JPS59123278A - Semiconductor solar battery - Google Patents

Semiconductor solar battery

Info

Publication number
JPS59123278A
JPS59123278A JP57230037A JP23003782A JPS59123278A JP S59123278 A JPS59123278 A JP S59123278A JP 57230037 A JP57230037 A JP 57230037A JP 23003782 A JP23003782 A JP 23003782A JP S59123278 A JPS59123278 A JP S59123278A
Authority
JP
Japan
Prior art keywords
solar cell
thin film
layer
film layer
photovoltaic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57230037A
Other languages
Japanese (ja)
Inventor
Yasuhide Okamoto
岡本 康英
Yukihisa Takeuchi
幸久 竹内
Kenji Maekawa
前川 謙二
Masaaki Mori
正昭 森
Toshiaki Nishizawa
西沢 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP57230037A priority Critical patent/JPS59123278A/en
Publication of JPS59123278A publication Critical patent/JPS59123278A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To contrive to reduce the deterioration of photoelectric conversion efficiency with time by interposing a metallic thin film layer of high purity between a metallic substrate electrode and a semiconductor photovoltaic element. CONSTITUTION:The metallic thin film layer 2 is interposed between the metallic substrate electrode 1 and the photovoltaic element 3 by vacuum deposition, etc. It is desired that the purity of the metal forming the thin film layer 2 is 99.99% or more, and metals such as nickel chromium, platinum, palladium, molybdenum, silver, aluminum are deposited and formed on the substrate 1 by vacuum deposition, sputtering, ion plating, etc. It is preferred that the thickness of the thin film layer 2 is approx. 500-3,000Angstrom . Thereby, the permeation of impurities from the substrate 1 to the photovoltaic element layer 3 is effectively inhibited, therefore the deterioration of characteristics on the physical property of the photovoltaic element 3 can be effectively prevented, and the decrease of photoelectric conversion efficiency after passing a long time becomes small.

Description

【発明の詳細な説明】 本発明は、光電変換効率の経時劣化を低減した半導体太
陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor solar cell in which deterioration of photoelectric conversion efficiency over time is reduced.

半導体太陽電池は、フォトンのエネルギーによって半導
体光起電力素子内部に励起された電子、正孔を、半導体
光起電ノ〕素子の内部電界で加速して、外部回路を流れ
る電流として取り出す光電変換素子である。半導体太陽
電池と【ノては近年アモルファスシリコン(a−3i)
太陽電池が注目を集め、大いに研究されている。これは
光起電力素子としてa−3iを用いた太陽電池である。
A semiconductor solar cell is a photoelectric conversion element that accelerates electrons and holes excited inside a semiconductor photovoltaic element by the energy of photons using the internal electric field of the semiconductor photovoltaic element and extracts them as a current flowing through an external circuit. It is. Semiconductor solar cells and recently amorphous silicon (a-3i)
Solar cells have attracted attention and are being extensively researched. This is a solar cell using a-3i as a photovoltaic element.

a−3i太陽電池が注目されている理由は、低コス1〜
、かつ大面積化が容易であるということ、及びa −3
iは単結晶シリコンに比し太陽光のエネルギー分布のピ
ークである5 00 nm(−1近の波長の光に対する
光吸収係数が1桁程度大きいということによる。a−3
i太陽電池では、光励起されたキャリアについてジエミ
ニート再結合を考慮する。このためa −3i 薄膜の
大部分に電界がかかるように、pH接合ではなく1)i
n接合、あるいは模式的にみてpin接合のp部分を金
属で置換した構造のショットキー接合が利用される。本
明細書においては、以下a−3i太陽電池によって説明
づる。
The reason why a-3i solar cells are attracting attention is because of their low cost.
, and that it is easy to increase the area, and a-3
i is due to the fact that the light absorption coefficient for light with a wavelength near 500 nm (-1), which is the peak of the energy distribution of sunlight, is about one order of magnitude larger than that of single crystal silicon.a-3
i solar cells consider dieminite recombination for photoexcited carriers. Therefore, in order to apply the electric field to most of the a −3i thin film, the 1)i
An n-junction or, schematically, a Schottky junction having a structure in which the p part of a pin junction is replaced with metal is used. In this specification, the explanation will be given below using an a-3i solar cell.

a−3i太陽電池を基板の種類によって分類すると、基
板として金属を用いたものと、ガラスのような光透過率
の良い材料を用いたものとに分類される。本発明は、金
属基板を用いた太陽電池の改良に関する。かかる太陽電
池では、基板の位置しない側が受光面とされる。なお、
光透過率の良い材料の基板を用いた太陽電池では、基板
側が受光面とされる。
When a-3i solar cells are classified by the type of substrate, they are classified into those using metal as the substrate and those using a material with good light transmittance such as glass. The present invention relates to improvements in solar cells using metal substrates. In such a solar cell, the side on which the substrate is not located serves as the light-receiving surface. In addition,
In a solar cell using a substrate made of a material with good light transmittance, the substrate side is the light-receiving surface.

第1図は、金属基板を用いた従来のa−3i太陽電池の
構成の一例を模式的に示したものである。
FIG. 1 schematically shows an example of the configuration of a conventional a-3i solar cell using a metal substrate.

第1図に示すように、金属基板を用いた従来のa−8i
太陽電池は、金属基板1と、該金属基板1上に順次形成
されたa−3i薄膜層から成る光起電力索子3と、透明
電極4とから成る。即ち従来のa−3i太陽電池では、
金属基板1とa −3i薄膜層とが直接的に接している
。ここに、金属基板1の材料としては、耐良性等を考慮
し、一般にステンレスが用いられるが、その他、鉄、ア
ルミニウム等も使用される。
As shown in Figure 1, the conventional A-8I using a metal substrate
The solar cell consists of a metal substrate 1, a photovoltaic cable 3 consisting of an a-3i thin film layer sequentially formed on the metal substrate 1, and a transparent electrode 4. That is, in the conventional a-3i solar cell,
The metal substrate 1 and the a-3i thin film layer are in direct contact. Here, as the material of the metal substrate 1, stainless steel is generally used in consideration of good resistance, but other materials such as iron and aluminum are also used.

かかる構成の従来の太陽電池では、長時間使用後におけ
る光電変換効率の低下が問題とされていた。たとえば製
作時において8.30%であった光電変換効率は100
時間後には7.28%、300時間後には6.47%と
低下した。
Conventional solar cells with such a configuration have had a problem with a decrease in photoelectric conversion efficiency after long-term use. For example, the photoelectric conversion efficiency was 8.30% at the time of production, but it was 100%.
It decreased to 7.28% after hours and 6.47% after 300 hours.

本発明者等はその理由について種々思考した。The inventors have considered various reasons for this.

第3図は従来の太陽電池にあ【プるナトリウムイオンの
厚さ方向の分布状態を表わす図であり、第3図(a >
は太陽電池制作時、同図(b)は100時間使用後、同
図(C)は300時間使用後をそれぞれ表わす。第3図
より前記光電変換効率低下の原因は金属基板1に含まれ
ているナトリウムイオン(Na中)、カリウムイオン(
K+)、カルシウムイオンくCa2+)等の不純物が時
間の経過とともに光起電力素子3の内部へ浸透し、これ
らの不純物によって不純物単位が形成され、物性上の緒
特性が低下するためではないかとの結論に達した。
Figure 3 is a diagram showing the distribution state of sodium ions applied to a conventional solar cell in the thickness direction.
(b) shows the solar cell after use for 100 hours, and (C) shows the photo after 300 hours of use. From FIG. 3, the cause of the decrease in photoelectric conversion efficiency is the sodium ions (in Na) and potassium ions (in Na) contained in the metal substrate 1.
It is believed that this is because impurities such as K+), calcium ions, and Ca2+) penetrate into the photovoltaic element 3 over time, and these impurities form impurity units, which deteriorate the physical properties. I've come to a conclusion.

このため本発明者等は、不純物の浸透を防止するべく種
々試行を重ねた結果、・金属基板1とa −3i薄膜層
から成る光起電力索子3との間に、高純度のニッケルク
ロム(Ni −Cr ’)等の金属の薄膜を介在させれ
ば、金属基板1から光起電力素子3への前記不純物の浸
透を、効率良く抑止し得ることを発見した。そしてかか
る知見に基づき、以下のような構成の本発明を案出した
For this reason, the inventors of the present invention have conducted various trials to prevent impurities from penetrating. As a result, the inventors have found that: - high-purity nickel chromium was added between the metal substrate 1 and the photovoltaic cable 3 consisting of the a-3i thin film layer; It has been discovered that by interposing a thin film of metal such as (Ni-Cr'), the penetration of the impurities from the metal substrate 1 into the photovoltaic element 3 can be efficiently suppressed. Based on this knowledge, the present invention having the following configuration was devised.

第2図は本発明の半導体太陽電池の構成の一例を模式的
に示した図である。第2図に示ずように本発明の半導体
太陽電池は、金属製の基板1と、該基板1上に順次形成
された金属製の薄膜層2と、半導体光起電力素子3と、
透明電極4とから(M成される。
FIG. 2 is a diagram schematically showing an example of the configuration of the semiconductor solar cell of the present invention. As shown in FIG. 2, the semiconductor solar cell of the present invention includes a metal substrate 1, a metal thin film layer 2 sequentially formed on the substrate 1, a semiconductor photovoltaic element 3,
A transparent electrode 4 (M) is formed.

ここにJ−3いて、単板1は、一方の電極としての機能
と、太陽電池の強度を確保する補強材としての機能と、
金属製薄膜層2を蒸着する台としての機能を有する。電
極としての機能を果たすためには、導電率の大きい方が
良い。基板1の厚さを厚くすると太陽電池の強度は向上
する。しかし、太陽電池に柔軟性を具備させたい場合は
、薄い方が良く、10〜60μIIl程度とすると良い
。基板1としては、ステンレス、アルミニウム、鉄、銅
、黄銅、あるいはこれらの金属の箔が適している。
Here, in J-3, the veneer 1 functions as one electrode and as a reinforcing material to ensure the strength of the solar cell.
It functions as a table on which the metal thin film layer 2 is deposited. In order to function as an electrode, higher conductivity is better. Increasing the thickness of the substrate 1 improves the strength of the solar cell. However, if it is desired to provide flexibility to the solar cell, the thinner the material, the better, and the thickness is preferably about 10 to 60 μII. As the substrate 1, stainless steel, aluminum, iron, copper, brass, or foils of these metals are suitable.

金属製の薄膜層2は、上記基板1に含有されているNa
中、K+、Ca2+等)不純物力、半導体光起電力素子
3へ浸透することを抑止する機能を有する。薄膜層2を
形成する金属の純度は高い方が良く、99.99%以上
であることが望ましい。もし純度が低くNa”、K+、
Ca2+等の不純物を多く含有すれば、該不純物が半導
体光起電力素子3へ浸透してしまうからである。薄膜層
2は、前記基板1上に、ニッケルクロム<Ni −Cr
、)、白金(Pt)、パラジウム(Pd)、モリブデン
(MO)、銀(AC+>、アルミニウム(A1)等の金
属を真空蒸着、スパッタリング、イオンプレーテング等
によって堆積させて形成する。金属製の薄膜層の厚さは
実験によると500〜3000大程度が食い。
The metal thin film layer 2 is made of Na contained in the substrate 1.
It has a function of suppressing impurity forces (such as K+, Ca2+, etc.) from penetrating into the semiconductor photovoltaic element 3. The higher the purity of the metal forming the thin film layer 2, the better, and desirably 99.99% or more. If the purity is low, Na”, K+,
This is because if a large amount of impurities such as Ca2+ is contained, the impurities will penetrate into the semiconductor photovoltaic element 3. A thin film layer 2 is formed on the substrate 1 with nickel chromium<Ni-Cr
), platinum (Pt), palladium (Pd), molybdenum (MO), silver (AC+>, aluminum (A1), etc.) is deposited by vacuum evaporation, sputtering, ion plating, etc. According to experiments, the thickness of the thin film layer is about 500 to 3000 mm.

光起電力素子3には励起した電子、正孔を分離し1qる
内部電界が存在しなければならない。この内部電界はp
in接合、pn接合、ショットキー接合、ヘテロ接合等
によって発生するが、a−3i太陽電池では、前述のよ
うにp i n接合あるいはショットキー接合が利用さ
れる。a −3i 薄膜層3は、グロー放電を利用した
プラズマCVD法によって、前記金属′?7!j膜層2
上に形成することができる。
The photovoltaic element 3 must have an internal electric field that separates excited electrons and holes. This internal electric field is p
This occurs through an in junction, a pn junction, a Schottky junction, a heterojunction, etc., and in the a-3i solar cell, a p in junction or a Schottky junction is used as described above. a-3i The thin film layer 3 is formed by forming the metal '?' by plasma CVD using glow discharge. 7! j membrane layer 2
can be formed on top.

透明電極4は、前記一方の電極である基板1に対する他
方の電極としての機能を有する。したがって、導電率は
大きい方が良い。また、透明N極4は受光面となるため
、光透過率は大きい方が良い。透明電極4としては、イ
ンジュウム酸化物と二酸化錫との混合物であるITO膜
、あるいは、二酸化錫膜等を用いることができる。これ
らは、a −3i 薄膜上に電子ビームあるいはスパッ
タリング等によって堆積させ形成することができる。
The transparent electrode 4 has a function as the other electrode with respect to the substrate 1, which is the one electrode. Therefore, the higher the conductivity, the better. Furthermore, since the transparent N-pole 4 serves as a light-receiving surface, the higher the light transmittance, the better. As the transparent electrode 4, an ITO film that is a mixture of indium oxide and tin dioxide, a tin dioxide film, or the like can be used. These can be formed by depositing on the a-3i thin film by electron beam or sputtering.

なお透明電極4は、a−3i薄膜層3側から順に比較的
薄い二酸化錫膜、比較的厚いITO膜の二層構造として
もよい。なんとなれば、二酸化錫はa−8i薄膜を比較
的劣化させにくり、一方、ITOは二酸化錫よりも低抵
抗だからである。したがって、透明電極4を低抵抗とし
、かつa −8i薄膜を良質なものとするためには、前
記二層構造とするのがよい。なお、透明電極4の上には
、アルミニウム等の低抵抗の金属を櫛状に蒸着して、収
集電極5を形成してもよい。この収集電極5ば、太陽電
池の直列抵抗を減じる効果がある。
The transparent electrode 4 may have a two-layer structure consisting of a relatively thin tin dioxide film and a relatively thick ITO film in order from the a-3i thin film layer 3 side. This is because tin dioxide does not degrade the a-8i thin film relatively well, while ITO has a lower resistance than tin dioxide. Therefore, in order to make the transparent electrode 4 low in resistance and to make the a-8i thin film of high quality, it is preferable to use the above-mentioned two-layer structure. Note that the collecting electrode 5 may be formed on the transparent electrode 4 by depositing a low-resistance metal such as aluminum in a comb shape. This collector electrode 5 has the effect of reducing the series resistance of the solar cell.

以上のような構成の本発明のアモルファス半導体太陽電
池は、基板1から光起電力素子層3への不純物の浸透が
有効に抑制されるため、光起電力素子3の物性上の緒特
性の劣化も有効に防止される。したがって長時間経過後
の光電変換効率も優れている。
In the amorphous semiconductor solar cell of the present invention having the above configuration, penetration of impurities from the substrate 1 into the photovoltaic element layer 3 is effectively suppressed, so that deterioration of the physical properties of the photovoltaic element 3 is prevented. is also effectively prevented. Therefore, the photoelectric conversion efficiency after a long period of time is also excellent.

なa3金属基板電極1を99.99%以上の高純度とす
ることはきわめて困難である。したがって本発明のよう
に真空蒸着等によって金属薄膜層2を金属基板電極1と
光起電力素子3との間に介在させることによってはじめ
て不純物の浸透を効率良く抑止し得る。
It is extremely difficult to make the A3 metal substrate electrode 1 have a high purity of 99.99% or higher. Therefore, penetration of impurities can be efficiently suppressed only by interposing the metal thin film layer 2 between the metal substrate electrode 1 and the photovoltaic element 3 by vacuum deposition or the like as in the present invention.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1実施例 第2図は本発明の第1実施例であるa−8i太陽電池の
断面模式図である。
First Embodiment FIG. 2 is a schematic cross-sectional view of an a-8i solar cell according to a first embodiment of the present invention.

本第1実施例のa−3i太陽電池は第2図に示すJ:う
に金属製基板1としてステンレス箔を用い、金m’At
J膜層2としてニッケルクロム(Ni −Cr )を用
い、光起電力素子3としてa−3iのp10重合金用い
、透明電極4としてITOと3 n層2を用いて、構成
される。なおNi−Cr層の厚さは1500人とした。
The a-3i solar cell of the first embodiment uses stainless steel foil as the metal substrate 1 shown in FIG.
The J film layer 2 is made of nickel chromium (Ni-Cr), the photovoltaic element 3 is made of a-3i p10 heavy alloy, and the transparent electrode 4 is made of ITO and a 3N layer 2. Note that the thickness of the Ni-Cr layer was 1500.

a−3iのp i n接合は受光面側から順に0層33
.1層32.0層31となるいわゆる類タイプであり、
ITOと81102から成る透明電極4は受光面側から
順にITO層42.5層02層41どして構成される。
The pin junction of a-3i is 0 layer 33 in order from the light receiving surface side.
.. It is a so-called similar type with 1 layer 32.0 layers 31,
The transparent electrode 4 made of ITO and 81102 is composed of ITO layers 42, 5, 02, 41, etc. in order from the light-receiving surface side.

また、透明電極4の上にはアルミニウム製の収集電極5
が櫛状に形成されている。
In addition, an aluminum collection electrode 5 is placed on the transparent electrode 4.
is formed into a comb shape.

第4図は本第1実施例のa−3i太陽電池の厚さ方向の
Na +濃度の分布状態を表わすグラフであり、第4図
(a )は制作時、同図(b)は100時間経過後、同
図<C>は300h間経過後をそれぞれ表わす。ここに
N a+ 19度の測定はSIMS  (Second
ary   ■on  Mass  3pectrme
ter)を用いて行なった。また、最後に示す表は、従
来の金属薄膜層のないa−3i太陽電池、本第1実施例
のa−3i太陽電池、及び後述の実施例のa−8i太陽
電池それぞれのAM1照射下における光電変換効率の推
移を表わす。第5図は従来のa−8i太陽電池と第1実
施例のa−3i太陽電池それぞれの充電変換効率の推移
、及びn層とi層の境界におけるN a+ i層1度の
推移を横軸を詩間軸として片対数グラフに表わした図で
ある。ここにa5いてNa”ilJ度としてnfJとi
層の境界のNa+濃度をプロン1〜した理由は、a−3
i太陽電池では主として1層が光電変換に寄与するため
、その代表点として採用したものである。
Figure 4 is a graph showing the distribution of Na + concentration in the thickness direction of the a-3i solar cell of the first example, with Figure 4 (a) at the time of production and Figure 4 (b) after 100 hours. After the elapse of time, <C> in the figure represents the time after 300 hours have elapsed. Here, the measurement of N a + 19 degrees is performed using SIMS (Second
ary ■on Mass 3pectrme
ter). In addition, the table shown at the end shows the effects of the conventional a-3i solar cell without a metal thin film layer, the a-3i solar cell of this first example, and the a-8i solar cell of the example described below under AM1 irradiation. It shows the transition of photoelectric conversion efficiency. Figure 5 shows the transition of charge conversion efficiency of the conventional A-8i solar cell and the A-3I solar cell of the first embodiment, and the transition of N a + I layer 1 degree at the boundary between the N layer and I layer on the horizontal axis. It is a diagram expressed in a semi-logarithmic graph using the inter-verse axis. Here a5 and Na"ilJ degree as nfJ and i
The reason why the Na+ concentration at the layer boundary was set to 1 to 1 is because a-3
In the i-solar cell, one layer mainly contributes to photoelectric conversion, so this layer was chosen as its representative point.

第5図より光電変換効率の低下とNa十濃度の増加との
間には相関関係があるものと思われる。
From FIG. 5, it seems that there is a correlation between the decrease in photoelectric conversion efficiency and the increase in Na+ concentration.

たとえば従来のa−3i太陽電池ではn層とi層の境界
部のNa ”1度は、7.4X1’0−12 (制作時
)、1.3xlO−”  <100時間後)、2゜4X
10−1’  <300時間後)と増加し、これに対応
し光電変換効率は8.30%(制作as>、、、7゜2
8%(100時間後)、6.47%(300時間後)と
低下する。一方第1実施例のa−3i太陽電池ではNa
+濃度は6.0X10−’  (制作時)、6.2X1
0−12 (100時間経過後)、6.3X10−” 
(300時間後)と、はとんど増加せず、光電変換効率
も8.25%く制作時)、8.15%(100時間後)
、8.10%(300時間後)と、はとんど低下しない
1、第5図を用いて充電変換効率が制作時の1/e(e
は自然対数の底)に低下するまでの時間を概算すると、
従来のa−3i太陽電池では約1200時間であるのに
対し、第1実施例のa−3:太陽電池では16300時
間である。即ち従来のa−3i太陽電池に比し本第1実
施例のa−3i太陽電池の寿命は非常に長い。これは1
層におりるNa+1lii1度がほとんど増加しないこ
とによる効果であると思われる。
For example, in a conventional A-3I solar cell, the Na "1 degree" at the boundary between the n-layer and the i-layer is 7.4X1'0-12 (at the time of production), 1.3xlO-"<100 hours later), 2°4X
10-1'<300 hours), and correspondingly, the photoelectric conversion efficiency increased to 8.30% (manufactured as>,,7゜2).
It decreases to 8% (after 100 hours) and 6.47% (after 300 hours). On the other hand, in the a-3i solar cell of the first embodiment, Na
+ Density is 6.0X10-' (at the time of production), 6.2X1
0-12 (after 100 hours), 6.3X10-”
(after 300 hours), the photoelectric conversion efficiency hardly increased, and the photoelectric conversion efficiency was 8.25% (at the time of production), and 8.15% (after 100 hours).
, 8.10% (after 300 hours), which hardly decreases1. Using Figure 5, the charging conversion efficiency is 1/e (e
is the base of the natural logarithm).
The conventional a-3i solar cell has a battery life of about 1,200 hours, while the a-3: solar battery of the first embodiment has a battery life of 16,300 hours. That is, the life of the a-3i solar cell of the first embodiment is much longer than that of the conventional a-3i solar cell. This is 1
It is thought that this effect is due to the fact that the amount of Na+1lii1 degree that falls into the layer hardly increases.

次に第4図(a )、(1))、(C)を前記従来のa
−3i太陽電池のI’Ja”1度の分布を表わす第3図
(a )、(1) )、(C)と比較する。制作時、1
00時間後、300時間後のそれぞれにおいて、第1実
施例のa−3i太陽電池のNa+濃度はNi−Cr層で
急激に低下し、その結果光電変換に寄与する1層でのN
a十濃度が低くなっていることがわかる。これに対し従
来のa−3i太陽電池ではNi−Cr@が存在しないた
めグラフのカーブはゆるやかであり1層におけるNa十
濃度も高い。
Next, FIG. 4(a), (1)), and (C) are compared to the conventional a
Compare with Figure 3 (a), (1)), and (C) showing the distribution of I'Ja'' 1 degree for the -3i solar cell.At the time of production, 1
After 00 hours and after 300 hours, the Na+ concentration of the a-3i solar cell of the first example decreased rapidly in the Ni-Cr layer, and as a result, the N concentration in one layer, which contributes to photoelectric conversion, decreased rapidly.
It can be seen that the a10 concentration is lower. On the other hand, in the conventional a-3i solar cell, since Ni-Cr@ is not present, the curve of the graph is gentle and the concentration of Na0 in one layer is high.

以上より、本第1実施例のa−3i太陽電池はNi−C
r層でNa+の1層への浸透が抑制される結果、長時間
使用後においても、光電変換効率はほとんど低下しない
ことがわかる。
From the above, the a-3i solar cell of the first embodiment is made of Ni-C
It can be seen that as a result of the r-layer suppressing the penetration of Na+ into the first layer, the photoelectric conversion efficiency hardly decreases even after long-term use.

なお上記本実施例のa−3i太陽電池は、以下のように
して製造した。
The a-3i solar cell of this example was manufactured as follows.

(1)金属製基板1として厚さ50〜80μm1面積が
10cmX 10cm角であるステンレス箔を用意し、
超音波洗浄、表面粗度を0.5μm以下にする電界?t
ll磨、再度の超音洗浄を施した後、電子ビーム蒸着法
によって、該ステンレス箔上にNi80%、Cr2O%
、純度99.99%以上のN1−Cpを”to”4〜1
O−6Torrの真空下テ1500AJ仔積させた。
(1) Prepare a stainless steel foil with a thickness of 50 to 80 μm and an area of 10 cm x 10 cm square as the metal substrate 1,
Ultrasonic cleaning, electric field to reduce surface roughness to 0.5 μm or less? t
After polishing and ultrasonic cleaning again, 80% Ni and Cr2O% were deposited on the stainless steel foil by electron beam evaporation.
, "to" 4-1 N1-Cp with a purity of 99.99% or more
A 1500 AJ tube was deposited under a vacuum of O-6 Torr.

く2)前記NiCr膜2上に13.56MHzの高周波
電源を用いて、グロー放電分解法により1)型a  S
!薄膜31を300〜500人成長させた。カスとして
は、シラン(Stl−14):ボスフ・rン(1’H3
):アルゴン(Ar)−10:0゜01〜0.3:90
の混合ガスを用い、真空度0゜1〜1TOrr、高周波
電力密度1〜80ITIW/Cm2、ステンレス箔の温
度270〜300℃の条件とし1こ 。
2) 1) Type a S was formed on the NiCr film 2 by glow discharge decomposition using a 13.56 MHz high frequency power source.
! Thin film 31 was grown by 300 to 500 people. As the residue, silane (Stl-14): Bosph rn (1'H3)
): Argon (Ar) -10:0°01~0.3:90
Using a mixed gas, the conditions were a vacuum degree of 0°1 to 1 TOrr, a high frequency power density of 1 to 80 ITIW/Cm2, and a stainless steel foil temperature of 270 to 300°C.

(3)グロー放電分解法によってi型a −3i 薄膜
32を前記n型a −3i 薄膜31上に0.5〜0.
8μm成長さけた。ガスどじではシラン(SiHa):
アルゴン(Ar )=10 :90の混合ガスを用い、
真空度、高周波電力密度及びステンレス箔の湿度は(2
)と同じとした。
(3) I-type a-3i thin film 32 is deposited on the n-type a-3i thin film 31 by a glow discharge decomposition method of 0.5 to 0.5%.
Growth of 8 μm was avoided. Silane (SiHa) for gas doji:
Using a mixed gas of argon (Ar) = 10:90,
The degree of vacuum, high frequency power density, and humidity of stainless steel foil are (2
).

(4)グロー放電分解法によって、p型a −3i瀞膜
33を前記i型a  S!ell*32上に100〜3
00人成長させた。ガスとしてはシラン(SiH4)ニ
ジ゛ホラン(B2H6):メタン(CH4):アルゴン
(Ar ) −10: 0.01〜0゜3=2〜4:8
6〜88の混合ガスを用いた。真空度、高周波電力密度
及びステンレス箔の温度は(2)と同じとした。
(4) Using the glow discharge decomposition method, the p-type a-3i barrier film 33 is converted into the i-type aS! 100-3 on ell*32
00 people grew. Gases include silane (SiH4), nitrogen diphorane (B2H6): methane (CH4): argon (Ar) -10: 0.01~0°3=2~4:8
A mixed gas of 6 to 88 was used. The degree of vacuum, high frequency power density, and temperature of the stainless steel foil were the same as in (2).

く5)前記P型a−3iml!33上に、ITt度99
゜99%二酸化錫を10”−4〜1Q−6Torr真空
下で電子ビーム蒸着法によって300〜1000人」仔
積させ、該二酸化錫41の上にITO42(In 20
3.93〜95%:5n025〜7%)を500〜30
00大の厚さに同じく、電子ビーム蒸着法によって、1
0”−4〜10−’Torr以下で堆積させた。
5) Said P type a-3iml! On 33, ITt degree 99
99% tin dioxide was deposited by electron beam evaporation in a vacuum of 10"-4 to 1Q-6 Torr, and ITO42 (In 20") was deposited on the tin dioxide 41.
3.93~95%:5n025~7%) 500~30
Similarly to the thickness of 00, 1
Deposition was performed below 0''-4 to 10-'Torr.

(6)前記ITO膜4膜上2上スクを施し、10−7〜
10 5Torr下で電子ビーム蒸着法によって、A1
を2000〜5000人蒸着して、櫛状収集電極5を形
成した。
(6) Apply 2 top coats on the 4 ITO films, 10-7~
A1 by electron beam evaporation method under 105 Torr.
The comb-shaped collecting electrode 5 was formed by depositing 2,000 to 5,000 people.

第2実施例 第2実施例のa−3i太陽電池は、第1実施例のa−3
i太陽電池と略同様である。また顎迫条件も同様である
Second Example The a-3i solar cell of the second example is the a-3i solar cell of the first example.
It is almost the same as the i solar cell. The jaw pressure conditions are also similar.

第2実施例のa−3i太陽電池が第1実施例のa−3i
太陽電池と異なる点は、金属薄膜層2の+Δお1として
セリフ′デン(MO)を用いた点である。
The a-3i solar cell of the second embodiment is the a-3i solar cell of the first embodiment.
The difference from a solar cell is that serif'den (MO) is used as the +Δ layer of the metal thin film layer 2.

第2実施例のa−3i太陽電池の長時間使用後にd′3
りる光電変換効率も表に示すように第1実施例の場合と
同様に優れている。また不純物の濃度を表わす特性曲線
も、第1実施例の第4図に準するものであった。
d′3 after long-time use of the a-3i solar cell of the second embodiment.
As shown in the table, the photoelectric conversion efficiency is also excellent as in the case of the first embodiment. Further, the characteristic curve representing the concentration of impurities was also similar to that shown in FIG. 4 of the first example.

Moに代えでアルミニウム(A+ >を金属薄膜層2に
用いても表に示すように同様の効果が得られた。
Even when aluminum (A+>) was used in the metal thin film layer 2 instead of Mo, similar effects were obtained as shown in the table.

以上数づ−るに本発明は、基板として金属を用いた半導
体太陽電池において、基板と半導体光起電力素子との間
に、高純度の金属の薄膜層を介在させたものである。
To summarize, the present invention provides a semiconductor solar cell using a metal as a substrate, in which a thin film layer of high purity metal is interposed between the substrate and a semiconductor photovoltaic element.

表(光電変換効率) 〈90℃、95%湿度における耐久試験。Ni−Cr層
、MO層、A1層の厚さは1500人) 実施例に詳述したところからも明らかなように、本発明
の半導体太陽電池は、基板から半導体光起電力素子への
不純物の浸透が効率良く防止される。
Table (Photoelectric conversion efficiency) <Durability test at 90°C and 95% humidity. The thickness of the Ni-Cr layer, MO layer, and A1 layer was 1,500 layers).As is clear from the detailed description in the examples, the semiconductor solar cell of the present invention is designed to prevent impurities from flowing from the substrate to the semiconductor photovoltaic element. Penetration is efficiently prevented.

そのため長時間経過した後も光起電力素子の不純物濃度
は増加しない。その結果優れた光電変換効率を有する。
Therefore, the impurity concentration of the photovoltaic element does not increase even after a long period of time has elapsed. As a result, it has excellent photoelectric conversion efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体太陽電池の断面模式図、第2図は
本発明の第1実施例の半導体太陽電池の断面模式図、第
3図は従来のa−3i太陽電池中におけるナトリウムイ
オン濃度の分布を表わす図であり、第3図(a )は制
作時、同図(b )は100時間後、<C>は300時
間後の分布をそれぞれ表わす。第4図は本発明の第1実
施例のa−8t太陽電池中におけるナトリウムイオン濃
度の分布を表わす図であり、第4図(a )は制作時、
同図〈b)は100時間後、同図(C)は300時間後
の分布をそれぞれ表わす。第5図は従来のa−3i太陽
電池と第1実施例のa−3i太陽電池の光電変換効率の
推移及び0層と1@の境界にd31プるNa”濃度の推
移を、横軸を時間軸として片対数グラフ上に表わした図
である。 1・・・金属製基板電極   2・・・金属薄Ilx層
3・・・半導体光起電力素子 31・・・11  層          32・・・
i 層33・・・0層      4・・・透明電極’
11 =−S n O2層42− I T 0層5・・
・収集電極 第1図 彷・、2図 5−1 第5図 (時間)
Fig. 1 is a schematic cross-sectional view of a conventional semiconductor solar cell, Fig. 2 is a schematic cross-sectional view of a semiconductor solar cell according to the first embodiment of the present invention, and Fig. 3 is a sodium ion concentration in a conventional a-3i solar cell. FIG. 3(a) shows the distribution at the time of production, FIG. 3(b) shows the distribution after 100 hours, and <C> shows the distribution after 300 hours. FIG. 4 is a diagram showing the distribution of sodium ion concentration in the A-8T solar cell of the first embodiment of the present invention, and FIG.
The figure (b) shows the distribution after 100 hours, and the figure (C) shows the distribution after 300 hours. Figure 5 shows the transition of the photoelectric conversion efficiency of the conventional a-3i solar cell and the a-3i solar cell of the first embodiment, and the transition of the Na'' concentration at the boundary between the 0 layer and 1@, with the horizontal axis It is a diagram expressed on a semi-logarithmic graph as a time axis. 1...Metallic substrate electrode 2...Metal thin Ilx layer 3...Semiconductor photovoltaic element 31...11 layer 32...
i layer 33...0 layer 4...transparent electrode'
11 =-S n O2 layer 42- I T 0 layer 5...
・Collecting electrode Figure 1 Aki・, 2 Figure 5-1 Figure 5 (Time)

Claims (1)

【特許請求の範囲】 〈1〉金属製の基板電極と、該基板電極上に順次形成さ
れた半導体光起電力素子と、透明電極とから成る半導体
太陽電池において、 前記基板電極と前記半導体光起電力素子との間に高純度
の金属薄膜層が介在することを特徴とげる半導体太陽電
池。 (2)前記半導体光起電力素子は、アモルファス半導体
光起電力素子である特nil請求の範囲第1項記載の半
導体太陽電池。 (3〉前記高純度の金属薄膜層は、99.99%以」二
の/lit!度のニラクルクロム(Nl −Cr ) 
、白金(Pt)、パラジウム(Pd)、モリブデン(M
O>、銀(A!II>、アルミニウム(A1)の1種で
ある特許請求の範囲第1項記載の半導体太陽電池 (4)前記金属薄膜層の厚さは500〜300O人であ
る特許請求の範囲第1項記載の半導体太陽電池。
[Scope of Claims] <1> A semiconductor solar cell comprising a metal substrate electrode, a semiconductor photovoltaic element sequentially formed on the substrate electrode, and a transparent electrode, wherein the substrate electrode and the semiconductor photovoltaic element are formed in sequence on the substrate electrode. A semiconductor solar cell characterized by a highly pure metal thin film layer interposed between the power element and the power element. (2) The semiconductor solar cell according to claim 1, wherein the semiconductor photovoltaic device is an amorphous semiconductor photovoltaic device. (3) The high-purity metal thin film layer is composed of 99.99% or more of niracle chromium (Nl-Cr).
, platinum (Pt), palladium (Pd), molybdenum (M
O>, silver (A!II>), and aluminum (A1). (4) The semiconductor solar cell according to claim 1, wherein the metal thin film layer has a thickness of 500 to 300 O. The semiconductor solar cell according to item 1.
JP57230037A 1982-12-28 1982-12-28 Semiconductor solar battery Pending JPS59123278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230037A JPS59123278A (en) 1982-12-28 1982-12-28 Semiconductor solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230037A JPS59123278A (en) 1982-12-28 1982-12-28 Semiconductor solar battery

Publications (1)

Publication Number Publication Date
JPS59123278A true JPS59123278A (en) 1984-07-17

Family

ID=16901572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230037A Pending JPS59123278A (en) 1982-12-28 1982-12-28 Semiconductor solar battery

Country Status (1)

Country Link
JP (1) JPS59123278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650919A (en) * 1984-08-01 1987-03-17 The United States Of America As Represented By The United States Department Of Energy Thermoelectric generator and method for the fabrication thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650919A (en) * 1984-08-01 1987-03-17 The United States Of America As Represented By The United States Department Of Energy Thermoelectric generator and method for the fabrication thereof

Similar Documents

Publication Publication Date Title
US4272641A (en) Tandem junction amorphous silicon solar cells
US5230746A (en) Photovoltaic device having enhanced rear reflecting contact
JPS6138870B2 (en)
JPS6091626A (en) Method of producing amorphous silicon pin semiconductor device
JPH08504542A (en) Method for manufacturing tandem photovoltaic device with improved efficiency and device manufactured by the method
JPH1074969A (en) Manufacture of solar cell by surface preparation for accelerating formation of nuclei of microcrystalline silicon on heterogeneous substrate
JPH0656883B2 (en) Semiconductor device
US4396793A (en) Compensated amorphous silicon solar cell
CN102315291A (en) P-i-n type InGaN solar cell possessing superlattice structure
CN107393974A (en) Combination electrode and preparation method thereof and heterojunction solar battery and preparation method thereof
US4415760A (en) Amorphous silicon solar cells incorporating an insulating layer in the body of amorphous silicon and a method of suppressing the back diffusion of holes into an N-type region
JPS6333308B2 (en)
JPS59123278A (en) Semiconductor solar battery
JP3249619B2 (en) Solar cell
JPH06338623A (en) Thin-film solar cell
JP3745076B2 (en) Tandem silicon thin film photoelectric conversion device
JPH0312973A (en) Amorphous thin film solar cell
JP2002198551A (en) Optical-to-electrical transducer element and device thereof using it as well as method for manufacturing the same
JPS62256481A (en) Semiconductor device
JPS61135167A (en) Thin-film solar cell
JPH10294482A (en) Silicon-based thin film photoelectric converter
JPH06204528A (en) Thin film semiconductor solar cell and manufacture thereof
JPS5996775A (en) Amorphous silicon photoelectric conversion device
JP2846639B2 (en) Amorphous solar cell
JP2744680B2 (en) Manufacturing method of thin film solar cell