JPH0690231B2 - Optical voltage sensor - Google Patents

Optical voltage sensor

Info

Publication number
JPH0690231B2
JPH0690231B2 JP60291638A JP29163885A JPH0690231B2 JP H0690231 B2 JPH0690231 B2 JP H0690231B2 JP 60291638 A JP60291638 A JP 60291638A JP 29163885 A JP29163885 A JP 29163885A JP H0690231 B2 JPH0690231 B2 JP H0690231B2
Authority
JP
Japan
Prior art keywords
voltage
electro
optical
light
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60291638A
Other languages
Japanese (ja)
Other versions
JPS62150173A (en
Inventor
澄子 森崎
石塚  訓
修 鎌田
和郎 戸田
光一 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60291638A priority Critical patent/JPH0690231B2/en
Publication of JPS62150173A publication Critical patent/JPS62150173A/en
Publication of JPH0690231B2 publication Critical patent/JPH0690231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気光学効果を用いて複数個の被測定電圧の
加減演算を光学的に行なう光電圧センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical voltage sensor that optically performs an addition / subtraction calculation of a plurality of measured voltages using an electro-optical effect.

従来の技術 従来、複数個の被測定電圧の加減演算を行なうために
は、複数箇所に光電圧センサを設置し、各センサからの
信号を演算器に入力し、電気的に演算処理していた。こ
のため、複数箇所の演算を行なう場合、多くのセンサが
必要となり、また演算器も多くなる。
2. Description of the Related Art Conventionally, in order to perform addition and subtraction calculation of a plurality of measured voltages, optical voltage sensors are installed at a plurality of locations, signals from each sensor are input to a calculator, and calculation processing is performed electrically. . For this reason, when performing calculations at a plurality of locations, many sensors are required and the number of calculators also increases.

また、例えば、特開昭60−102566号公報に示されている
ように、第3図のような構成となっている。
Further, for example, as shown in Japanese Patent Laid-Open No. 60-102566, the structure is as shown in FIG.

すなわち、発光部1から放射された光は光ファイバ2,レ
ンズ3,偏光子4を透過し、直線偏光の平行光となり、1/
4波長板5で円偏光となる。この光は、各々に被測定電
圧V1,V2,V3を印加した電圧光学素子6A,6B,6Cを通過し、
V1,V2,V3の電圧に対応した位相変調を受け、楕円偏光と
なる。この楕円偏光は、検光子7により直角2成分の光
に分離され、各々集光レンズ8,9により受光素子12,13に
導かれ、検出回路14により、被測定電圧V1,V2,V3の加減
演算を行なうものである。
That is, the light emitted from the light emitting unit 1 is transmitted through the optical fiber 2, the lens 3 and the polarizer 4, and becomes a linearly polarized parallel light.
It becomes circularly polarized light by the four-wave plate 5. This light passes through the voltage optical elements 6A, 6B, 6C to which the measured voltages V 1 , V 2 , and V 3 are applied,
It undergoes phase modulation corresponding to the voltages of V 1 , V 2 , and V 3 and becomes elliptically polarized light. This elliptically polarized light is separated into two right-angled light components by an analyzer 7, guided to light-receiving elements 12, 13 by condenser lenses 8, 9, respectively, and detected by a detection circuit 14 by measuring voltages V 1 , V 2 , V 2 . This is to perform the addition / subtraction operation of 3 .

発明が解決しようとする問題点 しかし、このような構成では、第2図に示すように、電
気光学素子6A,6B,6C,は各々空気を介して光学的に接続
されているため、端面が空気によるダストや結露現象な
どにより汚染され、光出力の損失増加の原因となり、こ
れに伴ない感度の低下が生じる。
However, in such a configuration, as shown in FIG. 2, since the electro-optical elements 6A, 6B, 6C, are optically connected via air, the end faces are Contamination is caused by dust from the air, dew condensation, etc., which causes an increase in the loss of light output, which causes a decrease in sensitivity.

また、各々の電気光学素子の結晶軸と透過光線との光学
的配置を同一に揃えることが困難なため、各々の電極で
の変調度の設定が困難である。
Further, since it is difficult to make the optical axes of the crystal axes of the respective electro-optical elements and the transmitted light rays the same, it is difficult to set the degree of modulation at each electrode.

問題点を解決するための手段 本発明は上記の問題点を解決するために、1個の電気光
学素子に、光の透過方向に連続的に複数個の電極を直列
配置し、各々の電極に独立に被測定電圧を印加し、各々
の被測定電圧の加減演算を光学的に行なうものである。
Means for Solving the Problems In order to solve the above problems, the present invention has one electro-optical element in which a plurality of electrodes are continuously arranged in series in the light transmitting direction, and each electrode is arranged in series. The voltages to be measured are independently applied, and each voltage to be measured is optically adjusted.

作用 本発明は、上記の方法により、複数の電極間で、電気光
学素子の端面が空気によるダストや結露現象などにより
汚染され、光出力の損失が増加するようなことはなくな
り、また、複数の電極位置において、電気光学素子の結
晶軸と、透過光線との光学的配置が同一であるため、各
々の電極での変調度設定が容易となる。
Effect The present invention prevents the end surface of the electro-optical element from being contaminated by dust or dew condensation phenomenon due to the air between the plurality of electrodes and increasing the loss of light output by the method described above. Since the optical axes of the crystal axes of the electro-optical element and the transmitted light rays are the same at the electrode positions, it is easy to set the degree of modulation at each electrode.

実施例 第1図に、本発明の一実施例として、2箇所からの被測
定電圧が存在する場合について示す。
EXAMPLE FIG. 1 shows an example of the present invention in which there are measured voltages from two locations.

半導体レーザ等からなる発光部1からの出射光は、光フ
ァイバ2,レンズ3,偏光子4を透過し、直線偏光の平行光
となり、1/4波長板5で円偏光となる。この光は電気光
学素子6を通過するが、この電気光学素子には2つの電
極15A,15Bがついており、各々に被測定電圧V1,V2が印加
されるので、光線は、V1,続いてV2の電圧に対応した位
相変調を受け楕円偏光となり、電圧V1,V2を加減演算し
た位相変化の情報を有する。この楕円偏光は、検光子7
により直角2成分の光に分離され、各々集光レンズ8,9
により受光素子12,13に導かれ、検出回路14により、被
測定電圧V1;V2の加減電圧が演算処理される。
The light emitted from the light emitting unit 1 made of a semiconductor laser or the like passes through the optical fiber 2, the lens 3 and the polarizer 4, becomes a linearly polarized parallel light, and becomes a circularly polarized light at the 1/4 wavelength plate 5. Although this light passes through the electro-optical element 6, this electro-optical element has two electrodes 15A and 15B, and the measured voltages V 1 and V 2 are applied to each of them, so that the light beam is V 1 Subsequently, it undergoes phase modulation corresponding to the voltage of V 2 to become elliptically polarized light, and has information on the phase change obtained by adding and subtracting the voltages V 1 and V 2 . This elliptically polarized light is
Is separated into two light components at right angles by the condenser lenses 8 and 9, respectively.
Is guided to the light receiving elements 12 and 13, and the detection circuit 14 calculates the added / subtracted voltage of the measured voltage V 1 ; V 2 .

本実施例では、電気光学素子にLiNbO3の単結晶を用い、
電極長は、両方とも1.5mmで、電極間は、1mmである。こ
の電極間隔で2KVの電圧をかけても、電極間放電は見ら
れなかった。
In this embodiment, a single crystal of LiNbO 3 is used for the electro-optical element,
The electrode lengths are both 1.5 mm and the distance between the electrodes is 1 mm. Even if a voltage of 2 KV was applied at this electrode interval, no inter-electrode discharge was observed.

第2図に、本実施例の測定結果を示す。FIG. 2 shows the measurement results of this example.

第2図aは、電極15Aのみに電圧V1を印加した時のもの
で、±200Vの印加電圧に対応して±0.125の変調度m1
得ている。一方、第2図bは、電極15Bのみに電圧V1
は逆電圧の電圧V2を印加した場合で、±200Vの印加電圧
に対応して±0.125の変調度m2を得ている。
FIG. 2a shows the case where the voltage V 1 is applied only to the electrode 15A, and the modulation degree m 1 of ± 0.125 is obtained corresponding to the applied voltage of ± 200V. On the other hand, FIG. 2B shows the case where the voltage V 2 opposite to the voltage V 1 is applied only to the electrode 15B, and the modulation degree m 2 of ± 0.125 is obtained corresponding to the applied voltage of ± 200V.

次に、第2図cは、電極15A,15Bに、同時に同じ大きさ
の逆電圧を印加したものであるが、電圧V1,V2を加減演
算した値,0Vに対応して、変調度m3は0で一定である。
また、さらに第2図dは、電極15A,15Bに同時に同じ大
きさで同方向の電圧を印加した場合であるが、電圧V1,V
2を加減演算した値±400Vに対応して、±0.25の変調度m
4を得た。
Next, FIG. 2 c, the electrodes 15A, the 15B, but is obtained by applying a reverse voltage at the same time as large as a value obtained by subtraction operation the voltages V 1, V 2, corresponding to 0V, and the degree of modulation m 3 is 0 and constant.
Still FIG. 2 d, the electrode 15A, is a case of applying the same direction of the voltage at the same time with the same size to 15B, a voltage V 1, V
Corresponding to a value of ± 400 V that is calculated by adding or subtracting 2 , a modulation factor of ± 0.25 m
Got four .

以上の様に、各々の電極に独立に印加した被測定電圧の
加減演算が、電気光学素子内で光学的に行なわれて、光
学素子6からの出射光に位相情報として取り出せること
が確認できた。
As described above, it was confirmed that the voltage-under-measurement applied independently to each electrode was optically adjusted in the electro-optical element, and the light emitted from the optical element 6 could be extracted as phase information. .

なお、本実施例で、各々不規則に変化するAC電圧を印加
した場合でも、同様の結果が得られた。
In addition, in the present example, similar results were obtained even when an AC voltage that changes irregularly was applied.

なお、本実施例では、電気光学素子にLiNbO3を用いた
が、同様の効果を有する素子であれば何でも良い。
Although LiNbO 3 is used for the electro-optical element in this example, any element having the same effect may be used.

なお、本実施例では、電極数を2としたが、何個であっ
ても良い。
Although the number of electrodes is two in this embodiment, any number may be used.

なお、本実施例では、電極長を等しくしたが、電極長を
各々異ならせることにより、各々の変調度を調整するこ
とが可能である。
Although the electrode lengths are made equal in the present embodiment, it is possible to adjust each modulation degree by making the electrode lengths different.

なお、本実施例では、単一の電極光学素子を用いてお
り、それが望ましいが、複数個の電気光学素子を一体化
したものであってもかまわない。
In this embodiment, a single electrode optical element is used, which is desirable, but a plurality of electro-optical elements may be integrated.

発明の効果 以上述べてきた様に、本発明によれば、複数の電気光学
素子が空気を介して分離していないので、電気光学素子
の端面が空気によるダストや結露現象などにより汚染さ
れ、光出力の損失が増加するようなことはなくなり、ま
た、複数の電気光学素子間で結晶軸を合わせるという作
業を省け、さらに、各々の電極での変調度設定が容易と
なる。
As described above, according to the present invention, since the plurality of electro-optical elements are not separated by the air, the end surface of the electro-optical element is contaminated by dust or dew condensation phenomenon caused by the air, The output loss will not increase, the work of aligning the crystal axes between the plurality of electro-optical elements can be omitted, and the modulation degree can be easily set for each electrode.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例における光電圧センサの構
成図、第2図は本実施例センサの特性図、第3図は従来
における光電圧センサの構成図である。 1……発光部、2,10,11……ファイバ、3,8,9……レン
ズ、4,7……偏光子・検光子、5……1/4波長板、6……
電気光学素子、12,13……受光素子、14……検出回路、1
5A,15B……電極。
FIG. 1 is a configuration diagram of an optical voltage sensor according to an embodiment of the present invention, FIG. 2 is a characteristic diagram of the sensor of this embodiment, and FIG. 3 is a configuration diagram of a conventional optical voltage sensor. 1 …… Light emitting part, 2,10,11 …… Fiber, 3,8,9 …… Lens, 4,7 …… Polarizer / analyzer, 5 …… 1/4 wavelength plate, 6 ……
Electro-optical element, 12, 13 …… Light receiving element, 14 …… Detection circuit, 1
5A, 15B ... Electrodes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戸田 和郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 金山 光一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Toda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Koichi Kanayama, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】透過する光の位相を、印加電圧に応じて変
調する機能を有する電気光学素子に、光の透過方向に連
続的に複数個の電極を直列配置し、各々の前記電極に各
々独立に被測定電圧を印加し、各々の前記被測定電圧の
加減演算を光学的に行なうように構成した光電圧セン
サ。
1. An electro-optical element having a function of modulating the phase of transmitted light according to an applied voltage, a plurality of electrodes are continuously arranged in series in a light transmitting direction, and each of the electrodes is arranged in series. An optical voltage sensor configured to independently apply a voltage to be measured and optically perform an addition / subtraction calculation of each voltage to be measured.
JP60291638A 1985-12-24 1985-12-24 Optical voltage sensor Expired - Lifetime JPH0690231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291638A JPH0690231B2 (en) 1985-12-24 1985-12-24 Optical voltage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291638A JPH0690231B2 (en) 1985-12-24 1985-12-24 Optical voltage sensor

Publications (2)

Publication Number Publication Date
JPS62150173A JPS62150173A (en) 1987-07-04
JPH0690231B2 true JPH0690231B2 (en) 1994-11-14

Family

ID=17771540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291638A Expired - Lifetime JPH0690231B2 (en) 1985-12-24 1985-12-24 Optical voltage sensor

Country Status (1)

Country Link
JP (1) JPH0690231B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320473A (en) * 1988-06-22 1989-12-26 Anritsu Corp Electrooptic effect element and instrument for measuring waveform of electric signal using it

Also Published As

Publication number Publication date
JPS62150173A (en) 1987-07-04

Similar Documents

Publication Publication Date Title
EP0254396B1 (en) A direct current magneto-optic current transformer
US3197643A (en) Electro-optical plane aligning apparatus
EP0294816B1 (en) Voltage detecting device
US4232264A (en) Arrangement for the magneto-optical measurement of currents
JPH0690231B2 (en) Optical voltage sensor
EP0294815B1 (en) Voltage detecting device
CA2089943A1 (en) Optical magnetic field sensor
JPH06100619B2 (en) Optical fiber sensor
JPH09251036A (en) Optical electric-field sensor and transformer for optical instrument using sensor thereof
EP0307936B1 (en) Multi-channel voltage detector
JP2580443B2 (en) Optical voltage sensor
JPH0432989B2 (en)
JPH0137698B2 (en)
KR860001475B1 (en) Monitoring device for an electric device of vacuum type
JPH056539Y2 (en)
SU1541523A2 (en) Device for measuring intensity
JPH0133807B2 (en)
JPH0212852A (en) Integrated circuit diagnosing apparatus
JPS61165665A (en) Apparatus for detecting voltage electric field
SU807162A1 (en) Refractometric detector for liquid chromatography
JPH0352582B2 (en)
JPS62254070A (en) Optical fiber-applied voltage sensor
JPH0619384B2 (en) Optical fiber type voltage and electric field measuring device
Duffield et al. Adaptation of a Recording Spectropolarimeter to Measure Circular Dichroism
JPS63144263A (en) Optical voltmeter