JPS59123537A - Dehydrogenation reaction catalyst containing iron oxide, chromium oxide and lanthanum oxide and production thereof - Google Patents

Dehydrogenation reaction catalyst containing iron oxide, chromium oxide and lanthanum oxide and production thereof

Info

Publication number
JPS59123537A
JPS59123537A JP58237157A JP23715783A JPS59123537A JP S59123537 A JPS59123537 A JP S59123537A JP 58237157 A JP58237157 A JP 58237157A JP 23715783 A JP23715783 A JP 23715783A JP S59123537 A JPS59123537 A JP S59123537A
Authority
JP
Japan
Prior art keywords
potassium
catalyst
oxide
weight
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58237157A
Other languages
Japanese (ja)
Other versions
JPH0437736B2 (en
Inventor
フイリツプ・クルテイ
ミツシエル・ルセル
フイリツプ・ヴアラン
ジヤン・フランソワ・ル・パ−ジユ
セルジユ・ルポルク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of JPS59123537A publication Critical patent/JPS59123537A/en
Publication of JPH0437736B2 publication Critical patent/JPH0437736B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、脱水素反応特に低分子量の(例え(例えばエ
チルベンゼンまたはジエチルベンゼン)のビニル芳香族
炭化水素(例えばスチレンまたはジビニルベンゼン)へ
の脱水素反応番ご用いられる新規触媒に関する。本発明
はまたこれらの触媒およびこれらを使用する脱水素の方
法(こも関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides novel catalysts for dehydrogenation, particularly for the dehydrogenation of low molecular weight (e.g. ethylbenzene or diethylbenzene) to vinyl aromatic hydrocarbons (e.g. styrene or divinylbenzene). The present invention also relates to these catalysts and methods of dehydrogenation using them.

上記炭化水素の脱水素(こおいて、炭化水素、好ましく
は高い割合の水蒸気を添加したもの(1〜30モルH2
0/炭化水素モル)を、1つの触媒上に、触媒1容番こ
つき液体炭化水素の毎時の体積速度、0.05〜5、好
ましくは01〜l容(TPN)で、約450〜750℃
の温度で通過させることが知られている。
Dehydrogenation of the above hydrocarbons, preferably with the addition of a high proportion of water vapor (1 to 30 mol H2
0/mole of hydrocarbons) on one catalyst at a volume rate of 0.05 to 5, preferably 0.01 to 1 volume (TPN) of liquid hydrocarbon per hour per volume of catalyst, about 450 to 750. ℃
It is known that it can be passed at a temperature of .

従来技術において、例えばブテンのようなオレフィン系
炭化水素の(ブタジェンへの)脱水素用または例えばエ
チルベンゼンのようなアルキル芳香族炭化水素の(スチ
レンへの)脱水素用触媒(こついて記載されている。こ
れらの触媒は、酸化鉄、カリウム化合物(酸化物または
炭酸塩)、酸化バナジウム、場合lこよっては酸化クロ
ムの大きな重量割合と、例えばアルミニウム、カドミウ
ム、銅、′マグネシウム、マンガン、ニラチル、稀土類
金属、ウラニウムおよび亜鉛のような金属の少なくとも
1つの追加酸化物の小さな割合(0,01〜10重量%
)を含む。このような触媒は特にフランス特許第238
7200号lこ記載されている。この特許は実質的に米
国特許第4.L43083号および同4152300号
に対応する。これらの特許において、稀土類金属は原子
番号58〜71(両端の番号を含む)すなわちセリウム
がらルテニウムまでの金属であると定義されている。実
施例において使用される稀土類金属は、セリウム、プラ
セオジムおよびネオジムである。
In the prior art, catalysts have been described for the dehydrogenation of olefinic hydrocarbons such as butene (to butadiene) or for the dehydrogenation of alkylaromatic hydrocarbons such as ethylbenzene (to styrene). These catalysts contain large weight proportions of iron oxides, potassium compounds (oxides or carbonates), vanadium oxides, and even chromium oxides, for example aluminum, cadmium, copper, magnesium, manganese, niratil, rare earths. A small proportion (0.01-10% by weight) of at least one additional oxide of metals such as metals such as uranium and zinc
)including. Such catalysts are particularly described in French Patent No. 238
No. 7200 describes this. This patent is substantially U.S. Pat. Corresponds to L43083 and L4152300. In these patents, rare earth metals are defined as metals with atomic numbers 58 to 71 (inclusive), ie, metals from cerium to ruthenium. The rare earth metals used in the examples are cerium, praseodymium and neodymium.

ところでこの種の触媒における稀土類金属として、(原
子番号57の)ランタンを用いるのが有利であることが
今や発見された。これはより低いコストで(特Oこエチ
ルベンゼンからスチレンへの)脱水素用触媒こ対しての
触媒特性の改良をもたらす。
It has now been found, however, that it is advantageous to use lanthanum (atomic number 57) as rare earth metal in catalysts of this type. This results in improved catalyst properties over catalysts for dehydrogenation (especially of ethylbenzene to styrene) at lower cost.

米国特許第41’ 34858号(こ実質的に対応する
フランス特許第2270003号には、同様に、主とし
て酸化鉄、酸化クロムおよび酸化カリウムをベースとす
る脱水素触媒の製造における粘土質材料の使用番こつい
て記載されている。適当な温度、一般に850〜110
0℃の温度lこおける熱C 活介<際して、粘土質材料は酸化カリウムと結びついて
アルミニウムとカリウムのケイ酸複塩(より詳しくはカ
リ霞石)を形成する。この方法は特に触媒の充填密度を
減じることかできる。
U.S. Pat. No. 41'34858 (substantially corresponding French patent No. 2270003) also describes the use of clay materials in the production of dehydrogenation catalysts based primarily on iron oxides, chromium oxides and potassium oxides. Suitable temperature, generally 850-110
At a temperature of 0° C., the clay material combines with potassium oxide to form a silicate double salt of aluminum and potassium (more specifically, potash nepheline). This method makes it possible in particular to reduce the packing density of the catalyst.

本発明の主な目的は、従来技術1こ記載された触媒【こ
対して増加した活性および/または選択性を示す改良さ
れた触媒ζこつG)で記載することである。この触媒寿
命は、既知の触媒の寿命と実質的(こ同じか、しばしば
優れている。
The main object of the present invention is to address the prior art with improved catalysts that exhibit increased activity and/or selectivity compared to the described catalysts. This catalyst life is substantially equal to, and often superior to, that of known catalysts.

本発明のもう1つの目的は前記触媒の調製方法を記載す
ることである。
Another object of the invention is to describe a method for the preparation of said catalyst.

本発明の今1つの目的は、炭化水素の脱水素反応へのこ
れらの触媒の使用(こついて記載することである。
Another object of the present invention is to describe the use of these catalysts for the dehydrogenation of hydrocarbons.

これらの目的は、下記重量比で存在する酸化鉄、酸化ク
ロムおよび酸化カリウムを含むものとして一般的に定義
される本発明の触媒によって達成される: 0.3/l;および 6203 □ 二1571〜40/1好ましくは25/1〜35/
1;r03 場合+cよッテハ、より詳しくはAf203.2Si0
2、K2O(カリ霞石)の組成を有するアルミニウムと
カリウムのケイ酸複塩を5〜40重量%の割合;および
酸化ランタンを1〜15重量%好ましくは3〜10重M
%の割合。
These objectives are achieved by the catalyst of the invention, which is generally defined as comprising iron oxide, chromium oxide and potassium oxide present in the following weight ratios: 0.3/l; and 6203 □ 21571~ 40/1 preferably 25/1-35/
1; r03 case + c, more specifically Af203.2Si0
2. 5 to 40% by weight of aluminum and potassium silicate double salt having the composition of K2O (potash nepheline); and 1 to 15% by weight of lanthanum oxide, preferably 3 to 10% by weight
Percentage of %.

触媒はアルミニウムとカリウムのケイ酸複塩を含む場合
、ケイ酸複塩の形で組合わされた量に対して過剰の酸化
カリウムの量を含む。
When the catalyst comprises a double silicate salt of aluminum and potassium, it contains an amount of potassium oxide in excess of the combined amount in the form of the double silicate salt.

この場合酸化物として計算された過剰のカリウムは、酸
化鉄および酸化クロムに対し下記の重量比である: 本発明の触媒は、その他に小さい割合、例えば0.1〜
5重毒%で、カリウムとは別のアルカリ金属の酸化物ま
たはアルカリ土金属の酸化物(例えばN1120、Ba
O1Cab)を含んでいてもよい。
The excess potassium, calculated in this case as oxides, is in the following weight ratios to iron oxide and chromium oxide:
5% of heavy toxicity, oxides of alkali metals other than potassium or oxides of alkaline earth metals (e.g. N1120, Ba
O1Cab).

触媒はまた、その重量の0.1〜5%の酸化物割合で、
コバルトまたはバナジウムのような少なくとも1つの金
属を含んでいてもよい。
The catalyst may also contain an oxide proportion of 0.1 to 5% of its weight,
It may also contain at least one metal such as cobalt or vanadium.

その他にランタンが、触媒中(こ少なくとも一部、コバ
ルトまたはバナジウムのような少なくとも1つの金属と
混合酸化物として組合わされた形で存在するのも有利で
ある。混合酸化物はより詳しくはペロブスキー型である
It is also advantageous for lanthanum to be present in the catalyst, at least in part, in combination with at least one metal, such as cobalt or vanadium, as a mixed oxide. It is.

本発明の触媒を調製するため(こ、水、少なくとも1つ
の鉄化合物、少なくきも1つのクロム化合物、少なくと
も1つのカリウム化合物および少なくとも1つのランタ
ン化合物を、酸化物として、下記の重量比に対応する割
合で含む混合物を形成する。
To prepare the catalyst of the invention, water, at least one iron compound, at least one chromium compound, at least one potassium compound and at least one lanthanum compound, as oxides, correspond to the following weight ratios: Form a mixture containing in proportions.

ランタン化合物は、酸化物として言1算して、酸化物と
して計算した反応体の全体に対して、1〜15重伍%好
ましくは3〜10重量%である。
The lanthanum compound is used in an amount of 1 to 15% by weight, preferably 3 to 10% by weight, based on the total reactants calculated as oxides.

粘土質材料を使用する場合、これは使用される成分の全
体に対して酸化物として計算して、約3,5〜30重伍
%の割合を示す。カリウム化合物は前記粘土質材料と組
合わせ可能な量に対して過剰tこ使用される。過剰のカ
リウムは、鉄とクロムに対しては、酸化物として計算し
て、下記の重量比である。
If clayey materials are used, this represents a proportion of approximately 3.5 to 30% by weight, calculated as oxides, based on the total of the components used. The potassium compound is used in excess of the amount that can be combined with the clay material. Excess potassium, calculated as oxides, is in the following weight ratios relative to iron and chromium:

つぎ(こ的の混合物をペーストを得るよう(こ混練する
。混練はホバー1− (HC)RBART )混練機ま
たはワーリングブレンダーを用いで行ってもよい。
The mixture is then kneaded to obtain a paste. The kneading may be carried out using a Hover (HC)RBART kneader or a Waring blender.

得られたペーストはついで例えば押出しによって例えば
次の押出PA(ANDOUART、HUTTE。
The paste obtained is then subjected to subsequent extrusion PA (ANDOUART, HUTTE), for example by extrusion.

ALEXANDERWERKE、0’TOOLE  i
た1tWERNERPFLE I DERER押出機)
lこよって成形してもよい。押出成形物は例えは1〜7
馴の直径および高さを有する円柱形であってもよい。一
般lこ乾燥を乾燥機で行ない、熱活性を例えば電気炉ま
たはガス炉で行なってもよい。乾燥を例えば100〜3
00℃で1〜24時間、取位を850〜1100’c好
ましくは870〜1o5o℃で1〜3詩間行なってもよ
い。
ALEXANDERWERKE, 0'TOOLE i
1tWERNERPFLE I DERER extruder)
It may also be molded. Examples of extruded products are 1 to 7.
It may be cylindrical in shape with a suitable diameter and height. In general, drying may be carried out in a dryer and thermal activation may be carried out, for example, in an electric or gas oven. Dry for example 100~3
At 00°C for 1 to 24 hours, fixation may be carried out at 850 to 1100°C, preferably 870 to 105°C, for 1 to 3 hours.

使用される鉄化合物は一般に、細かく砕いた(例えば2
00メツシユ以下の大きさの粒子の)酸化第二鉄である
。この酸化鉄は有利番こは800℃で予備暇焼される。
The iron compounds used are generally finely ground (e.g. 2
Ferric oxide (particles with a size of 0.00 mesh or less). This iron oxide is preheated at 800°C.

例えばソシエテ・フランセーズ・デレクトロメタリュー
ジ−(5ocieLeFranqaise d’ El
ecLrom5Lallurgie −8OFRFM)
社からfHA16o、J’という商品名で売出されてい
る商品を使用する。しかしなから、一部例えば全酸化鉄
の5〜20重量%を、それ自体鉄塩の水溶液のアンモニ
ウム、ナトリウムまたはカリウム沈殿によって得られた
水酸化鉄に代えることが可能である。また一部例えば全
硝酸塩または鉄門ばん番こ代えてもよい。
For example, the Société Française d'El
ecLrom5Lallurgie-8OFRFM)
A product sold by the company under the product name fHA16o, J' is used. However, it is possible to replace a portion, for example 5 to 20% by weight of the total iron oxide, with iron hydroxide, which is itself obtained by ammonium, sodium or potassium precipitation of an aqueous solution of an iron salt. In addition, some of the salts may be replaced, such as total nitrate or ironmonbanban.

クロム化合物は単独または混合して使用されて、一般番
こ無水クロム酸、クロム酸塩例えばナトリウム、カリウ
ムまたはアンモニウムのクロム酸塩または重クローム酸
塩、3価クロム(cr+3)の化合物例えば硝酸塩、硫
酸塩、酸化物または水酸化物である。
Chromium compounds may be used alone or in combination, and include, in general, chromic anhydride, chromates such as sodium, potassium or ammonium chromates or dichromates, trivalent chromium (CR+3) compounds such as nitrates, sulfuric acid. salt, oxide or hydroxide.

カリウム、場合番こよっては他のアルカリまたはアルカ
リ士金属(Na、 Ca、 Ba)ならびにコバルトお
よびバナジウムを導入するために用いられる化合物は、
一般lこ炭酸塩、酸化物および水酸化物である。さらに
他の塩例えば硫酸塩、燐酸塩または硝酸塩を用いてもよ
い。バナジウムについては、さらにバナジン酸塩または
メタバナジン酸塩を用いてもよい。
The compounds used to introduce potassium, possibly other alkali or alkali metals (Na, Ca, Ba) as well as cobalt and vanadium, are:
Common carbonates, oxides and hydroxides. Furthermore, other salts such as sulfates, phosphates or nitrates may be used. For vanadium, vanadate or metavanadate may also be used.

ランタンを、酸化物または水酸化物の形でまたは触媒の
調製に際してその加熱に選定される前記元素の炭酸塩、
硝酸塩、亜硝酸塩、硫化物および有機酸の塩例えばギ酸
、酢酸、蓚酸塩、酒石酸塩、くえん酸塩、アセチルアセ
トネート、ベンゾエートがある。
lanthanum in the form of its oxide or hydroxide or a carbonate of said element selected for its heating in the preparation of the catalyst;
Nitrates, nitrites, sulfides and salts of organic acids such as formic acid, acetic acid, oxalate, tartrate, citrate, acetylacetonate, benzoate.

本発明の触媒を調製するために場合により使用される粘
土質材料の例が、上に挙げたフランス特許第22700
03号に示されている。好ましくはカオリナイト、例え
ばコーンウオールカオリンの形のものを用いる。
Examples of clayey materials optionally used to prepare the catalysts of the present invention are disclosed in French Patent No. 22700, cited above.
No. 03. Preferably, kaolinite is used, for example in the form of Cornwall kaolin.

最後に、小さな割合で押出し促進剤を用G1てもよい。Finally, a small proportion of extrusion accelerator G1 may be used.

このような材料は当業者に知られてむ)る。例としては
グラファイト、植物ゴム(アラビアゴム、ダンマール(
Dambar>ゴム、いなごまメ(CIl、 r o 
u b e )ゴム)またはアルキルセルロース(メチ
ルセルロース、エチルセルロースまタハカルボギシメチ
ルセルロース)が挙げられる。
Such materials are known to those skilled in the art. Examples include graphite, vegetable gums (gum arabic), dammar (
Dambar> Rubber, locust beans (CIl, r o
ub e ) rubber) or alkyl cellulose (methyl cellulose, ethyl cellulose, or carboxymethyl cellulose).

触媒の個々の全成分を水と混合してペーストを形成し、
このぺ」ストは次番こ乾燥または似焼されるか、あるい
はある種の成分はそれらの間で化学結合を形成するため
の予備処理を受けた後で導入されつる。
all individual components of the catalyst are mixed with water to form a paste;
This paste may then be dried or calcined, or certain components may be introduced after undergoing a preliminary treatment to form chemical bonds between them.

従って、ランタンは少なくとも1つのランタン化合物と
少なくとも1つの金属(財)特(こコノくルトまたはバ
ナジウムの化合物との予備反応の結果化じる生成物の形
で導入されてもよい。
Lanthanum may therefore be introduced in the form of a product resulting from a preliminary reaction of at least one lanthanum compound with at least one metal compound or vanadium compound.

この予備工程において、ランタン化合物と金属Mの化合
物は、一般にLa7M原子比0.5 / 1〜2/1よ
り詳しくは約1/11こ相当する割合で用いられる。
In this preliminary step, the lanthanum compound and the compound of metal M are generally used in a ratio corresponding to the La7M atomic ratio of 0.5/1 to 2/1, more specifically about 1/11.

コバルトの場合、沈殿物に導かれる可溶塩間の溶液での
反応を行なってもよい。この反応の後に、得られた生成
物の(例えば沈殿物のr過および洗浄による)分離、乾
燥、例えば400〜950°Cの温度の加熱が続く。そ
の場合少なくとも一部ペロブスギー型の混合酸化物La
CoO3か形成される。
In the case of cobalt, a reaction in solution between soluble salts led to a precipitate may be carried out. This reaction is followed by separation of the product obtained (e.g. by filtering and washing the precipitate), drying, e.g. heating to a temperature of 400 to 950<0>C. In that case, a mixed oxide La at least partially of the perovsgian type
CoO3 is formed.

さら【こ、ランタンとコバルトまたはバナジウムとの酸
化物間でのまたは熱を加えて酸化物に分解しうる種類の
化合物間での反応によって操作を行なうことができる。
This operation can also be carried out by reaction between oxides of lanthanum and cobalt or vanadium or between compounds of the type that can be decomposed into oxides by the application of heat.

5価バナジウム(y+5 )化合物の形で使用されるバ
ナジウムの場合、(水素)還元雰囲気下に高温例えば6
00〜900℃で操作を行なう。いずれの場合も、つい
で900〜1250℃の温度の■焼を行なう。得られた
生成物は少なくとも一部ペロブスキー型の混合酸化物の
形である。
In the case of vanadium used in the form of pentavalent vanadium (y+5) compounds, it can be heated under a (hydrogen) reducing atmosphere at high temperatures e.g.
The operation is carried out at 00-900°C. In either case, baking is then carried out at a temperature of 900 to 1250°C. The resulting product is at least partially in the form of a Perovsky-type mixed oxide.

この予備工程において得られた生成物は、ついで他の成
分および水と混合され、それから触媒の調製は乾燥およ
び高温(例えば850〜1100℃)の加熱Oこより、
上で示したように続けられる。
The product obtained in this preliminary step is then mixed with other ingredients and water, and the catalyst is then prepared by drying and heating at a high temperature (e.g. 850-1100°C).
Continue as shown above.

上記のような本発明の触媒を、炭化水素特に飽和脂肪族
炭化水素またはモノエチレン列炭化水素およびアルキル
芳香族炭化水素(エチルベンゼン、ジエチルベンゼン)
の脱水素用(こ、それ自体知られかつ上で繰返した操作
条件で使用する。
The catalyst of the invention as described above can be used with hydrocarbons, especially saturated aliphatic hydrocarbons or monoethylene series hydrocarbons and alkyl aromatic hydrocarbons (ethylbenzene, diethylbenzene).
(used under operating conditions known per se and repeated above).

エチルベンゼンのスチレンへの脱水素においテ、特に、
本発明の触媒(こよって、エチルベンゼンの良好な転換
および/または良好なスチレン選択性を得ることかでき
る。
In particular, the dehydrogenation of ethylbenzene to styrene
Catalysts of the invention (thereby making it possible to obtain good conversion of ethylbenzene and/or good styrene selectivity).

下記の実施例は本発明を例証する。この実施例は何ら限
定的なものと考えるべきではない。
The following examples illustrate the invention. This example should not be considered limiting in any way.

実施例3〜8.11.12および15は比較とじて挙げ
る。
Examples 3-8, 11, 12 and 15 are listed as comparative.

実施例1(触媒A) ワーリングブレンダー内におシ′)で、酸化第二鉄rH
A160J300j7、重クロム酸カリウム145g、
無水炭酸カリウム100!7および酸化ランク:/La
203279を混練する。
Example 1 (Catalyst A) In a Waring blender, ferric oxide rH
A160J300j7, potassium dichromate 145g,
Anhydrous potassium carbonate 100!7 and oxidation rank: /La
Knead 203279.

使用した反応体の量は、酸化物として次の割合(重量%
)に相当する。
The amounts of reactants used were calculated in the following proportions (wt%) as oxides:
).

Fc203  =  73.23% CrO3=2.41% に20   =  17.77% La2O3= 6.59% 鉄、クロムおよびカリウム間の重量比は酸化物として計
算して、下記のとおりである。
Fc203 = 73.23% CrO3 = 2.41% 20 = 17.77% La2O3 = 6.59% The weight ratios between iron, chromium and potassium, calculated as oxides, are as follows.

ついでメトセル(MbLhocel、ダウケミカル社製
)の2重量%水溶液を677nlと、水70m1’ヲ加
工、コンシスチンシーの高いペーストを得るようにする
。これを20分間混練しついてヒ。
Next, 677 nl of a 2% by weight aqueous solution of MbLhocel (manufactured by Dow Chemical Company) and 70 ml of water were processed to obtain a paste with high consistency. Knead this for 20 minutes.

ストン付き押出し機に移し、直径4■長さ2〜6mの円
柱状番こ押出す。
Transfer to an extruder with a stone and extrude into a cylindrical bar with a diameter of 4 x length of 2 to 6 m.

押出成形物を250℃で15時間、ついて960℃で2
時間活性化する。このようにして触媒Aを得る。
The extrudate was heated at 250°C for 15 hours and then at 960°C for 2 hours.
Activate time. Catalyst A is thus obtained.

最終触媒を分析すると、酸化鉄、酸化クロム、酸化カリ
ウムおよび酸化ランタンの含■が確認される。
Analysis of the final catalyst confirms the presence of iron oxide, chromium oxide, potassium oxide, and lanthanum oxide.

以下の全実施例において、触媒の成分の混練、押出しお
よび乾燥を実施例1と同じ条件下で行なう。触媒の活性
化を、940〜970℃にわたる温度で2時間の加熱に
よって行なう。
In all the examples below, the kneading, extrusion and drying of the components of the catalyst are carried out under the same conditions as in Example 1. Activation of the catalyst is carried out by heating for 2 hours at temperatures ranging from 940 to 970°C.

実施例2(触媒B) ワーリングブレンダー内で、酸化第二鉄「HA160J
300j7、重クロム酸カリウム14.5!i’、無水
炭酸カリウムl OO!7.コーンウオールカオリン2
8,5gおよび酸化ランク7 La 203279を−
R練する。使用する反応体の量は酸化物として下記の重
量割合に相当する。
Example 2 (Catalyst B) In a Waring blender, ferric oxide “HA160J”
300j7, potassium dichromate 14.5! i', anhydrous potassium carbonate l OO! 7. cornwall kaolin 2
8,5g and oxidation rank 7 La 203279 -
Practice R. The amounts of reactants used correspond to the following weight proportions as oxides.

Fe2O3=  68.47% CrO3=   2.25% に2(J  二16.62% La2O3=  6.16% カオリン  =   6.50% 酸化物として計算した鉄、クロムおよびカリウム間の重
量比は、実施例1で示したもの(こ近い値を有する。
Fe2O3 = 68.47% CrO3 = 2.25% to 2(J2 16.62% La2O3 = 6.16% Kaolin = 6.50% The weight ratios between iron, chromium and potassium calculated as oxides are as follows: The one shown in Example 1 (has a similar value).

カオリンと組合わせ可能なカリウムの量は、酸化物の全
体lこ対して、酸化物として2.76%の重量割合に相
当する。「過剰」酸化カリウムの割合は従って13.8
6<である。
The amount of potassium that can be combined with kaolin corresponds to a weight proportion of 2.76% as oxides, based on the total oxides. The proportion of "excess" potassium oxide is therefore 13.8
6<.

酸化鉄および酸化クロムと過剰のに20との間の比はそ
れぞれ下記のものである。:(重量比):メトセル(M
5thocel、ダウケミカル社製)の2重量%水溶液
67m1と水70rnl加えてコンシスチンシーの高い
ペーストを得るようにする。
The ratios between iron oxide and chromium oxide and excess 20, respectively, are as follows: : (weight ratio): Methocel (M
67 ml of a 2% by weight aqueous solution of 5thocel (manufactured by Dow Chemical Company) and 70 rnl of water were added to obtain a paste with high consistency.

ついで実施例1(こ示したように操作を行なう。Then, the operation is carried out as shown in Example 1.

最終触媒の分析により、酸化鉄、酸化クロム、酸化カリ
ウムおよび酸化ランタン含量か確認される。X線回折番
こよる分析により、アルミニウムとカリウムのケイ酸複
塩(カリ霞石)の存在が明らか9こなる。これの重量含
量は9.3%である。
Analysis of the final catalyst confirms its iron oxide, chromium oxide, potassium oxide and lanthanum oxide content. Analysis by X-ray diffraction revealed the presence of a silicate double salt of aluminum and potassium (potash nepheline). Its weight content is 9.3%.

実施例3〜5(触媒C,−,E) 酸化ランタンLa2O3の代り番こ、他の下記稀土類酸
化物の同重毒を用いることを除いて、実施例1に記載さ
れた調製を繰返す。
Examples 3-5 (Catalysts C, -, E) The preparation described in Example 1 is repeated, except that lanthanum oxide La2O3 is replaced by the same heavy poisons of the other rare earth oxides listed below.

実施例3二酸化セリウムCe02(触媒C)0実施例4
二酸化プラセオジムPr8011(触媒D)。
Example 3 Cerium dioxide Ce02 (catalyst C)0 Example 4
Praseodymium dioxide Pr8011 (Catalyst D).

実施例5:酸化ネオジムNd03(触媒E)。Example 5: Neodymium oxide Nd03 (catalyst E).

実施例6〜8(触媒F−H) 酸化ランタンLa2O3の代りに、他の下記稀実施例6
二酸化セリウムCe02(触媒F)。
Examples 6 to 8 (Catalyst F-H) Instead of lanthanum oxide La2O3, other rare example 6 below
Cerium dioxide Ce02 (catalyst F).

実施例7二酸化プラセオジムprsou(触媒G)。Example 7 Praseodymium dioxide prsou (Catalyst G).

実施例8:酸化ネオジムNd03(触媒H)。Example 8: Neodymium oxide Nd03 (catalyst H).

実施例9(触媒工) ワーリングブレンダー内において、酸化第二鉄[HA1
60J 3oog、重炭酸カリウム14.5z17、無
水炭酸カリウム100g、コーンウオールカオリン28
5g、酸化ランタンLa20317.9g、酸化コバル
トCo2039.1gを混練する。ランタンとコバルト
の原子を同量ずつ選んだ。
Example 9 (catalyst engineering) In a Waring blender, ferric oxide [HA1
60J 3oog, potassium bicarbonate 14.5z17, anhydrous potassium carbonate 100g, Cornwall kaolin 28
5 g of lanthanum oxide La, 20317.9 g of lanthanum oxide La, and 2039.1 g of cobalt oxide Co are kneaded. Equal amounts of lanthanum and cobalt atoms were selected.

使用される反応体の量は、酸化物として下記の割合(重
M%)(こ相当する。
The amounts of reactants used correspond to the following proportions (weight M%) as oxides:

Fe2O3=  68.47% CrO3=  2.25% に20   =16.62% La2O3=  4.08% C,203=  2.08% カオリン  =   6.50% メトセル2重景%水溶液50ydと水100m1を加え
てペーストを得るようにし、これを15分間混練する。
Fe2O3 = 68.47% CrO3 = 2.25% 20 = 16.62% La2O3 = 4.08% C,203 = 2.08% Kaolin = 6.50% 50 yd of Methocel 2X% aqueous solution and 100 ml of water Add so as to obtain a paste, which is kneaded for 15 minutes.

触媒の押出し1、乾燥および叙位は上に示したよう番こ
行われる。
Extrusion, drying and deposition of the catalyst are carried out as indicated above.

最終触媒中のアルミニウムとカリウムのケイ酸複塩(カ
リ霞石)の含量は、9.3重量%付近である。
The content of aluminum and potassium silicate double salt (potash nepheline) in the final catalyst is around 9.3% by weight.

実施例10(触媒J) 酸化コバルトCo2O3の代り番こ、同じ重量の無水バ
ナジン酸V2Q5を用いることを除いて、実施例9(こ
記載された調製(触媒工)を繰返す。
Example 10 (Catalyst J) The preparation described in Example 9 is repeated, except that the cobalt oxide Co2O3 is replaced with the same weight of vanadate anhydride V2Q5.

使用される反応体の量は、酸化物として、下記の割合(
重量%)に相当する。
The amounts of reactants used, as oxides, are in the following proportions (
(% by weight).

Fe2O3=  68.47% CrO3=  2.25% に20   =16.62% La2O3=  4.08% V2O5=  2.08% カオリン  −6,60% 鉄、クロムおよびカリウム間の重量比は、酸い。Fe2O3 = 68.47% CrO3 = 2.25% 20 = 16.62% La2O3 = 4.08% V2O5 = 2.08% Kaolin -6,60% The weight ratio between iron, chromium and potassium is acidic.

最終触媒の分析番こよると、鉄、クロム、カリウム、ラ
ンタンおよびバナジウムの酸化物含量が確認される。
Analysis of the final catalyst confirms the oxide content of iron, chromium, potassium, lanthanum and vanadium.

実施例11(触媒K) 酸化ランタンの代りに酸化セリウムCeO2の同重量を
用いることを除いて、実施例9(こ記載された調製(触
媒工)を繰返す。
Example 11 (Catalyst K) The preparation described in Example 9 is repeated, except that the same weight of cerium oxide CeO2 is used instead of lanthanum oxide.

実施例12(触媒L) 酸化ランクンLa2Q3の代り(こ、酸化セリウムCe
O2の同重量を用いることを除いて、実施例IQに記載
された調製(触媒J)を繰返す。
Example 12 (Catalyst L) Instead of rankan oxide La2Q3 (cerium oxide Ce
The preparation described in Example IQ (Catalyst J) is repeated except using the same weight of O2.

実施例13(触媒M) 硝酸コバルト145.5gと、硝酸ランタン2.63モ
ル/l水溶液190mAをNa2CO3212gを含む
80℃の水2.51中に注ぐ。使用される反応体の量は
コバルトとランタンの原子比171(こ相当する。
Example 13 (Catalyst M) 145.5 g of cobalt nitrate and 190 mA of a 2.63 mol/l aqueous solution of lanthanum nitrate are poured into 2.5 l of water at 80° C. containing 212 g of Na2CO3. The amounts of reactants used correspond to an atomic ratio of cobalt to lanthanum of 171.

沈殿物を得、これを121の蒸留水で洗浄する。6時間
80’Cで熟成させ、沖過し、50°Cで24時間、1
00℃で72時間、1’ 20℃で24時間乾燥する。
A precipitate is obtained which is washed with 121 ml of distilled water. Aged at 80'C for 6 hours, filtered, and aged at 50°C for 24 hours.
Dry at 00°C for 72 hours and 1' at 20°C for 24 hours.

最後に600℃で2時間加熱する。Finally, heat at 600°C for 2 hours.

得られた生成物の構造ははっきりとは同定さレナイ。少
なくとも一部ペロブスキー石型の混合酸化物LaCoO
3が関わっているようである。
The structure of the resulting product was not clearly identified. At least partially perovskite-type mixed oxide LaCoO
3 seems to be involved.

このようにして調製された生成物27gを酸化第二鉄r
HA 160j 30Qg、重炭酸カリウム14.51
、無水酸カリウム10(lおよびコーンウオールカオリ
ン28.5gと混合する。
27 g of the product thus prepared was added to ferric oxide r
HA 160j 30Qg, potassium bicarbonate 14.51
, mixed with 10 (l) of potassium anhydride and 28.5 g of Cornwall kaolin.

使用される反応体の量は酸化物として、次の割合に相当
する。(重量%) Fe203  =  68.47% CrO3””   2.25% に20    =  i6.62% LaCo03=  6.16% カオリン  −6,50% 次に前(こ示したのと同じ条件下で操作を行なう。
The amounts of reactants used, as oxides, correspond to the following proportions: (% by weight) Fe203 = 68.47% CrO3"" 2.25% to 20 = i6.62% LaCo03 = 6.16% Kaolin -6,50% then the previous (operated under the same conditions as shown) Do the following.

実施例14(触媒N) 酸化ランタンLa203163gと無水バナジン酸V2
O591flを均質混合し、ついで管形炉内で水素流下
に850℃で6時間加熱し、最後【こ18時間1200
℃で■焼する。使用される反応体の量は、L a、 /
 V原子比約1/1に相当する。得らレタ生成物は、少
なくとも一部ペロブスキー型の混合酸化物LaVO3で
ある。
Example 14 (Catalyst N) Lanthanum oxide La203163g and vanadic anhydride V2
591 fl of O was homogeneously mixed and then heated at 850° C. for 6 hours under hydrogen flow in a tube furnace, and finally heated at 1200° C. for 18 hours.
■ Bake at ℃. The amount of reactants used is L a, /
This corresponds to a V atomic ratio of approximately 1/1. The resulting leta product is an at least partially Perovsky-type mixed oxide LaVO3.

ついで実施例13に記載されているよう船こ操作を行な
う。
Boat maneuvers are then performed as described in Example 13.

実施例15(触媒O) ランタンとバナジウムの間〔こ予め形成された混合酸化
物の代り番こ、Ce/V原子比約1/1のセリウムとバ
ナジウムの間に予め形成された混合酸化物の同重堡を使
用することを除いて、実施例14(こ記載された調製(
触媒N)を繰返す。
Example 15 (Catalyst O) Between lanthanum and vanadium (instead of the pre-formed mixed oxide). Example 14 (this described preparation) except that the
Repeat catalyst N).

触咽A〜0は長期間触媒試験の対象となった。Tactile pharynx A~0 was subjected to long-term catalytic testing.

触媒試験を、常圧下で作用し工業用エチルベンゼンと水
が供給される[カフテスト(Ca t a t e a
 r。
Catalyst testing is carried out using a cuff test in which industrial ethylbenzene and water are supplied under normal pressure.
r.

)1番こおいて行なった。試験された触媒の体積は10
0m1である(60〜120g触媒)。触媒A〜Oは直
径4m、長さ4〜5馴の押出し成形物の形である。
) I did it with the utmost care. The volume of catalyst tested was 10
0ml (60-120g catalyst). Catalysts A to O are in the form of extrudates with a diameter of 4 m and a length of 4 to 5 m.

まず触媒を約500℃まで予熱する。それから水蒸気を
導入し、ついで約550℃でエチルベンゼンを導入する
。それから温度を触媒床中で614±2℃の温度を得る
よう(こ調整する。
First, the catalyst is preheated to about 500°C. Steam is then introduced followed by ethylbenzene at about 550°C. The temperature is then adjusted to obtain a temperature of 614±2° C. in the catalyst bed.

選ばれる毎時流量は下記のとおりである。The hourly flow rates chosen are as follows:

[1にエチルベンゼンの転換”4(EB)、7チレン選
択性(SST)およびスチレン収率(R8T)を示す。
[1 shows the conversion of ethylbenzene (EB), styrene selectivity (SST) and styrene yield (R8T).

これらの種々の数字をモル%で表わし、これらは次の定
義(こ一致する。
These various numbers are expressed in mole % and correspond to the following definitions.

これらの大きさは次の関係式番こより関連してG)る。These magnitudes are related to the following relational expression.

R3T −CEB  X  ss’r  X〒T(以下
余白) 表1において、触媒Aと触媒C,DおよびE1触媒Bと
触媒F、GおよびH1触媒工と触媒K、触媒Jと触媒り
および触媒Nと触媒0の各比較番こより、ランタンの使
用は他の稀土類セリウム、プラセオジム、ネオジムの使
用に比してスチレン収率の改良をもたらすことがわかる
。しかもたはカオリンなしで用いられ、また稀土類金属
が、別々の2つの金属化合物の形であるいは予備工程に
おいて調製された酸化物の組合わせ(コバルトとバナジ
ウムとの組合わせの場合)の形で、もう1つの追加金属
と組合わせられると良いのがわかる。
R3T -CEB From the comparison numbers of catalyst 0 and catalyst 0, it can be seen that the use of lanthanum improves the styrene yield compared to the use of other rare earths cerium, praseodymium, and neodymium. Alternatively, the rare earth metals may be used in the form of two separate metal compounds or in the form of a combination of oxides prepared in a preliminary step (in the case of the combination of cobalt and vanadium). , it turns out that it is good to combine it with another additional metal.

以  上 第1頁の続き 優先権主張 @1982年12月14日■フランス(P
R)[有]8221086 0発 明 者 フィリップ・ヴアラン フランス国エソンヌ県マシー (91300)リュ・ド・う・ソーセ ロ番地 0発 明 者 ジャン・フランソワ・ル・パーシュ フランス国オ・ド・セーヌ県す ュエイユ・マルメゾン(92500) リュ・デ・ブリムヴ工−ル13番 地 (カ発  明 者 セルシュ・ルポルクフランス国イブ
リーヌ県マント ・う・ヴイル(78200)リュ・ ヴイランドリー6番地 手続補正書 昭和59年2 月 1日 特許庁長官  若杉和夫  殿 5 補正命令の日付   昭和  年  月   口6
 補正により増加する発明の数 7 補正の対象 明細書の特許請求の範囲8、補正の内
容 特許請求の範囲 (1)  酸化物の形で鉄、クロムおよびカリウムを含
む触媒であって、鉄、クロムおよびカリウムが酸化物と
して計算して、重量比: で存在する触媒において、触媒の重量に対して、酸化物
として計算して1〜15重it%の割合のランタンをも
酸化物の形で含むことを特徴とする、脱水素反応用触媒
Continuation of page 1 Priority claim @ December 14, 1982 ■ France (P
R) [Owned] 8221086 0 Inventor: Philippe Vaillan, Rue de Saucelot, Massy (91300), Essonne, France 0 Inventor: Jean-François Le Perche, Hauts-de-Seine, France Sueil-Malmaison (92500) No. 13 Rue des Brimves (inventor: Serche Leporc) No. 6 Rue-Villanderie, Mantes-u-Vuilles, Yvelines, France (78200) Amendment of Procedures 1982 February 1st Commissioner of the Japan Patent Office Kazuo Wakasugi 5 Date of amendment order Showa month month 6
Number of inventions increased by amendment 7 Subject of amendment Claim 8 of the specification, content of amendment Claim (1) A catalyst containing iron, chromium and potassium in the form of oxides, comprising iron, chromium and potassium. and potassium, calculated as oxide, are present in a weight ratio of: lanthanum in the form of oxide, in a proportion of 1 to 15 wt%, calculated as oxide, relative to the weight of the catalyst. A dehydrogenation reaction catalyst characterized by:

(2)  式AJ203.2SiO2、K20+7)力
IJii石ト、カリ霞石中に存在するカリウムに比して
過剰のカリウムを含み、カリ霞石の割合か触媒の5〜4
゜重量類であり、過剰のカリウムが、鉄とクロムに対し
て、重量比: であることを特徴とする特許請求の範囲第1項記載の触
媒 (3)  鉄、クロムおよびカリウム間の重量比が酸化
物として計算して、 であり、ランタンの割合が酸化物として計算して、3〜
10重ffi%であることを特徴とする特許請求の範囲
第1または2項記載の触媒。
(2) Formula AJ203.2SiO2, K20+7) contains an excess of potassium compared to the potassium present in the potassium nepheline, and the proportion of potassium nepheline is 5-4% of the catalyst.
The catalyst according to claim 1, characterized in that the excess potassium is in the weight ratio of iron and chromium: (3) The weight ratio between iron, chromium and potassium is calculated as an oxide, and the proportion of lanthanum is calculated as an oxide, and is 3~
The catalyst according to claim 1 or 2, characterized in that the content is 10% by weight.

(4)  コバルトとバナジウムから逝ばれた少なくと
も1つの金属をも、酸化物として計算して01〜5重N
%含むことを特徴とする特許請求の範囲第1〜3項のう
ちいずれか1項記載の触媒。
(4) At least one metal that has passed away from cobalt and vanadium is also calculated as an oxide of 01 to 5 N
% of the catalyst according to any one of claims 1 to 3.

+5)a)  水、少なくとも1つの鉄化合物、少なく
とも1つのクロム化合物、少なくとも1つのカリウム化
合物および少なくとも1つのランタン化合物を含む混合
物を構成し、これを混練してペーストを形成し、かつ b)前記ペーストをそのまままたは成形後乾燥し、これ
を850〜1100℃の温度で熱活性化すること、 鉄、クロムおよびカリウム化合物か、酸化物として重量
比: ランタン化合物が、酸化物として計算して、使用される
化合物全体の1〜15重ft%の割合で導入されること
を特徴とする、脱水素反応用触媒の製造法。
+5) a) forming a mixture comprising water, at least one iron compound, at least one chromium compound, at least one potassium compound and at least one lanthanum compound, which is kneaded to form a paste, and b) said Dry the paste as it is or after shaping, and heat activate it at a temperature of 850 to 1100°C. Weight ratio of iron, chromium and potassium compounds or as oxides: Lanthanum compounds are calculated as oxides and used. A method for producing a catalyst for dehydrogenation reaction, characterized in that the catalyst is introduced at a rate of 1 to 15 weight % based on the total amount of the compound.

(6)  コバルトおよびバナジウムから選ばれた少な
くとも1つの金属の少なくとも1つの化合物を、工程(
a)の金属化合物と粘土質材料の混合物へ添加し、添加
された金属の全含量が、酸化物として表わして、使用さ
れる化合物の全体め0.1〜5重量係であることを特徴
とする特許請求の範囲第5項記載の方法。
(6) At least one compound of at least one metal selected from cobalt and vanadium is added to the step (
It is added to the mixture of the metal compound and the clay material of a), characterized in that the total content of the added metal, expressed as an oxide, is 0.1 to 5% by weight of the total compound used. The method according to claim 5.

(7)  工程(a)において、粘土質材料を3.5〜
30重ft%の割合で用い、カリウム化合物を前記粘土
質材料と組合せうる量に対して過剰に用い、過剰のカリ
ウム化合物は、鉄とクロムに対して酸化物として計算し
て、重量比: に相当する割合であることを特徴とする特許請求の範囲
第5または6項記載の方法。
(7) In step (a), the clay material is
The potassium compound is used in excess of the amount that can be combined with the clay material, and the excess potassium compound is calculated as an oxide with respect to iron and chromium, in a weight ratio of 30% by weight: 7. A method according to claim 5 or 6, characterized in that the proportions are corresponding.

(8)前記粘土質材料が、少なくとも一部カオリナイト
であることを特徴とする特許請求の範囲第7項記載の方
法。
(8) The method according to claim 7, wherein the clay material is at least partially kaolinite.

(9)  工程(b)の活性化温度か一870〜105
0℃であることを特徴とする特許請求の範囲第5〜8項
のうちのいずれか1項記載の方法。
(9) Activation temperature in step (b) - 870-105
The method according to any one of claims 5 to 8, characterized in that the temperature is 0°C.

(10)飽和脂肪族またはモノエチレン列炭化水素また
はアルキル芳香族炭化水素の脱水素反応に使用するため
の、特許請求の範囲第1〜4項のうちのいずれか1項記
載の触媒。
(10) The catalyst according to any one of claims 1 to 4, for use in the dehydrogenation reaction of saturated aliphatic or monoethylene series hydrocarbons or alkyl aromatic hydrocarbons.

(1j)前記脱水素すべきアルキル芳香族炭化水素かエ
チルベンゼンであることを特徴とする特許請求の範囲第
10項記載の触媒。
(1j) The catalyst according to claim 10, wherein the alkyl aromatic hydrocarbon to be dehydrogenated is ethylbenzene.

Claims (1)

【特許請求の範囲】 (1,+  e化物の杉で鉄、クロムおよびカリウA 
rc含む触媒であって、鉄、クロムおよびカリウムが酸
化物として計算して、重量比二 で存在する触媒において、触媒の重量に対して、酸化物
として計算して1〜15重M%の割合のランタンをも酸
化物の形で含むことを特徴とする、脱水素反応用触婬。 (2)  式A、g2o3,2sio2.に2oのカり
霞石と、カリ霞石中に存在するカリウムOこ比して過?
1のカリウムを含み、カリ霞石の割合か触媒の5〜40
重量%であり、過剰のカリウムが、であることを特徴と
する特許請求の範囲第1項記載の触媒。 (3)  鉄、クロムおよびカリウム間の重量比が酸化
物として計算して、 であり、ランタンの割合が酸化物として泪算して、3〜
10重量%であることを特徴とする特許請求の範囲第1
または2項記載の触媒。 (4)  コバルトとバナジウムから選ばれた少なくと
も1つの金属をも、酸化物として計算して0.1〜5重
量%含むことを特徴とする特許請求の範囲第1〜3項の
うちついずれか1項記載の触媒。 (5)a)水、少なくとも1つの鉄化合物、少なくとも
1つのクロム化合物、少なくとも1つのカリウム化合物
および少なくとも1つのランタン化合物を含む混合物を
構成し、これを混練してペーストを形成し、かつ 1))前記ペーストをそのまままたは成形後乾燥し、こ
れを850〜1100℃の温度で熱活性化すること、 鉄、クロムおよびカリウム化合物か、酸化物として重量
比: 導入されることおよび ランタン化合物が、酸化物として計算して、使用される
化合物全体の1〜15重量%の割合で導入されることを
特徴とする、脱水素反応用触媒の製造法。 (6)  コバルトおよびバナジウムがら選ばれた少な
くとも1つの金属の少なくとも1つの化合物を、工程(
a)の金属化合物と粘土質材料の混合物へ添加し、添加
された金属の全含量が、酸化物として表わして、使用さ
れる化合物の全体の01〜5重量%であることを特徴と
する特許請求の範囲第5項記載の方法。 (7)  工程(a) +こおいて、粘土質材料を3.
5〜30重毒%の割合で用い、カリウム化合物を前記粘
土質材料と組合せつる量番こ対して過剰番こ用い、過剰
のカリウム化合物は、鉄とクロムに対して酸化物として
計算して、重量比:ノ1: 【こ相当する割合であることを特徴とする特許請求の範
囲第5または6項記載の方法。 (8)  前記粘土質拐料が、少なくとも一部カオリナ
イトであることを特徴とする特許請求の範囲第7項記載
の方法。 (9)  工程(1))の活性化温度が870〜105
0℃であることを特徴とする特許請求の範囲第5〜8項
のうちのいずれか1項記載の方法。 (10)飽和脂肪族またはモノエチレン列炭化水素また
はアルキル芳香族炭化水素の脱水素反応【こ使用するた
めの、特許請求の範囲第1〜4項のうちのいずれか1項
記載の触媒。 (11)  前記脱水素すべきアルキル芳香族炭化水素
がエチルベンゼンであることを特徴とする特許請求の範
囲第10項記載。
[Scope of Claims]
In catalysts containing rc, in which iron, chromium and potassium are present in a weight ratio of 2, calculated as oxides, a proportion of 1 to 15% by weight, calculated as oxides, based on the weight of the catalyst. A catalyst for dehydrogenation reactions, characterized in that it also contains lanthanum in the form of an oxide. (2) Formula A, g2o3,2sio2. Is the potassium nepheline of 2 O compared to the potassium nepheline present in the potassium nepheline?
Contains 1% potassium and 5-40% of potassium nepheline or catalyst
Catalyst according to claim 1, characterized in that the excess potassium is % by weight. (3) The weight ratio between iron, chromium and potassium, calculated as oxides, is , and the proportion of lanthanum, calculated as oxides, is 3~
Claim 1 characterized in that the amount is 10% by weight.
Or the catalyst according to item 2. (4) Any one of claims 1 to 3, characterized in that it also contains 0.1 to 5% by weight of at least one metal selected from cobalt and vanadium, calculated as an oxide. Catalyst according to item 1. (5) a) forming a mixture comprising water, at least one iron compound, at least one chromium compound, at least one potassium compound and at least one lanthanum compound and kneading the same to form a paste, and (1) ) Drying the paste as it is or after molding, and thermally activating it at a temperature of 850 to 1100°C, introducing iron, chromium and potassium compounds or oxides in weight ratio: and lanthanum compounds being oxidized. A method for producing a catalyst for a dehydrogenation reaction, characterized in that the catalyst is introduced in an amount of 1 to 15% by weight based on the total amount of compounds used. (6) At least one compound of at least one metal selected from cobalt and vanadium is added to the step (
A patent characterized in that the total content of the added metals, expressed as oxides, is from 01 to 5% by weight of the total of the compounds used, expressed as oxides. The method according to claim 5. (7) Step (a) + Place clay material in 3.
The potassium compound is used in an amount of 5 to 30%, and the excess potassium compound is calculated as an oxide with respect to iron and chromium. Weight ratio: No. 1: [The method according to claim 5 or 6, characterized in that the ratio corresponds to this. (8) The method according to claim 7, wherein the clayey material is at least partially kaolinite. (9) Activation temperature in step (1)) is 870-105
The method according to any one of claims 5 to 8, characterized in that the temperature is 0°C. (10) Dehydrogenation reaction of saturated aliphatic or monoethylenic hydrocarbons or alkyl aromatic hydrocarbons [The catalyst according to any one of claims 1 to 4 for this use. (11) Claim 10, wherein the alkyl aromatic hydrocarbon to be dehydrogenated is ethylbenzene.
JP58237157A 1982-12-14 1983-12-14 Dehydrogenation reaction catalyst containing iron oxide, chromium oxide and lanthanum oxide and production thereof Granted JPS59123537A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR8221086 1982-12-14
FR8221085 1982-12-14
FR8221085A FR2537456B1 (en) 1982-12-14 1982-12-14 CATALYSTS BASED ON IRON, CHROMIUM, POTASSIUM AND AT LEAST ONE RARE EARTH METAL, THEIR PREPARATION AND THEIR USE IN DEHYDROGENATION REACTIONS

Publications (2)

Publication Number Publication Date
JPS59123537A true JPS59123537A (en) 1984-07-17
JPH0437736B2 JPH0437736B2 (en) 1992-06-22

Family

ID=9280160

Family Applications (2)

Application Number Title Priority Date Filing Date
JP58237156A Pending JPS59120244A (en) 1982-12-14 1983-12-14 Production of dehydrogenation catalyst containing iron oxide, chromium oxide, potassium oxide and at least one rare earth metal
JP58237157A Granted JPS59123537A (en) 1982-12-14 1983-12-14 Dehydrogenation reaction catalyst containing iron oxide, chromium oxide and lanthanum oxide and production thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP58237156A Pending JPS59120244A (en) 1982-12-14 1983-12-14 Production of dehydrogenation catalyst containing iron oxide, chromium oxide, potassium oxide and at least one rare earth metal

Country Status (2)

Country Link
JP (2) JPS59120244A (en)
FR (1) FR2537456B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824831A (en) * 1993-11-11 1998-10-20 Idemitsu Petrochemical Co., Ltd. Catalyst for dehydrogenation of alkyl aromatic hydrocarbon and process for producting vinyl aromatic hydrocarbon using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003298831A1 (en) * 2002-12-19 2004-07-29 Dow Global Technologies Inc. Dehydrogenation of alkyl aromatic compound over a rare earth catalyst
CN113164922B (en) * 2018-10-05 2024-05-14 沙特基础工业全球技术公司 Catalyst for dehydrogenating paraffins

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595809A (en) * 1969-06-27 1971-07-27 Gulf Research Development Co Lanthanum chromium ferrite catalyst
US4134858A (en) * 1974-05-07 1979-01-16 Institut Francais Du Petrole Catalysts, their manufacture for use in dehydrogenation reactions
CA1108114A (en) * 1977-04-14 1981-09-01 Gregor H. Riesser Dehydrogenation catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824831A (en) * 1993-11-11 1998-10-20 Idemitsu Petrochemical Co., Ltd. Catalyst for dehydrogenation of alkyl aromatic hydrocarbon and process for producting vinyl aromatic hydrocarbon using the same

Also Published As

Publication number Publication date
JPH0437736B2 (en) 1992-06-22
FR2537456A1 (en) 1984-06-15
FR2537456B1 (en) 1987-02-13
JPS59120244A (en) 1984-07-11

Similar Documents

Publication Publication Date Title
US5023225A (en) Dehydrogenation catalyst and process for its preparation
US5190906A (en) Alkyl aromatic hydrocarbon dehydrogenation catalyst and method for producing the catalyst
US4535067A (en) Catalyst containing iron, chromium, potassium and lanthanum oxides, its manufacture and use in dehydrogenation reactions
AU687814B2 (en) Dehydrogenation catalyst having improved moisture stability,and process for making and using the catalyst
JP5102626B2 (en) Highly active and highly stable iron oxide based dehydrogenation catalyst with low titanium concentration and its production and use
US8119559B2 (en) Catalyst, its preparation and use
JP2008520685A (en) An improved method for producing alkenyl aromatics under low steam-to-oil process conditions
JPS5911339B2 (en) dehydrogenation catalyst
JPH0311812B2 (en)
JP2647159B2 (en) New dehydrogenation catalyst composition
CN109569639B (en) Dehydrogenation catalyst for preparing styrene and preparation method thereof
JP2002509790A (en) Dehydrogenation catalyst containing at least iron, alkali metal and precious metal
US20090281256A1 (en) Catalyst, its preparation and use
JPS6123175B2 (en)
JPS59123537A (en) Dehydrogenation reaction catalyst containing iron oxide, chromium oxide and lanthanum oxide and production thereof
CN1298856A (en) Alkylarylhydrocarbon dehydrogenating catalyst and its preparing process
JPH0547265B2 (en)
US3525701A (en) Oxidation catalyst of an oxide composition of antimony,tin and copper
CN107790147B (en) Catalyst for dehydrogenation of diethylbenzene and preparation method thereof
KR20100017490A (en) A catalyst, its preparation and use
CN113877594B (en) Method for dehydrogenating alkyl aromatic hydrocarbon
US3886090A (en) Nickel and cobalt catalysts including a group IIA and VIA component
CN112239392B (en) Method for dehydrogenating alkyl arene at low temperature
US3378501A (en) Catalyst for the production of saturated aldehydes
JP3221447B2 (en) Catalyst for producing phenol, method for producing the same, and method for producing phenol