μm x 50μmで、隣り合う
電極間隔が50fimの電極列であり、それぞれの中心
部にリード線幅)が接続されている。ここで、片面のみ
に電極を設ける場合には、隣り合う9JttiTii 
II I¥LAをクロストークが無視できるように長く
取らなければならないこと、また、加工時の機械的精度
により、電極幅、電極間隔等に縮小限度があること等か
ら、解像度に限界があったが、本実施例のように、表裏
面の厚みを対向する電極間隔の2倍にして表裏両面に成
極を設けることによりクロストークが無視できるので、
片面に電極を設けた時の2倍の解像度が得られる。
(C) is a lead wire taken out from the electrode shield ◇ on the bottom of the electro-optical element (C), which is pulled out to the outside of the resin plate (B) through a hole formed in the resin plate (), and is grounded. Also(
2) are the lead wires taken out to the electrode 01 of the electro-optical element (c), and these lead wires (d) are placed on the element alternately at intervals of 100 μm from the electrodes Ql (a) on both sides of the electro-optical element (2). The detection electrode formed on the surface of the resin plate (2) is drawn out through the hole at the center of the element in the thickness direction of the element, and then pulled out upward through the hole in the resin plate (2) perpendicularly above the element. attached to the lips. This sensing electrode) is an electrode row in which each electrode is 50 μm x 50 μm and the interval between adjacent electrodes is 50 fim, and a lead wire width (width) is connected to the center of each electrode. Here, when providing electrodes only on one side, adjacent 9JttiTii
II I\LA had to be long enough to ignore crosstalk, and there was a limit to the reduction of electrode width, electrode spacing, etc. due to mechanical precision during processing, so there was a limit to resolution. However, as in this example, crosstalk can be ignored by making the thickness of the front and back surfaces twice the distance between opposing electrodes and providing polarization on both the front and back surfaces.
Twice the resolution can be obtained when electrodes are provided on one side.

このように本実施例では、高解像度に線状領域の電位分
布を測定することができる。
In this way, in this embodiment, the potential distribution in the linear region can be measured with high resolution.

次に第8の発明の実施例について説明する。第6図は第
8の発明の実施例における電位検知部の斜視図で、0◇
は第1の発明の実施例と同じ(PLZT、 12/40
/60 )セラミック基板から切り出した電気光学素子
で、90μmX8anX90μmの大きさである。(イ
)はアルミニウムの電極で、電気光学素子6])の底面
にアルミニウムを1μm厚蒸着したものである。なお電
気光学素子6◇には、第1の発明の実施例と同様に、偏
光子及び検光子(図示せず)か貼着されている。(至)
は電気光学素子Opの表面であり、この面を被測定部に
平行に対向させることによって電位を検知する。■は電
気光学素子09の電極(至)形成面に接着剤で貼りつけ
た樹脂板である。
Next, an embodiment of the eighth invention will be described. FIG. 6 is a perspective view of the potential detection section in the embodiment of the eighth invention, and shows 0◇
is the same as the embodiment of the first invention (PLZT, 12/40
/60) An electro-optical element cut out from a ceramic substrate, with dimensions of 90 μm x 8 an x 90 μm. (A) is an aluminum electrode in which aluminum is deposited to a thickness of 1 μm on the bottom surface of the electro-optical element 6]. Note that a polarizer and an analyzer (not shown) are attached to the electro-optical element 6◇, as in the embodiment of the first invention. (To)
is the surface of the electro-optical element Op, and the electric potential is detected by making this surface face parallel to the part to be measured. (2) is a resin plate attached to the electrode (to) forming surface of the electro-optical element 09 with an adhesive.

(ホ)は電極9ψから取り出したリード線で、樹脂板←
やに形成された孔を通して樹脂板−の外部に引き出され
、接地されている。ここで、本実施例でlよ成極が接地
側電極(功のみであり、それと対向する表面を被測定部
に平行に対向させろことにより、電気光学素子69の、
誘電体であるという性質によって、対向する被測定部の
電位分布に応じて誘電体の表面に電荷が生じ、接地側電
極(2)との間に電圧が印加され、電位が検出できる。
(E) is the lead wire taken out from the electrode 9ψ, and the resin plate ←
It is pulled out to the outside of the resin plate through a hole formed in the resin plate and grounded. Here, in this embodiment, the polarization is only the ground side electrode, and the surface facing it is made to face parallel to the part to be measured, so that the electro-optical element 69
Due to the property of being a dielectric material, an electric charge is generated on the surface of the dielectric material according to the potential distribution of the opposing measurement target part, and a voltage is applied between the dielectric material and the ground electrode (2), and the potential can be detected.

このように本実施例では、線状領域の電位分布を隙間な
く連続的に測定することができる。
In this way, in this embodiment, the potential distribution in the linear region can be measured continuously without any gaps.

発明の詳細 な説明したように第1の発明によれば、複数箇所の電位
を一度に検出するという優れた効果が得βれる。その効
果により、複数箇所の電位を1素子で測定できるので、
検知素子の小型化、低コスト化、及び測定時間の短縮化
という効果が得られる。
As described in detail, according to the first invention, an excellent effect of detecting potentials at a plurality of locations at once can be obtained. Due to this effect, the potential of multiple locations can be measured with one element, so
The effects of reducing the size of the sensing element, lowering the cost, and shortening the measurement time can be obtained.

さらに@2の発明によれば、片面だけに電極対を配設し
た場合の2倍の解像度で、複数箇所の電位を一度に検出
できるという効果が得られる。
Furthermore, according to the invention of @2, it is possible to detect potentials at multiple locations at once with twice the resolution as when electrode pairs are provided on only one side.

さらに第8の発明によれば、被測定部のt1位分布を隙
間なく連続的に測定できるという効果が得られる。
Furthermore, according to the eighth invention, it is possible to obtain the effect that the t1 position distribution of the part to be measured can be measured continuously without any gaps.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1・ 光源と、この光源からの光が偏光子を介して入射
される電気光学素子と、この電気光学素子を通過した光
が前記偏光子の光軸と直交する光軸を有Tる検光子を介
して入射される光°検知素子とを備え、前記電気光学素
子には、光の入射面及び出射面と直交する一対の面に、
電位検知側電極と接地側電極との対向電極を複数対形成
し、これら電極は、隣接する電位検知側電極間の距離が
対向電極間の距離の2倍以上になるように配置して、前
記対向wl極間に加わった電位差に応じた透過光量の変
化により複数箇所の電位を同時に検出する構成とした多
点電位検知素子。 2、光源と、この光源からの光が偏光子を介して入射さ
れる電気光学素子と、この電気光学素子を通過した光が
前記偏光子の光軸と直交する光軸を有する検光子を介し
て入射される光検知素子とを備え、前記電気光学素子に
は、光の入射面及び出射面に、電位検知側電極と接地側
電極との対向電極をそれぞれ複数対形成し、これら電極
は、同一面内に形成された電位検知側電極間の距離が対
向電極間の距離の2倍以上(こなるように、かつ入射面
に形成された対向電極対と出射面に形成された対向電極
対とが入射面及び出射面に垂直な方向から見て互いに重
なり合わず千鳥状をなすように、かつ前記電気光学素子
の入射面と出射面との間の厚みが前記対向電極間の距離
の2値以上Eこなるように配置して、前記対向電極間に
加わった電位差に応じた透過光量の変化により複数箇所
の電位を同時に検出する構成とした多点電位検知素子。 8、 光源と、この光源からの光が偏光子を介して入射
される電気光学素子と、この電気光学素子を通過した光
が前記偏光子の光軸と直交する光軸を有する検光子を介
して入射される光検知素子とを備え、前記電気光学素子
には、光の入射面及び出射面と直交する一対の面のうち
一方の面に接地側電極を形成して、前記電気光学素子の
前記一対の面のうち他方の面を被測定部分着こ対向させ
たときに前記電気光学素子に加わる位検知素子。
[Claims] 1. A light source, an electro-optical element into which light from the light source is incident via a polarizer, and an optical axis of the light that has passed through the electro-optical element, which is perpendicular to the optical axis of the polarizer. The electro-optical element includes a pair of surfaces perpendicular to the light incident surface and the light exit surface, and a light detecting element that is incident on the light incident through an analyzer having T.
A plurality of pairs of opposing electrodes including a potential sensing side electrode and a grounding side electrode are formed, and these electrodes are arranged so that the distance between adjacent potential sensing side electrodes is at least twice the distance between the opposing electrodes, and A multi-point potential detection element configured to simultaneously detect potentials at multiple locations by changing the amount of transmitted light according to the potential difference applied between opposing wl poles. 2. A light source, an electro-optical element into which light from the light source is incident via a polarizer, and an analyzer having an optical axis perpendicular to the optical axis of the polarizer, in which the light passing through the electro-optical element is incident. the electro-optical element has a plurality of pairs of opposing electrodes each including a potential detection side electrode and a ground side electrode formed on a light incident surface and a light exit surface, and these electrodes include: The distance between the potential detection side electrodes formed in the same plane is at least twice the distance between the opposing electrodes (and the pair of opposing electrodes formed on the incident surface and the pair of opposing electrodes formed on the exit surface) and do not overlap each other when viewed from the direction perpendicular to the entrance surface and the exit surface, and form a staggered pattern, and the thickness between the entrance surface and the exit surface of the electro-optical element is twice the distance between the opposing electrodes. A multi-point potential detection element configured to simultaneously detect potentials at a plurality of locations by changing the amount of transmitted light according to the potential difference applied between the opposing electrodes by arranging the potentials so that the potential difference is greater than or equal to a value of E.8. A light detection device in which light from a light source enters through an electro-optical element via a polarizer, and light that passes through the electro-optical element enters through an analyzer having an optical axis perpendicular to the optical axis of the polarizer. The electro-optical element includes a ground-side electrode formed on one of a pair of surfaces orthogonal to a light incident surface and an exit surface, and a ground-side electrode is formed on one of the surfaces of the pair of surfaces of the electro-optical element. A detection element that is applied to the electro-optical element when the other surface faces the part to be measured.
JP57231484A 1982-12-29 1982-12-29 Multipoint potential detecting element Pending JPS59125073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57231484A JPS59125073A (en) 1982-12-29 1982-12-29 Multipoint potential detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57231484A JPS59125073A (en) 1982-12-29 1982-12-29 Multipoint potential detecting element

Publications (1)

Publication Number Publication Date
JPS59125073A true JPS59125073A (en) 1984-07-19

Family

ID=16924211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57231484A Pending JPS59125073A (en) 1982-12-29 1982-12-29 Multipoint potential detecting element

Country Status (1)

Country Link
JP (1) JPS59125073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478168A (en) * 1987-09-18 1989-03-23 Hamamatsu Photonics Kk Multi-channel voltage detecting device
CN102466751A (en) * 2010-11-03 2012-05-23 北京普源精电科技有限公司 Current measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478168A (en) * 1987-09-18 1989-03-23 Hamamatsu Photonics Kk Multi-channel voltage detecting device
CN102466751A (en) * 2010-11-03 2012-05-23 北京普源精电科技有限公司 Current measuring apparatus

Similar Documents

Publication Publication Date Title
US4835384A (en) Device and method for determining displacement using colored transparent spheres
US7078676B2 (en) Displacement sensor apparatus
JPS59125073A (en) Multipoint potential detecting element
EP0294816B1 (en) Voltage detecting device
CN1052304C (en) Method of measure of voltage and/or intensity of field and sensor used for same
US3814520A (en) Method of, and apparatus for gauging, inspecting or measuring physical properties of objects
CN206038152U (en) Polarized interference spectral imaging system
US2000379A (en) Method of and apparatus for the formation of images
JPS56137247A (en) Multipoint simultaneous measuring instrument
US3960440A (en) Light optic data handling system
KR100345345B1 (en) Electro-optical converter and it's sensing method
KR102140732B1 (en) Method for deciding x-ray image of liquid crystal x-ray detector
US4482215A (en) Mechanical interface for proximity coupled electro-optic devices
JPS63131075A (en) Reading of electrostatic image
JPH0354284B2 (en)
JPH10260212A (en) Photoelectric field sensor
JP2997742B2 (en) Liquid crystal electric field sensor
JPS58117768A (en) Optical printer
JPH0690231B2 (en) Optical voltage sensor
RU1772251C (en) Knitted cloth structure controlling device
RU1789967C (en) Device for optical recording and imaging information
SU860123A1 (en) Method of optical recording and reproduction
JPS61145527A (en) Optical shutter element
JPH0137698B2 (en)
JPS6123458A (en) Picture information reader